
Speeding Up Symbolic Model Checking by Accelerating
Dynamic Variable Reordering

Christoph Meinel
FB IV - Informatik

Universität Trier, GER
meinel@uni-trier.de

Christian Stangier
FB IV - Informatik

Universität Trier, GER
stangier@uni-trier.de

ABSTRACT
Symbolic Model checking is a widely used technique in sequential
verification. As the size of the OBDDs and also the computation
time depends on the order of the input variables, the verification
may only succeed if a well suited variable order is chosen. Since the
characteristics of the represented functions are changing, the vari-
able order has to be adapted dynamically. Unfortunately, dynamic
reordering strategies are often very time consuming and sometimes
do not provide any improvement of the OBDD representation.
This paper presents adaptions of reordering techniques originally
intended for combinatorial verification to the specific requirements
of symbolic model checking. The techniques are orthogonal in the
way that they use either structural information about the OBDDs or
semantical information about the represented functions. The appli-
cation of these techniques substantially accelerates the reordering
process and makes it possible to finish computations, that are too
time consuming, otherwise.

1. INTRODUCTION
Model checking has been proven to be a powerful tool in the veri-
fication of sequential circuits, reactive systems, protocols, etc. The
model checking of systems with huge state spaces is possible only
if there is a very efficient representation of the model. Reduced
Ordered Binary Decision Diagrams (shortly: OBDDs) [1] allow an
efficientsymbolicrepresentation of the model [4].
Due to the huge number of operations applied to the OBDDs during
symbolic model checking, the computation time is strongly related
to the size of the OBDDs. As the order of the input variables has
a strong influence on the size of the OBDDs, well suited variable
orders have to be found. Since it is NP-hard to find the optimal
variable order for a given function, much effort is spent on finding
reasonable good orders or improving given ones. In practice, tech-
niques that improve the size of a given OBDD by changing the vari-
able order dynamically during the computation have been proven to
be most powerful. Many commondynamic reorderingapproaches
are based on swapping the position of neighboured variables in a
given OBDD. This operation can be performed locally and thus,
can be computed efficiently. Thesifting algorithm [6] that is based

on this idea moves each variable to the top and to the bottom of the
order to find its best position. This algorithm has been proven to be
one of the most efficient reordering strategies.
Dynamic reordering strategies are especially useful for symbolic
model checking, since the represented functions (e.g. reachable
state sets) are changing during computation. As a consequence, the
variable order has to be adapted to fulfill the new requirements.
Although, dynamic variable reordering may drastically reduce the
OBDD size, often it is very time consuming and sometimes does
not lead to substantially smaller OBDD sizes. Also, recent research
[9; 2] has shown the need for improvement of variable reordering
during model checking.
The authors of [9] claim that sometimes variable reordering is in-
voked too frequently, but many computations would not finish with-
out reordering. It is a nontrivial task to decide whether OBDD
sizes grow due to unappropriate variable orders or due to changes
of functions that require more OBDD nodes for representation.
Our goal is to speed up the reordering process. There are two
techniques for acceleration of variable reordering, calledblock re-
stricted sifting(BRS) [5] andsample sifting[7; 3]. These tech-
niques originally intended for combinatorial circuits are orthogo-
nal in the way that they use eitherstructural information about the
OBDDs orsemanticalinformation about the represented functions.
Unfortunately these techniques produce insufficient results if ap-
plied to variable reordering during symbolic model checking. For
one half of our benchmark set they perform worse than standard
sifting.
We made necessary adaptions, that take into account the special
needs of symbolic model checking. The major improvement of
these techniques is a significant reduction of the computation time
with only a small penalty in size.

2. SPEEDING UP MODEL CHECKING
OBDD based model checking tools like SMV [4] use variable re-
ordering techniques for the reduction of OBDD sizes. Indeed, the
huge amount of operations necessary for iterations or fixpoint com-
putations requires too much time or is impossible due to memory
limitations, if the underlying OBDDs are large. Also, the repre-
sented functions, like reachable state sets are changing during com-
putation and thus, the variable order has to be adapted to avoid an
exponential growth of OBDD sizes.
Although, sifting is the fastest common reordering technique, it is
often too time consuming to be applied during model checking. It
emerges that sometimes a large fraction of the computation time
is spent on sifting without any gain in OBDD size. Another fact
is that sifting is too costly to be invoked whenever functions are
changing.
Unlike in usual applications that require variable reordering we

Christoph Meinel, Christian Stangier: 
Speeding up Symbolic Model Checking by Accelerating Dynamic Variable Reordering 
in Proceedings of the 10th Great Lakes Symposium on VLSI (GLS-VLSI 2000), ACM Press, Chicago, USA, pp. 39-42, 3, 2000. 
 ISBN: 1-58113-251-4.



have to fulfill the following two requirementsin symbolicmodel
checking

�
simulteanously.

TIME: Reorderingduringmodelcheckingis costly(50%or more
of thecomputationtime). Furthermore,sometimesreorderingeven
doesnotdecreasetheOBDD sizes.
QUALITY: Modelcheckingdemandsalot to variableorders.Dur-
ing model checkingonly a few reorderingstake place,but thou-
sandsof OBDD operationsrequiresmallOBDD sizesto work effi-
ciently.

2.1 Block Restricted Sifting
Our goal is to acceleratethe variablereorderingprocesswhile si-
multaneouslyretainingreasonableOBDD sizes. To managethis,
we adapteda methodcalled block restrictedsifting (BRS) [5] to
the needsof model checking. The idea behindBRS is to move
thevariablesduringreorderingonly within fixedblocksinsteadof
moving themthroughthecompleteorder. Fromtheoryit is known,
thatchangingthevariableorderof a block doesnot affect thesize
of theotherblocks.
The determinationof the block boundariesfollows from a com-
municationcomplexity argument. A small information flow be-
tween two parts of an OBDD indicatesa good candidatefor a
block boundary. If thereis only little information flow between
two blocksthedistributionof variablesto theseblocksis well cho-
sen. Improving the variableorderinsidethe blocksmight leadto
a significantreductionof theOBDD size.Theinformationflow is
bestindicatedby thenumberof subfunctionsthatcrossonelevel.
The subfunctionprofile of an OBDD countsnot only the number
of nodesper level, it alsoaddsthe edgesthat crossa level with-
out having a nodeon it to the profile. With the aid of this profile
we geteasilycomputablestructureinformationof therepresented
function.
For a successfulapplicationof BRS to symbolicmodelchecking,
we have to find solutionsfor thefollowing problems:
1. By restrictingthesearchspace,oneshouldnot foreclosefinding
goodvariableorders.
2. Useall theaccelerationpower thatBRSprovides.
3. Find appropriatesettingsof BRS-parametersfor modelcheck-
ing.
1. Restricting the search space. Sifting only within fixedblocks
significantlyacceleratesthereorderingprocess,but it maykeepone
away from goodordersfor thefollowing two reasons:
– If startingwith a very badorder, variablesthatareplacedtotally
wrongcannotmove to arbitrarypositionsdueto theblock bound-
aries.
– Sinceplacingtheblock boundariesis aheuristicdecision,it may
artificially separatevariables,that shouldbe placedin onesingle
block.
In conventionalapplicationslikecombinationalverificationthelarger
numberof reorderingwith changingblockboundariescompensates
theseeffects.For symbolicmodelcheckingthis is nottrue,because
of the small numberof reorderings.Therefore,we have changed
the conceptof block boundaries.We now allow a small overlap-
ping of the blocks, i.e. a few levels besidethe boundariesof the
blockarealsoincorporatedin thereordering.Theseadditionallev-
els areusedfor choosingvariablesto be reorderedaswell as for
placingvariables.Thereasonfor this is to allow variablesto cross
a block boundary. This conceptpartially remediesthe problems
statedabove. Preliminaryexperimentsduringthedesignphasesof
our algorithmhave shown, that theseweakboundarieshighly in-
creasethequalityof thecomputedorders.
2. Acceleration power. To take full advantageof the BRS ap-
proachone should restrict the size of blocks. The native BRS

searchesfor local minima in the subfunctionprofile. This may
leadto unnecessarylarge blocks in the lower part of the OBDD,
wherethenumberof nodesandrepresentedsubfunctionsnaturally
decreases.We have changedthis strategy to a first-fit strategy, i.e
thefirst level thatfulfills thegivenpropertiesis chosen.This strat-
egy usuallyplacesat leastonemoreboundaryin thelower partof
theOBDD, whatimprovesthereorderingtime,but doesnot lower
thequalityof thevariableorder, becauseof thesmallerinfluenceof
thelower partof theOBDD to theoverall size.
3. Settings. Theparameter, thatis mostlyresponsiblefor thetrade-
off betweenreorderingtime andthequality of thecomputedorder
is theminimal fractionof variablesthata blockmustcontain.This
fraction is denotedMINBLOCK. The smallerthe blocksare, the
fasterthereorderingworks,but thecomputedordersaregettingless
optimaldueto thestronglyrestrictedsearchspace.If theBlocksare
of thesamesize,thesearchspaceis reducedfrom �������	��

����� to
�������	��
�� ������������� ���! "� . In contrastto combinatorialverifi-
cation,whereMINBLOCK = 10%is anaveragesettingfor model
checkinglarger blocks are appropriate. Blocksizessmaller than
10%will leadto extremelypoororders.

2.2 Sample Sifting
Samplingis a commonheuristictechniqueappliedto optimization
problemswith hugesearchspaces.The ideabehindthe sampling
strategy is to choosea relevantsamplefrom thegivenproblemin-
stanceto solve theoptimizationproblemfor thechosensubsetand
to generalizethesolutionto thecompleteinstance.
Applied to the problemof reorderingOBDD variablesthe sam-
pling strategy canbedescribedasfollows [7; 3]: (1) Choosesome
OBDDsor subOBDDsfrom thecommonsharedOBDD. (2) Copy
theseOBDDsto a differentlocation.(3) Reorderonly theSample.
(4) Shuffle thevariablesof theoriginalBDD to thenewly computed
orderof thesample.
Step1 is the mostcritical during this samplesifting process.As
mentionedbefore,oneshouldchoosea relevant sample. If there
is someknowledgeabouttherepresentedfunctions,it canbeused
for thechoiceof samples.ThechosenOBDDs shouldnot be too
small, so that asmany variablesof the representationaspossible
are containedin the sample. If thereis no knowledgeaboutthe
representedfunctionsthe samplemay be chosenrandomlyfrom
the single roots of the sharedOBDDs. The reordering(Step3)
canbedonewith any commonreorderingtechnique(we usedthe
standardsifting algorithm). If theOBDD sizeincreasesafterStep
4 theOBDD is reshuffled to theoriginal order, but onemayrepeat
thecompleteprocessto obtainbetterresults.
A successfulapplicationof thesamplingmethodto modelchecking
is challenging,becausethetwo mainproblemsof variablereorder-
ing for modelcheckinginstantiateasfollows:
Time:
-T1 A smallersamplewill acceleratethereorderingprocess.
-T2 Onemayacceleratethesamplereorderingprocessitself.
-T3 Determinea usefulnumberof trials for the samplingper re-
ordering.
Quality:
-Q1 Choiceof a samplewithoutgivensemanticalinformation.
-Q2 Choiceof asampleif somesemanticalinformationis available.
-Q3 Appropriatemethodsfor copying fractionsof OBDDs.
T1. Small samples. Thesizeof thesampleis themostimportant
parameterof samplesifting. Choosinga smallersamplewill re-
ducethecomputationaloverheadfor copying thesample.But even
more important: The acceleratingeffect of samplesifting results
from the fact thatonly a small OBDD is reordered,alsoresulting
in smaller intermediateOBDD sizesduring the reordering. The



smallerthesampleis, the fasterthereorderingperforms.But, the
sample# cannotbe chosenarbitrarily small, becausein this caseit
doesnotrepresenttheoriginalOBDD’spropertiessufficiently. The
resultof thereorderingusuallywill beapoororderingfor theorig-
inal OBDD. Thus, the size of the sampledirectly influencesthe
quality of the computedorder. To fulfill the quality requirements
of modelcheckingthesamplehasto bechosenlargerthanfor com-
binatorialapplications.
T2. Accelerating sample reordering. As statedabove the time
savedbesamplesifting resultsfrom sifting a smallerOBDD. One
maytry to accelerateeventhis reordering,but this will usuallyre-
sult in variableordersof lessquality. Instead,wesuggestto reorder
thesampleevenmoreby enlarging thesearchspace,e.g.by allow-
ing alargergrowth of theOBDD duringreordering.Thismaycom-
pensatethequality lossesresultingfrom reorderingonly a fraction
of theOBDD.
T3. Number of Trials. More thanonetrial per samplereorder-
ing might bea goodideafor combinatorialapplicationbut not for
modelcheckingfor thefollowing reasons:
– Dueto thesmallnumberof reorderings,several trials will com-
pensateall thetime savings,especiallyif largersamplesareused.
– In somesituationsOBDD sizesgrow despiteof good variable
orders.Hereany reorderingwill fail.
Q1. Sample without semantical information. If no externalse-
manticalinformationis availableonemayat leastusesomestruc-
turalinformationabouttherepresentedfunctions.Weusedapseudo-
randomstrategy proposedby [7]: Startingfrom the top level of
theOBDD nodesthatarenotrepresentingprojectionfunctions(i.e.$&%('*)

) arechosenrandomlyasrootsof subOBDDsfor thesam-
ple. This processis repeatedlevel by level until the sizerequire-
mentsfor thesamplearefulfilled.
Another strategy is to chosethe samplefrom the roots with the
largestsubOBDDs.Unfortunately, thisstrategydoesnotwork well.
Obviously, optimizing the order of only a few OBDDs doesnot
meettherequirementsof all representedfunctions.
Q2. Sample with semantical information. One should make
useof thesemanticalinformationaboutrepresentedfunctionspro-
vided by themodelchecker. In [7] it is proposedto userecently-
used-roots, i.e. rootsinvolved in operationsin thelaststepsof the
computation.Again, this strategy is not suitablefor modelcheck-
ing, sincethe hugenumberof operationswill result in a random
choiceof roots.Instead,we userecently-used-important-roots, i.e.
rootsinvolvedin elementarymodelcheckingoperationslikeExist-
Abstract,Universal-AbstractandAnd-Abstract(see[4]). If wecan-
not fulfill thesizerequirementsfor thesampleby usingimportant
rootswe fall backto themethodof choosingrandomroots.Using
this strategy we obtainthebestresultsfor sampling.
Q3. Methods for copying. In [7] copying a fractionof anOBDD
is donein thefollowing way(postorder):TheOBDD is traversedin
DFSorderandthenodesarecopiedto thesamplewhenever anode
is backtracked.This is doneuntil therequiredsizeof thesampleis
reached.This methodcopiesat first the lower part of theOBDD.
Theresultingsampleis asubfunctionof theoriginalOBDD. If only
a small sampleis chosenit will leave somevariablesof theupper
partof theOBDD
To avoid this, we proposethe following method(preorder): The
OBDD is alsotraversedin DFS order. But, the nodesarecopied
to the samplewhenthe nodeis visited the first time. This results
in samplesthat includeusuallyall variablesandtheoutlineof the
sampleis relatedto theoutlineof theoriginal OBDD, i.e. from a
level with many nodesa largernumberof nodesis chosenfor the
sample. Applying this methodresultsin unvisited edgesthat are
setto the1-sink.Thus,theresultingsampleis modifiedbut closely

relatedto theoriginal function. Our experiencehasshown thatthe
preordermethodworksmorestableandproducesbetterresultsthan
thepostordermethod.

3. EXPERIMENTAL RESULTS
For our experimentswe usedthepublicly availableSMV-tracesof
Yang[9]. Tracesarerecordedcallsof OBDD operationsduringthe
computationof SMV-models. The underlyingmodelscomefrom
differentsourcesandrepresenta rangefrom communicationpro-
tocolsto industrialcontrollers. We usedthosetraces,that require
lessthan250MBof memoryandlessthan4 hoursCPU-time.Dur-
ing reorderinggroupingof present-and next-statevariableswas
enabled.The maximumallowed growth of the OBDD-sizewhile
sifting onevariablewassetto 20%.
The computationusingthe standardsifting methodshowed some
evidentdifferencesof modelcheckingin comparisontootherOBDD
applicationslike combinatorialverification: The numberof vari-
ables(244avg.) is comparableto otherapplications.Thecompu-
tation time is quite high (2044savg.). The fraction of computa-
tion time, that is spenton reorderingis extremelylarge(61%avg.
of eachreorderingfraction),but only a few reorderingsoccur(4.7
avg.). The averagesizereductionover all reorderingsis not very
high. This resultsfrom the fact, thatsomereorderingattemptsdo
not result in smallerOBDDs. E. g. four reorderingsduring the
computationof furnace17 do no lead to smallerOBDDs, but
onereorderingdrasticallyreducestheOBDD size(85%). Finally,
themodelsarequite large(2.8 Mio. peaknodesavg.). Thus,most
of themwill not finish computationwithout reordering.
We implementedour sifting strategies in the CUDD Package[8]
(version 2.3.0). All experimentswere performedon Intel Pen-
tiumPro200MHzLinux Workstationswith 250MBytedatasizeand
CPU-timelimited to 4 hours. For all computationswe usedthe
commontechniqueof groupingpresent-and next-statevariables
i.e. apresent-/next-statepair is alwayskeptin adjacentlevels.This
on theonehandacceleratesreorderingandon theotherusuallyre-
sults in betterorders. Due to the fact that the original strategies
performsveryunstablewecompareour resultsto thestandardsift-
ing method.
The choiceof tracesas benchmarksenablesus to show that our
strategiesarenot restrictedto a specialmodelchecker.

3.1 Block Restricted Sifting
For the experimentswe usedminimal blocksizesof 10%, 15%,
20% and25%. For experimentalresultsseeFigure1 (e.g.: +30
means30%faster/smaller).We wereableto decreasetheaverage
computationtime up to 39% andoverall computationtime up to
37%. Themaximumimprovementis 61%. Thereis only a minor
increasein peaksizescomparedto normalsifting. For a minimum
blocksizeof 20%thereis evenasmallmemorygain.Thismemory
gainsurelycouldbeextended,if thereorderingis calledmorefre-
quently. Theexperimentshave shown, thatBRS is a goodchoice
for acceleratingsymbolicmodelchecking,if no informationabout
therepresentedfunctionsis available.

3.2 Sample Sifting
Due to the randomchoicewhencopying a sample,for all experi-
ments10 singlerunswereperformed.
For experimentswe usedthe methodImportant Roots(IR) with
samplesizeof 30%and40%.ForexperimentalresultsseeFigure2.
All samplesarechosenby using the preorder method. We were
ableto decreasetheaveragecomputationtime up to 35% andthe
overall computationtime up to 34%. Themaximumimprovement
is 70%.



Sift Block RestrictedSifting Time Sift Block RestrictedSifting Nodes +-,/.0.1.
Blocksize 10% 15% 20% 25% 10% 15% 20% 25%

s % s % s % s % s n. % n. % n. % n. % n.
dartes 504 +55 229 +60 201 +47 265 +37 318 583 - 4 605 - 1 587 - 3 604 - 0 583
dme2-16 3757 +59 1538 +54 1713 +47 2001 +33 2511 5151 +12 4554 + 2 5034 +12 4550 + 8 4758
dpd75 4574 +47 2440 +40 2723 +31 3162 + 8 4207 3296 - 2 3348 - 1 3322 - 2 3361 + 0 3284
ftp3 1119 +17 926 +26 825 +21 889 +19 904 3126 + 8 2879 + 8 2879 + 8 2879 +10 2825
furnace17 3938 +15 3361 +27 2863 +14 3380 + 2 3843 2373 -34 3587 - 1 2400 -18 2881 -24 3134
key10 846 +56 376 +61 330 +61 332 +57 364 1099 -12 1253 -11 1238 + 5 1039 + 5 1039
mmgt20 1610 +18 1315 +32 1095 +28 1159 +22 1250 2904 -10 3222 - 8 3169 - 8 3170 - 1 2935
motors-stuck 265 +11 236 +32 181 +18 218 +20 212 670 - 9 735 - 5 703 - 4 700 - 8 729
over12 3002 +44 1692 +44 1668 +31 2065 + 6 2825 4725 - 6 5025 - 0 4737 - 0 4737 + 3 4600
phone-async 2604 - 9 2890 +11 2307 +17 2156 + 0 2592 6118 - 7 6579 -10 6766 +10 5530 -10 6766
valves-gates 268 +34 177 +38 167 +25 201 +19 218 542 -16 647 -29 768 -25 719 - 8 588
sum 22487 +31 15179 +37 14074 +30 15827 +14 19245 30593 - 6 32439 - 3 31609 + 1 30175 - 2 31247
avg +31 +39 +31 +20 - 7 - 5 - 2 - 2

Table1: Comparisonof CPU-TimeandPeaknodesfor StandardSifting andBlock RestrictedSifting

Sifting SampleSifting Time Sifting SampleSifting Nodes +-,/.1.0.
SampleSize 30% 40% 30% 40%

s % s % s n. % n. % n.
dartes 504 +70 149 +62 194 583 -17 707 -17 707
dme2-16 3757 +45 2073 +53 1765 5151 -12 5824 -13 5945
dpd75 4574 +28 3304 + 9 4144 3296 - 9 3633 - 8 3566
ftp3 1119 +43 635 +34 742 3126 + 4 2986 +10 2806
furnace17 3938 +41 2341 +35 2545 2373 -16 2841 - 3 2439
key10 846 +33 568 +28 610 1099 -51 2236 -51 2236
mmgt20 1610 - 9 1770 -17 1961 2904 - 1 2945 - 1 2944
motors-stuck 265 +44 147 +38 164 670 -38 1073 -37 1058
over12 3002 +51 1475 +39 1831 4725 + 4 4550 + 4 4543
phone-async 2604 +13 2268 +13 2273 6118 - 7 6603 -24 8080
valves-gates 268 +24 202 +14 220 542 -43 950 -42 941
sum 22487 +34 14934 +27 16458 30593 -11 34353 +13 35270
avg +35 +28 -17 +16

Table2: Comparisonof CPU-TimeandPeaknodesfor StandardSifting andSampleSifting

Sincewe obtainedour resultswith a very loosecoupling of the
model checker to the OBDD-package,a tighter coupling to the
modelchecker e.g. having exactknowledgeabouttherepresented
functionswould leadto evenbetterresults.

4. REFERENCES

[1] R. E. Bryant. Graph-basedalgorithmsfor Booleanfunction
manipulation. In IEEE Transactionson Computers, C-35,
pages677–691,1986.

[2] L. Fix andG. Kamhi. Adaptive VariableReorderingfor Sym-
bolic Model Checking.In Proc. IEEE Int. Conf. on Computer-
AidedDesign, pages359–365,1998.

[3] J.Jain,W. Adams,andM. Fujita.SamplingSchemesfor Com-
putingOBDD VariableOrderings.In Proc. IEEE Int. Conf. on
Computer-AidedDesign, pages331–638,1998.

[4] K. L. McMillan. SymbolicModelChecking. Kluwer Academic
Publishers,1993.

[5] C. Meinel andA. Slobodová. Speedingup VariableReorder-
ing of OBDDs.In Proc.Int. Conf. on ComputerDesign, pages
338–343,1997.

[6] R. Rudell.DynamicVariableOrderingfor OrderedBinaryDe-
cisionDiagrams.In Proc. IEEE Int. Conf. on Computer-Aided
Design, pages42–47,1993.

[7] A. SlobodováandC.Meinel.SampleMethodfor Minimization
of OBDDs. In Proc. Int. Workshopon Logic Synthesis, pages
311–316,1998.

[8] F. Somenzi.CUDD-Package.ftp://vlsi.colorado.edu.

[9] B. Yangetal. A performancestudyof bdd-basedmodelcheck-
ing. In Proc.of FMCAD, pages255–289,1998.


	Main Page
	GLSVLSI'00
	Front Matter
	Table of Contents
	Session Index
	Author Index




