
Speeding Up Image Computation
by using RTL Information

Christoph Meinel
FB Informatik

University of Trier
meinel@uni-trier.de

Christian Stangier
FB Informatik

University of Trier
stangier@uni-trier.de

Christoph Meinel, Christian Stangier:
Speeding Up Image Computation by using RTL Information
in Proceedings of the Third International Conference on Formal Methods in Computer-Aided Design (FMCAD 2000), vol. 1954, LNCS,
Springer Press, Austin, Texas, USA, pp. 443-454, 11, 2000.

Speeding Up Image Computation
by using RTL Information

Abstract

Image computation is the core operation for optimization and formal verifica-
tion of sequential systems like controllers or protocols. State exploration techniques
based on OBDDs use a partitioned representation of the transition relation to keep
the OBDD-sizes manageable. This paper presents a new approach that significantly
increases the quality of the partitioning of the transitionrelation of controllers given
in the hardware description language Verilog. The heuristic has been successfully
applied to reachability analysis and symbolic model checking of real life designs,
resulting in a significant reduction both in CPU time and memory consumption.

1 Introduction

The computation of the reachable states (RS) of a sequentialcircuit is an important task
for synthesis, logic optimization and formal verification.The increasing complexity of se-
quential systems like controllers or protocols requires efficient RS computation methods.
If the RS are computed by using Ordered Binary Decision Diagrams (OBDDs) [2], the
system under consideration is represented in terms of a transition relation (TR). Since the
monolithic representation of the circuit’s TR usually leads to unmanageable large OBDD-
sizes, the TR has to be partitioned [3, 6]. The quality of the partitioning is crucial for the
efficiency of the RS computation. The computation of transitions will be unnecessarily
time consuming, if the TR is divided into too many parts On theother hand a number of
partitions that is too small will lead to a blow-up of OBDD-size and hence, memory con-
sumption. Partitioning the TR is usually done without utilizing any external information.
The standard method is to to sort the latches according to a benefit heuristic [7] and then
apply a clustering algorithm. This clustering algorithm follows a greedy scheme [5] that
is guided only by OBDD-size, i.e if the OBDD-size of a partition is exceeding a certain
threshold a new partition has to be created.

In this paper we propose a heuristic for partitioning of protocols that uses information
given by the register transfer level (RTL) description of controllers written in Verilog [10].
The application of our heuristic to reachability analysis reduced the computation time by
21% and memory consumption by 15% (overall). Additionally,we performed experiments
with symbolic model checking [4]. Here, we got a reduction ofCPU time by 63% and
memory consumption by 55%, when applying our heuristic. Especially the experiments
with model checking, where often properties concerning interaction of functional modules
are checked, show the potential of our RTL based approach.

The heuristic is based on but not limited to Verilog. It may easily be adapted to other
hardware description languages that provide RTL information like e.g. VHDL [8].

2

2 Preliminaries

2.1 Verilog

For the purpose of logic synthesis, designs are currently written in an hardware descrip-
tion language (HDL) at register transfer level (RTL). The term RTL is used for an HDL
description style that utilizes a combination ofdata flowandbehavioral constructs. Logic
synthesis tools take the RTL HDL description to produce an optimized gate level netlist
and high level synthesis tools at the behavioral level output RTL HDL descriptions. Ver-
ilog and VHDL are the most popular HDLs used for describing the functionality at RTL.
Within the design cycle of optimization and verification theRTL level plays an important
and frequently used role.

The design methodology in Verilog is a top down hierarchicalmodeling concept based
on modules. A module is the basic building block in Verilog. Since modern complex
designs require a structured hierarchical description to be feasible, Verilog is a first choice
for an HDL.

2.2 Partitioned Transition Relations

The computation of the RS is a core task for optimization and verification of sequential
systems. The essential part of OBDD-based traversal techniques is the transition relation
TR:

TR(x; y) =Yi Æi(xi) � yi;
which is the conjunction of the transition relations of all latches (Æi denotes the transition
function of theith latch). ThismonolithicTR is represented as a single OBDD and usually
much too large to allow an efficient computation of the RS. Sometimes a monolithic TR is
too large to be represented with OBDDs. Therefore, more sophisticated RS computation
methods make use of apartitionedTR [3], i.e. a cluster of OBDDs each of them repre-
senting the TR of a group of latches. A transition relation partitioned over sets of latchesP1; : : : ; Pj can be described as follows:

TR(x; y) =Yj Yi2Pj Æi(xi) � yi:
The RS computation consists of repeated image computationsImg(TR; R) of a set of
already reached states R:Img(TR; R) = 9x(TR(x; y) �R)
With the use of a partitioned TR the image computation can be iterated overPj and the9 operation can be applied during the product computation(early quantification). The
so calledAndExist[3] or AndAbstractoperation may prevent a blow-up of OBDD-size
during the image computation. Another important problem isfinding an optimal schedule
of the partitions for the AndExist operation. Geist and Beer[7] presented a heuristic for
the ordering of partitions each representing a single statevariable.

3

3 Partitioning of Transition Relations

The quality of the partitioning is crucial for the efficiencyof the RS computation. The
image computation is iterated over the partitions and includes costly product (i.e. AND)
computations. Therefore, maintaining a large number of partitions is time consuming.
A small number of partitions may lead to unmanageable large OBDDs. One extremum
of this trade-off is the partitioning where each latch formsa partition, which is usually
small but requires many iterations. The other extremum is a monolithic TR, that can be
computed in one iteration but has large OBDD-size. Furthermore, the schedule of latches
and the clusters is crucial for an efficient AndExist operation.

In the following we will describe the standard partitioningstrategy and our new ap-
proach.

3.1 Common partitioning strategy

A common strategy for partitioning of the TR as it is used e.g.by VIS [5] proceeds in
three steps:

1. Order latches. First, the latches are ordered by using a benefit heuristic [7] that per-
forms a structural analysis of the latches transition function to address an effective
AndExist operation. Hence, the heuristic considers: variables that may be quantified
out, highest index in the function, etc.

2. Cluster latches. The single latch relations are clustered by following a greedy strat-
egy. Latches are added to a OBDD (i.e. by performing AND) until the size of the
OBDD exceeds a certain threshold.

3. Order clusters. In the last step the clusters are ordered similarly to the latches by
using a benefit heuristic (VIS uses the same heuristic as in Step 1).

Figure 1 a) gives a schematic overview of this process.

3.2 RTL based Partitioning Heuristic

The way to build a complex design is to break it into modules, each with a dedicated
functionality and a smaller complexity. For example communication protocols contain
transmitter and receiver that represent independent modules. These modules are usually
not too complex, thus the complexity of their TRs will be small. If a partition contains
state variables of several modules, we need to represent theCartesian product of these
modules leading to a much more complex TR. The main reason forthe efficiency of the
partitioned TR approach is that state variables not appearing in other partitions are quan-
tified out during the AndExist operation. This leads to much smaller OBDD-sizes and a
faster computation. If the state variables of a module are spread over several partitions, the
quantification does take effect only lately during the imagecomputation. Therefore, most
of the computation has to be done with large OBDDs.

4

RTL level description languages like Verilog support a hierarchical design methodol-
ogy by providing module constructs. As it can be seen this modularization has effects on
the image computation (see discussion below) that should not be neglected.

Although the standard method optimizes the partitioning twice, its main disadvantage
is that it only uses structural information to optimize the partitioning for an efficient sched-
ule for the AndExist operation during the image computation.

Our new heuristic improves this optimization by including additional semantical in-
formation about the represented functions. As the analysisand the experimental results
show, there is a close conjunction between the RTL description and an efficient image
computation.

The RTL heuristic proceeds in three steps:

1. Group latches. The latches are grouped according to the modules given in the top
module of the RTL description in Verilog. Within the groups the latches are ordered
by a lexicographic order that takes into account submodule names and bit numbers
(names of latches from submodules are prefixed by the submodule name). Also, the
bits of a certain register are named by the register and the bit number. The effect of
this sorting is, that latches of a submodule within the groupstay adjacent, without
being grouped explicitely. The same holds for the bits of a register.

2. Cluster groups. The groups represent borders for the clusters. There is no cluster
containing latches from different groups. To control the OBDD size of the clusters,
the greedy partitioning strategy is applied within the groups. The clustering given by
the groups lowers the influence of the arbitrary clustering produced by the OBDD-
size threshold. Thus, resulting in a morenaturalpartitioning.

3. Order clusters. In the last step the clusters are ordered by using the benefitheuristic
from the standard method.

Figure 1 b) gives an overview of this strategy.
Modifications of this strategy are possible:� Step 1a) As an additional step the benefit heuristic of the standard method may be

applied to order the latches within the single groups. It emerged that the lexico-
graphic order of the latches preserves more of the structureof the design and leads
to better results.� Step 2a) One may allow to create clusters that cross a group border. This will
lead to a more compact representation of the TR with fewer clusters. Although the
representation is more efficient the image computation doesnot perform as efficient
as with the strict group borders. An explanation for this behavior is given below.

3.3 Analysis of the image computation

In the following we will analyze the influence of different partitioning schemes on the
image computation of controllers that are inherently modularized. For the ease of under-
standing we consider a hypothetic protocol consisting of a transmitter (Tx) and a receiver

5

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

b) RTL Methoda) Standard Method

1. Group latches

Latches

1.Order latches

3. Order clusters

2. Cluster Latches
2. Cluster latches

3. Order cluster

 within groups

 acc. to RTL modules

Relations (BDDs)

Figure 1: Schematic of Partitioning Strategies.

(Rx). The state variables of Tx aret0; : : : ; tm and the corresponding transition functions
areÆt0 : : : ; Ætm . The state variables of Rx arer0; : : : ; rn, the corresponding transition func-
tions areÆr0 : : : ; Ærn .

A common greedy partitioning strategy mergesÆts andÆrs until the threshold for the
OBDD-size of the partition is exceeded. We can expect thatÆts andÆrs appear in every
partition. Hence, every partition depends on all variablest0; : : : ; tm; r0; : : : ; rn. This kind
of “mixed” partitioning will not have negative effects on usual monolithic controllers, but
it will have negative effects on modularized controllers:

First, the abstraction operation (9) included in the AndExist operation does take effect
very lately, resulting in large OBDDs in the earlier computations.

Secondly, if the partitions depend on all variables, the ANDoperation within the And-
Exist is a complete AND operation with a worst case complexity of O(jIij � jPij), wherePi andIi are the OBDDs of theith iteration.

Even if the partitions are almost separated, but e.g.Ær0 is represented in a partition of
onlyÆts, the OBDD forÆr0 cannot share any nodes with the OBDDs for the other functions.
This results in an unnecessary large partition that is againdepending on all variables.

We have a different situation if we use a modularized partitioning. Please notice that
the setR of already reached states and the resulting Image (Img) of every iteration of the
RS computation are independent of the chosen partitioning scheme. Their OBDDs may
be different due to variable reordering, but the main reasonfor the better performance is
the different partitioning scheme: Only transition functions of one type (Æt resp. Ær) are
merged into one partition and iterated consecutively. Thisscheme performs better for the
following reasons:

First, the AND operation is performed on a smaller number of variables. During theith iteration the partitionPi and the intermediate resultIi share only a fraction of variables.
The complexity for the AND operation of two OBDDs A and B with totally disjoint vari-
able sets isO(jAj+ jBj). The AND operation in the modularized scheme is much closer
to this complexity than the AND operation in the mixed scheme.

6

Secondly, if the end of a module is reached, the abstract operation will quantify out all
variables of this module, resulting in smaller OBDDs.

This analysis is absolutely correct only for fully separated modules, but modularized
controllers communicate only over very few signals and thisanalysis is valid although.

4 Experiments

4.1 Implementation

We implemented our strategy in the VIS-package [5] (version1.3) using the underlying
CUDD-package [9] (version 2.3.0). VIS is a popular verification and synthesis packages
in academic research. It inherits state of the art techniques for OBDD manipulation, image
and reachable states computation as well as formal verification techniques. Together with
the vl2mv translator VIS provides a Verilog front-end needed for our heuristic.

4.2 Benchmarks

For our experiments we used Verilog designs from the Texas97benchmark suite [1]. This
publicly available benchmark suite contains real life designs including:� MSI Cache Coherence Protocol� PCI Local BUS� PI BUS Protocol� MESI Cache Coherence Protocol� MPEG System Decoder� DLX� PowerPC 60x Bus Interface

The benchmark suite also contains properties given in CTL formulas for verification.
We chose those designs that represent RTL (i.e. including more than one module)

rather than gate level descriptions. Considered were thosedesigns that could be read in
and whose transition relation could be build respecting oursystem limitations. Too small
examples (CPU time< 1s) were not considered.

4.3 Experimental Setup

We left all parameters of VIS and CUDD unchanged. The most important default values
are:� Partition cluster size = 5000� Partition method for MDDs = inout� OBDD variable reordering method = sifting� First reordering threshold = 4004 nodes

7

The reachable states computation or the model checking was preceeded by a forced vari-
able reordering. The CPU time was limited to 2 CPU hours and memory usage was limited
to 200MB. All experiments were performed on Linux PentiumIII 500Mhz workstations.

4.4 Results of Reachability Experiments

As a first experiment we performed reachability analysis on the given benchmarks. For
results see Table 1 and Table 2.

RS describes the number of reachable states of the design,Depth its sequential depth.
Part gives the number of partitions of the transition relation. The OBDD-size of the tran-
sition relation cluster and the peak number of live nodes is given by TRn resp. Peakn.
The CPU time is measured in seconds and given asTime. The columns denoted with%
describe the improvement in percent1.

At the bottom of Table 1 you can find the sum of all numbers of partitions, BDD-sizes
and CPU-times. Also, theaverage of the relative improvementis given as well as thetotal
improvement. In Table 2 results of experiments are given, where the standard method did
not finish the computation.

The main result of these experiments is that using the RTL heuristic the reachable
states are being computed faster and the OBDD sizes are smaller.

Although the OBDD sizes of the TR are comparable for both methods (the RTL
method is 5% smaller), the OBDD peak sizes of the RTL method are 15% smaller than the
peak sizes of the standard method. The computation time improves on 21% overall and
19% on average. The heuristic performs worse on 8 benchmarks, but these benchmarks
represent only 8% of the original computation time and the time losses for these bench-
marks add up to 98 seconds. In most cases the time losses result from extra reordering
calls, that are triggered because the OBDDs are smaller (!) in comparison to the standard
method.

As a conclusion one may say that the RTL heuristics performs stable and is especially
useful for larger designs.

4.5 Results of Model Checking Experiments

In the second series we performed model checking experiments on the basis of the texas97
benchmarks.

In model checking the number of image computations usually is larger than for reach-
able states computation. On the other hand model checking isnot dominated by the size
of the reachable states set and the resulting variable reordering effort.

For results see Table 3. The notation in the table is the same as before. Reachable
states and the depth of the circuit are not computed. Since various TRs for forward and
backward image computation are built for one circuit, the size of the TR is not given (for
comparison see Table 1). Additionally the number of image computations (img.comp) is
given.

10 < improvement< 100;�100 < impairment< 0
8

The experiments show significant improvements in time and space: The overall CPU
time decreased by 63% overall and 54% on average. The RTL method outperforms the
standard method for every benchmark. The decrease in computation time ranges from
10% up to 85%. The OBDD peak sizes could be lowered by 55% overall and 67% on
average. A reason for this remarkable improvement may be thefact that often properties
checked by model checking concern the interaction of modules in a design. The RTL
heuristic targets exactly this behavior and produces a kindof a smartpartitioning of the
TR with respect to this verification task.

5 Conclusion

We presented a heuristic for optimizing the partitioning ofthe transition relation for reach-
able states computation and model checking of sequential systems written in the hardware
description language Verilog. The heuristic significantlydecreases computation time and
memory consumption during reachable states computation and model checking and thus
allows more efficient optimization and verification. The heuristic is general enough to be
applied to other hardware description languages that provide RTL information.

References

[1] A. Aziz et. al.,Texas-97 benchmarks,
www-cad.EECS.Berkeley.EDU/Respep/Research/Vis/texas-97 .

[2] R. E. Bryant,Graph-Based Algorithms for Boolean Function Manipulation, IEEE Transac-
tions on Computers, C-35, 1986, pp. 677-691.

[3] J. R. Burch, E. M. Clarke, D. E. Long,Symbolic Model Checking with partitioned transition
relations, Proc. of Int. Conf. on VLSI, 1991.

[4] J. R. Burch, E. M. Clarke, D. L. Dill, L. J. Hwang and K. L. McMillan, Symbolic model
checking:1020 states and beyond, Proc. of LICS, 1990, pp. 428-439.

[5] R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S. Cheng,
S. A. Edwards, S. P. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer,R. K. Ranjan, S. Sarwary, T. R.
Shiple, G. Swamy, T. Villa,VIS: A System for Verification and Synthesis, Proc. of Computer
Aided Verification CAV’96, 1996, pp. 428-432.

[6] O. Coudert, C. Berthet and J. C. Madre,Verification of Synchronous Machines using Symbolic
Execution, Proc. of Workshop on Automatic Verification Methods for Finite State Machines,
LNCS 407, Springer, 1989, pp. 365-373.

[7] D. Geist and I. Beer,Efficient Model Checking by Automated Ordering of Transition Relation
Partitions, Proc. of Computer Aided Verification CAV’94, 1994, pp. 294-310.

[8] R. D. M. Hunter and T. T. Johnson,Introduction to VHDL, Chapman & Hall, 1996.

[9] F. Somenzi,CUDD: CU Decision Diagram Package, ftp://vlsi.colorado.edu/pub/ .

[10] D.E. Thomas and P. Moorby,The Verilog Hardware Description Language, Kluwer, 1991.

9

Design Standard VIS RTL Method

Minterms Depth Parts TRn Peakn Time Parts TRn % Peakn % Time %

ONE 2.91e8 16 3 2175 20284 5.32 5 1987 9 19068 6 4.99 6
PCIabnorm 2631170 35 23 47472 81543 123.99 25 34646 27 87882 -7 132.75 -7
PCInorm 86528 30 20 31048 69291 71.93 21 39687 -22 69291 0 81.18 -11
SDLX sdlx 12 11 17 26943 38106 75.12 25 12946 52 26324 31 35.23 53
TEST PDLX sdlx 155 154 25 66680 92726 264.74 29 22142 67 51894 44 137.6 48
TEST SDLX sdlx 155 154 25 66680 92726 267.72 29 22142 67 51894 44 137.69 49
mpeg 2081 17 36 39614 56082 293.66 36 18014 54 41684 26 257.36 12
multi main 1144830 41 18 35804 70727 165.1 16 28368 21 49332 30 97.08 41
p62 LS LS V01 2823 61 36 54572 192422 238.25 41 67411 -19 171498 11 245.85 -3
p62 LS LS V02 1045 58 36 54544 135371 112.24 41 67349 -19 117970 13 131 -14
p62 LS L V01 2743 61 35 78281 193959 294.64 41 72312 8 180578 7 244.58 17
p62 LS L V02 1124 66 35 78336 122943 129.2 41 71405 9 119839 2 122.11 5
p62 LS S V01 2743 61 35 78281 193959 295.4 41 72312 8 180578 7 247.98 16
p62 LS S V02 1124 66 35 78336 122943 127.86 41 71405 9 119839 2 122.86 4
p62 L L V01 2445 48 36 54572 141902 202.28 41 67399 -19 150146 -5 137.79 32
p62 L L V02 2398 71 36 54544 141716 220.7 41 67349 -19 150533 -6 154.52 30
p62 L S V01 3637 85 37 73008 149810 234.7 41 73755 -1 158476 -5 231.23 1
p62 L S V02 1327 73 37 73104 108726 121.9 41 67873 7 132183 -18 128.96 -5
p62 ND LS V02 1152820 129 37 60005 577741 2537.9 42 73479 -18 493942 14 2018.5 20
p62 ND L V02 1570620 156 37 51639 646172 2062.4 42 70036 -26 481212 25 1945.8 6
p62 ND S V02 143788 106 37 51639 215531 488.15 42 70076 -26 224360 -4 512.54 -5
p62 S S V01 437 45 36 54907 108931 100.5 41 69298 -21 115093 -5 115.68 -13
p62 S S V02 317 42 36 54862 96168 94.35 42 69453 -21 113226 -15 102.38 -8
p62 V LS V01 595210 144 37 68540 803754 3908.8 41 69578 -1 777437 3 2976.4 24
p62 V LS V02 93185 125 37 69098 309808 852.2 41 68658 1 265985 14 600.64 29
p62 V S V01 59667 121 37 50733 323051 866.58 41 66873 -24 254568 21 572.3 34
p62 V S V02 22309 106 37 51562 197710 435.57 41 66235 -22 155482 21 267.49 39
single main 1888 14 9 12841 26914 42.36 6 5868 54 17352 35 29.39 31
3-proc 3.65e8 32 8 18322 504293 375.03 5 3568 80 217770 57 101.61 73
3-proc bin 3.65e8 32 7 19194 192013 96.39 4 5432 72 170849 11 76.23 21
2-proc 1137600 28 4 12792 43540 10.43 3 2593 80 23296 46 6.07 42
2-proc bin 665518 28 4 10397 34516 6.69 3 3857 63 14885 57 4.02 40

Sum 888 1580525 6105378 15122.09 990 1523506 5204466 11979.83
Average of rel. improvements: 13% 14% 19%
Total improvement: -10% 5% 15% 21%

Table 1: Comparison of Original VIS Partitioning and RTL Heuristic for RS Computation

1
0

Design Standard VIS RTL Method
Minterms Depth Parts TRn Peakn Time Depth Parts TRn Peakn Time Depth

p62 ND LS V01 – – 37 60066 Mem. out – 37 42 73427 1183946 >7200 82
p62 ND L V01 3724760 134 37 51372 1408735 >7200 65 42 70072 1342148 5406.4 134
p62 ND ND V02 – – 37 72712 Mem. out – 33 41 71709 1289123 >7200 45

Table 2: Comparison of Original VIS Partitioning and RTL Heuristic for RS Computation for Unfinished Examples

Design Standard VIS RTL Method
Img.Comp Peakn Time Peakn % Time %

2-proc 264 871274 744.6 148936 83 112.6 85
PCIabnorm 303 176276 258.7 133146 24 159 38
PCInorm 206 81123 56.8 69291 15 51.1 10
multi main 93 33796 36.4 33423 1 18.6 49
multi main1 193 54022 48.8 33423 38 18.9 61
p62 ND LS V02-live 192 1564426 3693.7 461650 70 889.5 76
p62 ND L V02-live 200 2467117 >7200 1097001 55 2663.3 � 63
p62 ND S V02-live 176 645918 1244.1 233639 64 272.2 78
p62 V LS V02-ccp 90 165200 227.8 158604 4 150.4 34
p62 V LS V02-live 178 1059895 1957.7 554997 48 1094.8 44
p62 V S V02-ccp 84 163439 193.6 132590 19 130.3 33
p62 V S V02-ioq 84 163439 179.6 132590 19 127.6 29
p62 V S V02-live 177 351553 500.7 381982 -8 405.3 19

Sum 7797478 >16343.5 3571272 6093.6
Average of rel. improvements: 67% 52%
Total improvement: 55% 63%

Table 3: Comparison of Original VIS Partitioning and RTL Heuristic for Model Checking

1
1

