
Improving the Quality of Information-Flow with the
Smart Data Server*

* As in Proceedings of the 1st International Conference on Internet Computing (IC’2000), Las Vegas, Nevada, USA, 2000

Uwe Roth
Institute of Telematics
Bahnhofstraße 30-32

D-54292 Trier, Germany

Thomas Engel
Institute of Telematics
Bahnhofstraße 30-32

D-54292 Trier, Germany

Christoph Meinel
Institute of Telematics
Bahnhofstraße 30-32

D-54292 Trier, Germany

Abstract Nowadays, we face the continually growing
importance of information: it is quickly becoming our
most valuable resource. The Smart Data Server
improves the quality of information by combining
different information-resource-pools without
unnecessarily burdening the user with details. By
questioning the Smart Data Server with function-
requests of installed function-modules, high-level
information is created. The flow of information can be
improved by routing requests through networks of
Smart Data Servers, each server responsible for
different kinds of requests.

Keywords: Information Retrieval; Middle-Tier
Architecture; Distributed Server; Java Server; World
Wide Web; Database

1 Introduction

Nowadays, we have to face the continually
growing importance of information: it is turning
into our most valuable resource. It is not only the
question whether information is available at all
which poses a problem but also where the
information is stored. On the other hand,
sometimes only combining data stored in
different databases from different vendors can
improve this data to become usable information.
The access to different databases using standard
HTML-browsers via CGI-scripts or servlets has
become a common way, but minor changes to
the database-topology may result in
reprogramming these scripts. The need of an
integrating system is obvious.
The aim of this paper is to present such an
integrating system named the Smart Data Server
(SDS) [8, 9]. One major feature of this system is

the possibility of building up networks of SDS’s
to scale the information-flow, another one is the
implementation of functions in independent
modules which can be added and configured
easily.

2 The SDS-Network Topology

Figure 1 shows various different possibilities of
building up an SDS-network topology. In
general, there are two different ways to access
the SDS. The direct way uses a simple protocol
in an XML-related language to define the
function-request. The protocol and language are
not dependent on any programming-language but
are currently implemented in Java only.

The second way is to use an ordinary HTML-
form with a specialized servlet to translate the
requests and results from and to HTML. This is
useful if there is no intention of using Java or
applets or if the access of the SDS is impossible
because of firewalls which do not allow
accessing SDS-TCP/IP-ports. Additionally, the
access of the SDS via servlets has many other
advantages. The user-interface is standardized
and well-known to the ordinary user. The
creation of the page-design can be separated
from the underlying connectivity by using
servlets over server-side-includes.

Every SDS has its own database to store user-
information or to provide storage for data that
has its origin in text-based documents or in
databases that are only temporarily available. In
this case, the use of specialized applications is
recommended to transfer this data from the text-
documents or temporary databases to the SDS.

Uwe Roth, Thomas Engel, Christoph Meinel:
Improving the Quality of Information-Flow with the Smart Data Server
in Proceedings of the International Conference on Internet Computing (IC 2000), CSREA Press, Las Vegas, Nevada, USA,
pp. 353-357, 6, 2000. ISBN: 1-892512-65-3.

An example: Data that is available only through
the Internet at different web-sites. Solely the
specialized application has to be changed if the
web-site’s design changes [3].

To the SDS, accessing the local database
which is added to the SDS as a storage volume
for user-information makes no difference to
remotely accessing databases from different
vendors in the enterprise. Access to these
databases is hidden from the internal modules.
The only restriction is the acceptance of standard
ANSI-SQL statements. The applied database-
driver and all other connection-specific
information is stored in a configuration-file and
therefore easily adaptable to the ever-changing
environment inside an enterprise.

If a firewall is involved, the use of two SDS's
is reasonable: one SDS can be settled on each
side of the firewall. Through encrypted requests,
the Internet-SDS only acts as a gateway to the
Intranet-SDS.

3 The Internal Structure of the
SDS

The SDS is a server written in 100% pure Java
[4, 10]. This allows changes to the underlying
platform. Currently, no features of the Java2

platform [14] are used, everything is written in
pure Java 1.1.x-code. This will be changed in
order to improve the server’s performance using
unsynchronized container-classes instead of
hashtables or vector data-structure.
Through its tree layers, the internal architecture
of the SDS is quite strict. The tree layers are the
Session-Layer, the Service-Layer and the
Function-Layer (figure 2).
The Session-Layer is responsible for handling
client requests, checking authorization for access
to the server and creating time-based requests. It
contains all basic functionality concerning
request-handling, such as network-connections,
session-handling and protocol-analysis.
The Service-Layer contains different services

which can be used by the Session-Layer and the
Function-Layer. There are two important
modules within the Service-Layer that should be
emphasized :the first one is the Datastore
module. It hides all database-specific infor-
mation from the modules and translates data-
base-access-methods to standard-SQL, so any
desired exchange of the underlying database is
possible. Information about which database is
used, which driver is necessary to access the
database and about the location of the database is
stored in a configuration-file so that it can be
changed without recompiling the server.

Internet-Server

Client

Data

base

Database
Database

Web-Server

Server
Side

Include

SDS

Java
Application

Intranet-Server

SDS

WebServer
Engine

Browser

Java
Applet

HTML

Data

base

SDS

SDS

Servlet
Modul

Applica-

tion

Figure 1: SDS-Network

The second important module is the Function
Request Broker. This module is responsible for
directing the user-requests to the appropriate
modules. To build up networks of SDS’s there
are three ways to require the Function Request
Broker to provide a function (figure 3): if a
module is configured as an internal module, the
local classes’ methods are called; if a module is
configured as an external module, the Function
Request Broker routes the request to a
predefined second SDS. The request itself is not
parsed at this stage of processing and may be
encrypted and unreadable for the routing SDS.
Regarding external calls the first SDS acts like a
client for the second SDS.

A third way to access a module and its function
is the combination of both methods. First, a
function and its module are called internally. The

function accesses databases or does different
calculations and may recognize that it is not able
to fulfill the request by itself. In this case, the
function builds up a module-request and directs
it towards the Function Request Broker. If the
name of the needed module is identical with the
name of the calling module, the Function
Request Broker notices this and then treats the
request like an external call.

The definition whether a module is internal,
external or both is static at that specific moment
and thus has to be made in the server’s
configuration-file.

Not only requests from clients and other
SDS's may be handled by the Function Request
Broker: the Timer Module is able to produce

requests within the Session Layer which are
triggered by a timer. These requests can be
compared with cron-jobs on Unix-systems. The

SDS

Session Layer

Service Layer

SDS

Data
base

SMTP

Client

Function Layer

Listener

SessionerProtocol

Handler

Timer

Function Requet BrokerAuth

ModulModulModul Modul

Datastore

Mail

Language

Parser

Logger

Figure 2: Internal Structure of the SDS

SDS

Service Layer

Session Layer
Client

Function Layer

Function
Requet Broker

Modul

SDS

Service Layer

Session Layer
Client

Function Layer

Function
Requet Broker SDS

SDS

Service Layer

Session Layer
Client

Function Layer

Function
Requet Broker

Modul

SDS

Figure 3a: Internal Call Figure 3b: External Call Figure 3c: Internal/External Call

great difference to client-requests is the fact that
a response is neither generated nor expected.,
only the function’s side-effects are relevant. The
regular clean-up of a database every night or the
replication of a database may serve as an
example for a timer-based request.

4 Conclusion: How the SDS
Improves the Information-Flow

The last two sections have thoroughly discussed
the SDS’s internal structure and the possibilities
of building up networks of SDS's. There are
numerous reasons why this concept improves the
information-flow. First of all, it is not necessary
for a client to know which SDS is handling a
request or whether it is routed through a large
network of SDS's. The client is only connected
to one SDS and this SDS returns all results.

It is possible for different SDS's to be
involved, depending on the databases that are
associated with each SDS. The deployment of
specialized SDS's is possible, where each SDS is
responsible for different kinds of databases
equipped with different security levels. For
security reasons, some SDS’s may by definition
only be allowed to access an internal database.
Only few users may be allowed to access these
SDS Therefore, the same request may can result
in different responses depending on the rights of
the requesting user.

While combining data of different database-
resources, the SDS can create additional
information that would not be available if the
databases could be accessed only separately. It is
not obvious - from the client’s point of view -
which data packets have their origin in databases
and which have been calculated and combined as
a direct answer to the request. For performance-
reasons, some data may have been pre-calculated
at night to improve the server’s speed . A
prediction module has been developed (but not
added to the framework yet) to figure out which
request might soon be asked and which efforts
have to be made to pre-calculate the data. A cost-
benefit calculation is performed to ensure the
efficiency of such a prediction [5, 6, 7]

During the lifetime of the SDS, the databases
can be changed or replaced. This information is
entirely hidden from all clients. A function-
module itself has no “idea” of databases or SQL-
statements, so the replacement or change is even

hidden from the modules.
If data is inserted to the SDS by specialized

applications that are able to transfer data from
different locations to the SDS (e.g. from
Internet-sites, local text-documents, temporarily
available databases), only those specialized
applications may have to be replaced because of
a database-source change. The SDS itself
remains unchanged.

5 Related Work

The need for an integrating platform has been
proclaimed by software-developers for a long
time. The time it takes to build applications that
fulfill the requirements within an heterogeneous
enterprise has to be reduced. It has been
recognized that only some aspects of developing
such an application focus on the main solution of
the problem, most time is used to place the
application inside the enterprise – this resembles
reinventing the wheel anew each time.

A related concept with the aim of fulfilling the
need for an integrating platform is the Enterprise
Java Beans Platform [12, 13]. It covers many
aspects that are useful in an enterprise's
environment. One of the SDS’s major
advantages is its functional approach, which may
seem a little obscure at the beginning but which
has the advantage of keeping the overhead of
requesting very small. A similar argumentation
applies for CORBA [15, 16, 17] and DCOM [1].
In fact, the call to a distributed object is very
different from the call to a distributed function: it
is not necessary to keep track of problematic
tasks such as garbage-collection of objects or
dead objects. RMI [11], on the other hand, is a
Java-specific solution, but the client’s
programming-language should not necessarily
have to be Java. The protocol to access the SDS
is not dependent on any programming language.

6 References

[1] Brown, Nat; Distributed Component Object
Model Protocol -- DCOM/1.0, Microsoft
Corporation;
http://msdn.microsoft.com/library/specs/dist
ributedcomponentobjectmodelprotocoldcom
10.htm; 1997

[2] Dickmann, A.; Two-Tier Versus Three-Tier

Apps. InformationWeek 533, 13/95, 74-80

[3] Duan, Nick N. Distributed database access
in a corporate environment using Java;
Computer Network and ISDN Systems 28
(1996), 1149-1156

[4] Farley, Jim. JAVA - Distributed Computing,
O’Reilly & Associates; 1998

[5] Haffner, Roth, Engel, Meinel; A Semi-
Random Prediction Scenario for User
Requests; As in Proceedings of the Asia
Pacific International Web Conference,
APWEB`99, Hong Kong, 9/1999.

[6] Haffner, Roth, Engel, Meinel; Modeling
Time and Document Aging for Request
Prediction - One Step further, As in
Proceedings of the Symposium on Applied
Computing, ACM SAC2000, Como, Italy,
2000

[7] Haffner, Roth, Engel, Meinel; Optimizing
Requests for the Smart Data Server; As in
Proceedings of the Conference on Applied
Informatics, IASTED AI2000, Innsbruck,
Austria, 2000

[8] Roth, Haffner, Engel, Meinel; The Smart
Data Server: A New Kind of Middle-Tier;
As in Proceedings of the Conference on
Internet and Multimedia Systems and
Applications , IASTED IMSA`99, Nassau,
Bahamas, 10/1999

[9] Roth, Haffner, Engel, Meinel; An Approach
to Distributed Functionality - The Smart
Data Server; As in Proceedings of the
World Conference on the WWW and
Internet, AACE WebNet`99, Honolulu,
Hawaii, 10/1999

[10] Sridharan, Prashant; Advanced JAVA
networking, Prentice Hall; 1997

[11] Sun Microsystems; Java Remote Method
Invocation Specification, Revision 1.50,
JDK 1.2, Sun Microsystems;
ftp://ftp.javasoft.com/docs/jdk1.2/rmi-spec-
JDK1.2.pdf; 1998

[12] Sun Microsystems (1999); Enterprise Java
Beans Developers guide; 1999

[13] Sun Microsystems (1999); Enterprise Java
Beans Specification, v1.1; 1999

[14] Sun Microsystems; Java 2 Platform;
http://java.sun.com/jdk

[15] OMG; The OMG’s site for CORBA and

UML Success Stories; http://www.corba.org

[16] OMG; Object Management Group Home
Page; http://www.omg.org

[17] OMG; The Common Object Request Broker
Architecture and Specification;
http://www.infosys.tuwien.ac.at/Research/C
orba/OMG/cover.htm

