
Hierarchical Image Computation with Dynamic Conjunction Scheduling

ChristophMeinel
FB Informatik, University of Trier

meinel@uni-trier.de

Christian Stangier
FB Informatik, University of Trier

stangier@uni-trier.de

Abstract
Image computation is the core operation for optimization

and formal verification of sequential systems like controllers
or protocols. State exploration techniques based on OBDDs
use a partitioned representation of the transition relation to
keep the OBDD-sizes manageable. This paper presents algo-
rithms for building a hierarchically partitioned transition re-
lation and conjunction scheduling based on this partitioning.
The conjunction scheduling algorithm allows to dynamically
reorder partitions and is targeted to improve the AndExist
operation. Model checking experiments prove the effective-
ness of the new algorithms.

1. Introduction
The computation of the reachable states (RS) of a finite state
machine (FSM) is an important task for synthesis, logic opti-
mization and formal verification. The increasing complexity
of sequential systems like controllers or protocols requires
efficient RS computation methods. If the RS are computed
by using Ordered Binary Decision Diagrams (OBDDs) [2],
the system under consideration is represented in terms of
a transition relation (TR). Since the monolithic representa-
tion of the circuit’s TR usually leads to unmanageable large
OBDD-sizes, the TR has to be partitioned [3, 6]. The qual-
ity of the partitioning is crucial for the efficiency of the RS
computation. The computation of transitions will be unnec-
essarily time consuming, if the TR is divided into too many
parts. On the other hand a number of partitions that is too
small will lead to a blow-up of OBDD-size and hence, mem-
ory consumption.

The standard method is to sort the latches according to a
benefit heuristic [7, 13] and then, apply a clustering algo-
rithm. This clustering algorithm follows a greedy scheme [5]
that is guided only by OBDD-size, i.e if the OBDD-size of a
partition is exceeding a certain threshold a new partition has
to be created.

Recently, new approaches for partitioning of the transition
relation have been published: [9] presents a heuristic that
minimizesactive lifetimeof the variables to gain a good con-
junction schedule computed from a dependency matrix. Ad-
ditionally the authors give a blocking strategy for the cluster-
ing. But, this method is restricted to forward image compu-
tation. In [11] and [12] heuristics are presented that focus on

grouping related variables to increase the quality of the parti-
tioning, clustering takes place only within the given groups.
The groups are determined from RTL descriptions resp. from
a dependency matrix.

In this paper we extend the method of [11] to produce a
real hierarchical partitioning of the transition relation. The
hierarchical image computation is completed by an algorithm
that performs the AndExist operation on the tree-like parti-
tions that result from the hierarchical partitioning algorithm.
The main impact comes from the heuristic that solves the
problem of ordering the clusters for conjunction. It emerged
that the AndExist algorithm works very well with a hierarchi-
cal partitioning and that this heuristic optimizes the perfor-
mance of the AndExist. Additionally, the scheduling heuris-
tic allows a true dynamic rescheduling of the partitions.

2. Preliminaries
Modern complex designs require a structured hierarchical
description to be feasible. Often they are written in a hard-
ware description language (HDL) at register transfer level
(RTL). The term RTL is used for an HDL description style
that utilizes a combination ofdata flowandbehavioral con-
structs. Logic synthesis tools take the RTL HDL description
to produce an optimized gate level netlist and high level syn-
thesis tools at the behavioral level output RTL HDL descrip-
tions. Verilog [15] and VHDL [8] are the most popular HDLs
used for describing the functionality at RTL.

The design methodology in Verilog is a top down hierar-
chical modeling concept based on modules, which are the
basic building block. Our experimental work is based on de-
signs written in this language, but this approach can be easily
extended to any hierarchical finite state machine representa-
tion as it is e.g. provided by state space decomposition algo-
rithms (see. e.g. [10]).

2.1 Partitioned Transition Relations
The computation of the RS is a core task for optimization
and verification of sequential systems. The essential part of
OBDD-based traversal techniques is the transition relation
TR:

TR(x; y; e) =Yi Æi(xi; e) � yi;
which is the conjunction of the transition relations of all
latches (Æi denotes the transition function of theith latch).

Christoph Meinel, Christian Stangier: 
Hierarchical Image Computation with Dynamic Conjunction Scheduling 
in Proceedings of IEEE 10th International Workshop on Logic & Synthesis (IWLS 2001), ACM Press, Lake Tahoe, California, USA, 
pp. 316-321, 6, 2001.



This monolithic TR is represented as a single OBDD and
usually is much too large to allow an efficient computation
of the RS. Sometimes a monolithic TR is even too large for a
representation with OBDDs. Therefore, more sophisticated
RS computation methods make use of apartitionedTR [3],
i.e. a cluster of OBDDs each of them representing the TR of
a group of latches. A transition relation partitioned over sets
of latchesP1; : : : ; Pj can be described as follows:

TR(x; y; e) =Yj Yi2Pj Æi(xi; e) � yi:
2.2 Image Computation using AndExist
The RS computation consists of repeated image computa-
tionsImg(TR; R) of a set of already reached statesR:Img(TR; R) = 9x;e(TR(x; y; e) � R)

With the use of a partitioned TR the image computation
can be iterated overPj and the9 operation can be applied
during the product computation(early quantification). The
so calledAndExist[3] or AndAbstractoperation performs
the AND operation on two functions (here partitions) while
simultaneously applying existential quantification (9xf =fx=1 _ fx=0) on a given set of variables, i.e the variables
that are not in the support of the remaining partitions. Un-
like the conventional AND operation the AndExist operation
only has a exponential upper bound for the size of the result-
ing OBDD, but for many practical applications it prevents a
blow-up of OBDD-size during the image computation.

Since the number of quantified variables depends on the
order in which the partitions are processed, finding an op-
timal order of the partitions for the AndExist operation is
an important problem. We refer to this problem as thecon-
junction scheduling problem. Geist and Beer [7] presented a
heuristic for scheduling of partitions each representing a sin-
gle state variable. More sophisticated heuristics for partitions
with several variables are given by [13, 9].

3. Hierarchical Partitioning of Transition Rela-
tions
In [11] a partitioning heuristic that utilizes hierarchical in-
formation – i.e. RTL modules of a Verilog description –
was presented. The main idea of this work was to have
few groups consisting of the main modules of a design (e.g.
sender and receiver or two CPUs and a cache) and to put
the latches of the FSM in the according groups. This keeps
closely related variables in one group. Also, the groups are
separated, this means clustering takes place only within the
groups.

The positive effect of this heuristic on the partitioning is
best described by acluster dependency matrix(CDM). Entry(i; j) denotes the number of variables that clusteri and clus-
terj share. By using the RTL method the CDM of the design

becomes much sparser and the entries are smaller compared
to the standard method [13]. Sparseness in a CDM means
easier to perform AndExist operations and smaller entries in
the CDM generally result in smaller OBDDs, as fewer vari-
ables are involved in the AndExist operation.

Although the RTL method utilizes hierarchical informa-
tion it produces a kind offlat clustering as only the top level
of the hierarchy is taken under consideration. The intention
for this was not to produce a partitioning that consists of too
many very small clusters that might have a bad performance.

The heuristic that we describe in the following extends the
RTL method to use the whole given hierarchical structure.

As in the RTL method the hierarchical information is ob-
served from the module structure given in the RT level de-
scription of Verilog designs. The heuristic is not restricted
to RTL, but any method that detects hierarchical modules or
FSMs in a design is suitable. RTL Verilog has just been cho-
sen for ease of understanding and portability.

The main idea of the hierarchical partitioning is to take
a complete tree of FSMs and subFMSs (see. Figure 1) and
produce a partitioning based on this tree. The partitioning
algorithm is recursive and consists of two steps:

1. The modules own latches are clustered, following the
conventional scheme, i.e add latches to a cluster until a
given threshold (cluster-threshold) for the OBDD size
of the cluster is exceeded

2. Call the procedure recursively for all submodules of the
module.

The result of this partitioning is outlined in Figure 1.

FSM

Modules

Latches

TR

BDD-cluster

Figure 1: Hierarchical FSM and Transition Relation.

The effect of this strategy on the partitioning is the follow-
ing: Smaller and less complex submodules that have a small
TR will result in a small OBDD, nevertheless this OBDD
is isolated from the other submodules and does not interfere
with other parts of the partitioning. Larger and more com-
plex submodules will have in addition to their own submod-
ules a cluster of OBDDs representing the more complex TR.
We can see this strategy as a morenatural partitioning that
reflects the intention of the designer.



One of the major benefits of this heuristic is that we are
able to reduce the influence of the cluster-threshold result-
ing in a more robust partitioning. For comparison, when us-
ing the IWLS95 method we face abutterfly effecti.e. small
changes in the cluster-size result in a large influence in the
performance of the method (positive as well as negative).

The influence of the cluster-threshold has now been re-
duced to the clustering of a single (sub)module. But, we can
reduce the influence even further: We introduced apreclus-
teringstep, where latches representing a multivalued register
are clustered separately. Each multivalued register results in
one or more clusters that are passed to the standard cluster-
ing routine described above. The impact of this precluster-
ing was so evident that we increased the cluster-threshold for
this step of the computation by a factor of two to allow more
latches of a multivalued register to stay in one cluster. For
comparison: increasing the standard cluster-threshold size of
the IWLS method leads to a much poorer performance. See
Figure 2 for a sketch of the clustering algorithm.

HierarchicalCluster(module,threshold)f
/* First, cluster the modules own latches */
mv relations =

preclusterMVlatches(module!latches,threshold*2 );
latch cluster =

CreateClusters(mv relations,threshold);

append(cluster array,latch cluster);
/* Then, cluster the children of the module */
ForEachItem(module!children, child)f

child cluster =
HierarchicalCluster(child,threshold);

append(cluster array,child cluster);g
return cluster array;g

Figure 2: Algorithm in pseudocode for hierarchical partition-
ing.

The benefits of the hierarchical partitioning heuristic are:� We gain a less arbitrary and more structured partitioned
transition relation.� The partitioning method is more robust, i.e. the cluster-
threshold can be widely extended to increase perfor-
mance for larger designs.� The heuristic performs excellently for structured design.� The heuristic is applicable to forward and backward im-
age computation.

But one problem remains: The heuristic is not able to pro-
duce a schedule for conjunction of clusters during the And-
Exist operation. Also, it seems unlikely that conjunction
scheduling heuristics like [13, 9] improve the performance
of this heuristics since their ordering strategies conflict with
the grouping paradigm of this method.

4. Hierarchical Image Computation

In the following we will present algorithms to complete our
framework for hierarchical image computation. The result of
the algorithmHierarchicalClusteris a (linear) list of clusters
that are not ordered (see. Figure 3a). This type of linearly ar-
ranged clusters is the same that we get from other partitioning
algorithms (e.g. [13]). The image of a certain state set (repre-
sented by the OBDDS) is obtained by consecutively apply-
ing AndExist () to the OBDDs (T ) representing the transi-
tion relation. This algorithm is called “LinearAndSmooth”.

On the other hand, fromHierarchicalCluster we ob-
tain a basic ordering of clusters that are local to a certain
(sub)module, and this is not adequately represented by a lin-
ear list.

Up to now no order for the processing of the submodules
of a module has been computed. It is reasonable to think of
an ordering for these submodules, since there is no way to
detect an efficient schedule for processing from hierarchical
description.

S T
T

T T

T

T

T

S

TTTTTT

IMG IMG

a) Linear Image Computation b) Hierarchical Image Computation

BDD-cluster

Figure 3: Linear and Hierarchical Image Computation.

4.1 General Algorithm

The algorithm outlined in Figure 4 describes the general way
to compute an image hierarchically. To allow hierarchical
image computationHierarchicalClusterhas to be modified.
The clusters are no longer put in a list, but stored in their
according module (see. Figure 3b).

HierarchicalAndSmoothcomputes the image recursively
in preorder style, i.e. first the module’s local clusters are
conjuncted in the temporary product, then the computation
continues with the submodules.

The preorder computation introduces the modules’ control
variables first, resulting in an increase in the number of vari-
ables during the AndExist. On the other hand after finishing
a submodule all variables that control only this module are
quantified out, resulting in a decrease in OBDD-size.



HierarchicalAndSmooth(fromSet,module)f
product = fromSet;
ForEachItem(img!cluster,cluster)f

smoothVars = ComputeSmoothVars(module,cluster);
if (smoothVars)

tmpProduct = bdd and smooth(product,cluster,
smoothVars);

else
tmpProduct = bdd and(product, cluster);

product = tmpProduct;g
childrenreamining = module!children;
while(childrenremaining)f

child = ChooseBestSubmodule(childrenremaining);
tmpProduct =

HierarchicalAndSmooth(product,child);
product = tmpProduct;
remove from(childrenremaining,child);g

return product;g
Figure 4: Algorithm in Pseudocode for Hierarchical Image
Computation.

4.2 Dynamic Reordering of the Conjunction
Schedule
The conjunction schedule for the image computation is de-
termined in theHierarchicalAndSmoothby ChooseBestSub-
module, which can be computed statically or dynamically
(the simplest solution would be the list order). Ordering
heuristics like [13, 9] may be applied as well, but they are not
useful for dynamic rescheduling as they only take structural
information of the transition relation into account and will al-
ways result in the same schedule. Nevertheless, adjusting the
conjunction schedule to changing state sets, OBDD-sizes, or
variable orders might be very profitable.

We describe a strategy to improve the performance of the
AndExist operation twofold: The AndExist operation gener-
ally profits from a hierarchical partitioning. And, we can use
the hierarchy structure to improve the conjunction schedule
dynamically.

The AndExist operation profits from acompactcube of
smooth variables. The cube of smooth variables describes
the set of variables that are quantified out during the AndEx-
ist operation. We call this cube compact, if the variables that
appear in the cube are adjacent and not spread over the vari-
able order of the OBDD. During a step of the AndExist re-
cursion the following three cases are possible:

1. The current variable is contained in the smooth variable
set: Then the recursion continues and the two resulting
OBDDS are combined by an OR operation.

2. The current variable is not contained in the smooth vari-
able set: The result is a new node labeled with the cur-
rent index and whose successors are the results of the
two recursions.

3. The cube has reached the sink node: The recursion re-
duces to an AND operation.

If the smooth variable cube is compact the third case appears
earlier, improving the efficiency of the operation. And, if the
clusters are separated, i.e. do not share many variables, then
the third case may reduce to an identity function, because the
cube and the cluster reach the sink node simultaneously.

This leads us to the following strategy forChooseBestSub-
module:

1. Compute the maximum level (maxlevel) in the OBDD
of a variable to be quantified out in all clusters and sub-
modules of a given submodule.

2. Choose the submodules of the current module in in-
creasing order of their maxlevels.

This strategy gives us a good schedule as we expect from the
hierarchical partitioning that the clusters of the modules have
highly separated variable sets resulting in compact cubes.
Also, the schedule is changed dynamically as the variable or-
der changes during the computation as a result of increasing
state sets etc.

5. Experiments
We implemented our algorithms in the VIS-package [5] (ver-
sion 1.3) using the underlying CUDD-package [14] (version
2.3.0). VIS is a popular verification and synthesis package in
academic research. It inherits state of the art techniques for
OBDD manipulation, image and reachable states computa-
tion as well as formal verification techniques. Together with
the vl2mv translator VIS provides a Verilog front-end.

5.1 Benchmarks
For our experiments we used Verilog designs from the
Texas97 benchmark suite [1]. This publicly available bench-
mark suite contains real life designs from industry and aca-
demics including: MSI Cache Coherence Protocol, PCI Lo-
cal BUS, PI BUS Protocol, MESI Cache Coherence Protocol,
MPEG System Decoder, DLX and PowerPC 60x Bus Inter-
face. The benchmark suite also contains properties given in
CTL formulae for verification.

We chose those designs that represent RTL (i.e. including
more than one module) rather than gate level descriptions.
Only those designs were considered that could be read in
and whose transition relation could be build respecting our
system limitations. Table 1 shows 32 different benchmarks
for which one or two sets of properties have been checked
(resulting in 54 experiments). The runtime heavily depends
on the chosen set of properties to be checked and is not pro-
portional to the number of image computations. Therefore it
is reasonable to check more than one set of properties. Some
very small examples (CPU time< 10s) are not shown.



5.2 Experimental Setup
We left all parameters of VIS and CUDD unchanged. (Parti-
tion cluster size = 5000, partition method for MDDs = inout,
OBDD variable reordering method = sifting, first reordering
threshold = 4004 nodes) The model checking was preceeded
by a forced variable reordering. The CPU time was limited to
6 CPU hours and memory usage was limited to 200MB. All
experiments were performed on Linux PentiumIII 500Mhz
workstations.

5.3 Results
We compare our method (Hierarchy) to the standard method
(IWLS95). For results on runtime and space requirements
see Table 1.Icmp is the sum of forward and backward image
computations performed during the analysis.Parts gives the
number of partitions of the transition relation. The OBDD-
size of the transition relation cluster and the peak number of
live nodes is given byTRn resp. Peakn. The CPU time
is measured in seconds and given asTime. The columns
denoted with% describe the improvement in percent1.

At the bottom of Table 1 you can find the sum of all num-
bers of partitions, BDD-sizes and CPU-times. Also, thetotal
improvementis given.

The experiments show significant improvements in time
and space: The overall CPU time could be reduced to 1/4 of
the original CPU time (11h instead of 45h). The hierarchi-
cal method outperforms the standard method in 51 of the 54
benchmarks. The decrease in computation time ranges up to
97%. The OBDD peak sizes could be lowered by 59% over-
all (20 million nodes instead of 50 million) Interestingly, the
average OBDD size of a cluster reduced from 2464 nodes
to 1761 nodes, although the threshold was doubled for mul-
tivalued registers. The overall number of clusters remains
unchanged.

The effort for variable reordering during symbolic model
checking is usually quite high, using the hierarchy method
we were able to reduce, beyond all time improvements, the
time fraction spent for variable reordering from 58% to 54%
(overall).

Conclusion

We have presented algorithms for partitioning of transition
relations and conjunction scheduling. The partitioning al-
gorithm uses hierarchical information to produce a tree-like
clustered transition relation. We used RTL information given
in Verilog, but any other algorithm that detects submodules
of a FSM would work as well. The main impact is due
to the algorithm that performs image computation based on
this tree-like partitioning. This algorithm allows a dynamic
rescheduling of the clusters, allowing to fine-tune the An-
dExist operation for a hierarchical partitioning. These al-

10 < improvement< 100; �100 < impairment< 0.

gorithms resulted in significant reductions in CPU-time and
space.

The presented strategy for rescheduling only stands exem-
plarily for a wide variety of possible heuristics that may be
implemented on the basis of the hierarchical partitioning, e.g.
a history function that detects “expensive” AndExist opera-
tions and schedules them to a more suitable position.

Acknowledgement
The authors would like to thank Jim Kukula for fruitful dis-
cussions and valuable ideas.

References
[1] A. Aziz et. al.,Texas-97 benchmarks,http://

www-cad.EECS.Berkeley.EDU/Respep/Research/Vis/texas-97.

[2] R. E. Bryant,Graph-Based Algorithms for Boolean Function Manipu-
lation, IEEE Transactions on Computers, C-35, 1986.

[3] J. R. Burch, E. M. Clarke and D. E. Long,Symbolic Model Checking
with partitioned transition relations, Proc. of Int. Conf. on VLSI, 1991.

[4] J. R. Burch, E. M. Clarke, D. L. Dill, L. J. Hwang and K. L. McMillan,
Symbolic model checking:1020 states and beyond, Proc. of Logic in
Computer Science (LICS’90), 1990.

[5] R. K. Brayton, G. D. Hachtel et.al.,VIS: A System for Verification and
Synthesis, Proc. of Computer Aided Verification (CAV’96), 1996.

[6] O. Coudert, C. Berthet and J. C. Madre,Verification of Synchronous
Machines using Symbolic Execution, Proc. of Workshop on Automatic
Verification Methods for Finite State Machines, LNCS 407, Springer,
1989.

[7] D. Geist and I. Beer,Efficient Model Checking by Automated Ordering
of Transition Relation Partitions, Proc. of Computer Aided Verification
(CAV’94), 1994.

[8] R. D. M. Hunter and T. T. Johnson,Introduction to VHDL, Chapman
& Hall, 1996.

[9] I. Moon, G. D. Hachtel and F. Somenzi ,Border-Block Triangular
Form and Conjunction Schedule in Image Computation, Proc. of For-
mal Methods in CAD (FMCAD’00), LNCS 1954, 2000.

[10] I. Moon, J. Jang, G. D. Hachtel, F. Somenzi, J. Yuan and C. Pixley,
Approximate Reachability Don’t cares for CTL Model Checking, Proc.
of International Conference on CAD (ICCAD’98), 1998.

[11] Ch. Meinel and C. Stangier,Speeding Up Image Computation by us-
ing RTL Information, Proc. of Formal Methods in CAD (FMCAD’00),
LNCS 1954, 2000.

[12] Ch. Meinel and C. Stangier,A New Partitioning Scheme for Improve-
ment of Image Compuation, Proc. of ASP Design Automation Confer-
ence (ASPDAC’01), 2001.

[13] R. K. Ranjan, A. Aziz, R. K. Brayton, C. Pixley and B. Plessier,Effi-
cient BDD Algorithms for Synthesizing and Verifying Finite State Ma-
chines, Proc. of Int. Workshop on Logic Synthesis (IWLS’95), 1995.

[14] F. Somenzi,CUDD: CU Decision Diagram Package,
ftp://vlsi.colorado.edu/pub/ .

[15] D. E. Thomas and P. Moorby,The Verilog Hardware Description Lan-
guage, Kluwer, 1991.



IWLS95 Hierarchy

Icmp Peakn Parts TRn Time Peakn % Parts % TRn % Time %

ONE.pixley cpu 113 24045 3 4456 12 29798 -19 4 -25 3220 27 13 -7
PCIabnorm.PCI 304 176276 14 28613 253 116345 33 10 28 18061 36 152 39
PCInorm.PCI 206 81123 15 35124 56 69291 14 11 26 16993 51 47 16
TWO.PPCliveness 74 263756 8 13118 303 2083768 -87 10 -19 13881 -5 3436 -91
TWO.contention 37 97622 7 11865 47 215686 -54 10 -30 10508 11 150 -68
multi main.multim 45 38694 5 14700 34 33423 13 6 -16 1578 89 18 47
p62 LS LS V01.ccp 64 166074 23 49952 200 124430 25 23 0 41246 17 84 58
p62 LS LS V01.p6l 99 452267 23 49952 831 158021 65 23 0 41246 17 173 79
p62 LS LS V02.ccp 54 146494 22 59487 105 117628 19 23 -4 42463 28 70 33
p62 LS LS V02.p6l 97 167454 22 59487 174 117628 29 23 -4 42463 28 79 54
p62 LS L V01.cc 64 176540 23 49684 210 132128 25 22 4 41091 17 103 50
p62 LS L V01.p6li 99 1617162 23 49684 3511 183674 88 22 4 41091 17 252 92
p62 LS L V02.ccp 54 148560 23 62140 106 91257 38 23 0 37319 39 74 30
p62 LS L V02.p6li 89 183811 23 62140 193 91257 50 23 0 37319 39 76 60
p62 LS S V01.ccp 64 176540 23 49684 210 132128 25 22 4 41091 17 103 50
p62 LS S V01.p6li 99 1614473 23 49684 3601 183674 88 22 4 41091 17 260 92
p62 LS S V02.ccp 54 148560 23 62140 106 91257 38 23 0 37319 39 74 30
p62 LS S V02.p6li 89 183811 23 62140 193 91257 50 23 0 37319 39 74 61
p62 L L V01.ccp 52 164244 23 48961 189 117269 28 23 0 41165 15 78 58
p62 L L V01.p6liv 89 477543 23 48961 934 189172 60 23 0 41165 15 159 82
p62 L L V02.ccp 53 144504 23 48971 172 119677 17 23 0 41992 14 71 58
p62 L L V02.p6liv 96 242452 23 48971 377 119677 50 23 0 41992 14 90 76
p62 L S V01.ccp 75 168782 22 62479 121 123551 26 23 -4 42294 32 93 23
p62 L S V01.p6liv 118 192410 22 62479 231 137714 28 23 -4 42294 32 166 28
p62 L S V02.ccp 55 140767 22 57365 104 98699 29 22 0 40454 29 73 29
p62 L S V02.p6liv 96 140767 22 57365 106 98699 29 22 0 40454 29 74 30
p62 ND LS V01.ccp 83 396642 24 63506 830 299289 24 24 0 46550 26 559 32
p62 ND LS V01.p6l 128 5583160 24 63506 21039 1747044 68 24 0 46550 26 4544 78
p62 ND LS V02.ccp 103 191386 22 63321 331 156783 18 23 -4 44262 30 175 47
p62 ND LS V02.p6l 192 1564426 22 63321 3611 445241 71 23 -4 44262 30 669 81
p62 ND L V01.ccp 75 356794 25 65964 781 380121 -6 24 4 45076 31 577 26
p62 ND L V02.ccp 161 5614430 23 60383 timeout 1352990 75 23 0 47981 20 3050 85
p62 ND L V02.p6li 200 5573568 23 60383 timeout 3009524 46 23 0 47981 20 4965 77
p62 ND S V02.ccp 84 150630 23 46744 188 133586 11 24 -4 41048 12 142 24
p62 ND S V02.p6li 177 645917 23 46744 1231 164486 74 24 -4 41048 12 200 83
p62 S S V01.ccp 43 147063 23 62209 101 97360 33 23 0 39901 35 62 38
p62 S S V01.p6liv 80 153012 23 62209 106 97360 36 23 0 39901 35 67 36
p62 S S V02.ccp 37 129492 23 54800 94 90710 29 23 0 39819 27 60 36
p62 S S V02.p6liv 74 129492 23 54800 95 90710 29 23 0 39819 27 61 35
p62 V LS V01.ccp 108 283494 24 58415 587 210147 25 23 4 45928 21 362 38
p62 V LS V01.p6li 153 4483034 24 58415 timeout 2126524 52 23 4 45928 21 6236 71
p62 V LS V02.ccp 90 165200 23 52073 221 128016 22 22 4 41985 19 148 33
p62 V LS V02.p6li 178 1059895 23 52073 1864 224255 78 22 4 41985 19 286 84
p62 V S V01.ccp 82 213245 23 61795 245 142930 32 23 0 43513 29 173 29
p62 V S V01.p6liv 127 964988 23 61795 2168 442596 54 23 0 43513 29 890 58
p62 V S V02.ccp 84 163439 22 54807 189 126542 22 23 -4 41969 23 120 36
p62 V S V02.p6liv 177 351553 22 54807 475 228621 34 23 -4 41969 23 241 49
packet.packet 65326 53790 3 9704 5122 68473 -21 4 -25 4742 51 5068 1
single main 108 14936 2 6352 13 9360 37 4 -50 884 86 8 38
single main.1 52 14936 2 6352 13 9360 37 4 -50 884 86 7 46
three processor.p 244 4621235 9 19750 timeout 3062696 33 7 22 4838 75 2959 86
three processor bin. 140 8779857 7 20387 timeout 560970 93 7 0 5140 74 522 97
two processor.pro 264 903917 4 12311 676 88215 90 5 -19 1810 85 72 89
two processor bin 141 252974 4 11610 150 64924 74 5 -19 2623 77 42 72

Sum: 70748 50497236 1022 2518138 160514 20625941 1027 1809018 38307
Total Improvement: 59% 0% 28% 76%

Table 1: Comparison of IWLS95 Method and Hierarchy Heuristic




