
* Proceedings of the 2nd WSEAS International Conference on MULTIMEDIA, INTERNET and VIDEO TECHNOLOGIES (WSEAS ICOMIV 2002),
Sep.25-29, 2002, Skiathos, Greece, pp.1141-1145

Improvement to the Smart Data Server with SOAP*

WANJUN HUANG, UWE ROTH, CHRISTOPH MEINEL
Institute of Telematics

Bahnhofstr. 30-32,D-54292, Trier
 GERMANY

{huang,roth,meinel}@ti.fhg.de

Abstract: - As a distributed computing middleware, the Smart Data Server (SDS) provides a general
framework for easy-to-build environment-independent modules with distributed functionality and a secure
mechanism for invocation. But there are still some problems in the widespread cooperation with other
distributed computing system and client terminal. Nevertheless, SOAP, as a new promising simple object
access protocol, provides a mechanism based on XML for the structured message exchanging in the
distributed environment. Here we take SOAP as the protocol for message transport between the remote client
and the Smart Data Server instead of the its own “Information Package Transfer Protocol” (IPTP), and the
SDS gains some new advantages: it can cooperate with other distributed computing solutions, such as
CORBA, DCOM, RMI and so on; the SDS can be applied more widely for the SOAP message transferred
through HTTP, a wide and most common used protocol in the Internet.

Key-Words: - SDS, Middleware, Distributed Computing, SOAP, Web Services

1 Introduction

With fast growth of the Internet, web service is not
only limited to the web browsing, which can’t
satisfy people’s increasing requirement any longer.
Though the processor’s computing ability has been
increasing rapidly every several months, the
application prospect will be more wide and
fascinating if millions of computers around world
can work together, which is the core idea of the
distributed computing. Technologies involved in
distributed computing can be commonly found in
the following solutions: CORBA, DCOM, J2EE
and so on. CORBA means “Common Object
Request Broker Architecture” and belonged to
OMG, which is an open and vendor-independent
specification for an architecture and infrastructure
that computer applications use to work together
over networks [4]. CORBA has provides mapping
from IDL to C, C++, ADA and Java, so it’s
language and platform independent. CORBA has
provided a completive mechanism for distributed
object computing, in which the Internet Inter-ORB
Protocol (IIOP) has been adopted to support
communication between different “Object Request
Broker” (ORB) and platforms. The IIOP is a
standard for facilitating communication between
objects, defined by OMG. The CORBA with IIOP
is suitable to construct a large, quick speed and
stable applications, but too complex and not
convenient to use for web services. DCOM is
Microsoft’s solution for supporting distributed
computing with object, and it extends COM to the

distributed system supporting remote object by
running on a protocol called Object Remote
Procedure Call (ORPC) [5]. The OPRC layer is
based on RPC from DCE and interacts with COM’s
run-time services. The biggest problem of DCOM
is the fact that it’s only supported in Microsoft
platforms. Though it’s declared that some other
operation system support this technology, it has not
been popular and gained acceptance in Unix and
other system today. Sun has two solutions for
distributed computing. One is Java Remote Method
Invocation (RMI) [9], and another is Enterprise
Java Beans (EJB) based on RMI [9]. RMI is the
extension to the core JDK, called Remote Method
Call, which depend closely on the Java features,
such as Java-Object serialization, Java Interface
definition etc. So it can’t leave the Java language,
but it is easy to use and also inherits the advantage
from Java, such as platform independence. In 1997
Sun announces its new solution, Enterprise Java
Beans (EJB) [10], which is promised to unify the
easy programmability of Java RMI with the cross-
language support of CORBA. In EJB the remote
objected message can be exchanged through the
“RMI over IIOP”, which is an integration of RMI
and IIOP.

In [1] authors present a new server, called the
Smart Data Server (SDS), which offers a
framework for easy-to-build environment
independent modules with multiple functionalities,
and allows the client to call the procedure from
remote client through the self-defined “Information

Wanjun HUANG, Uwe ROTH, Christoph MEINEL:
Improvement to the Smart Data Server with SOAP
in Proceedings of the 2nd WSEAS International Conference on Multimedia, Internet and Video Technologies (ICOMIV 2002), WSEAS Press,
Skiathos, Greece, pp. 1141-1145, 9, 2002.

Package Transfer Protocol” (IPTP). But just like
the above three solutions, they have a common
problem: the application can’ t talk to each other
among these solutions with the older protocols,
such as IIOP, OPRC, RMI over IIOP and IPTP.
Another problem is that these protocols are not
friendly to firewall. But all these problems will
disappear with the arising of SOAP [6], which has
been proposed completely on the existed
technologies, like HTTP and XML. In the
following, first I will explain the architecture of the
SDS, then introduce the original protocol, IPTP,
which is used to transfer the client request and
return result between clients and the SDS. After
that, I will show you how the SOAP works in the
Smart Data Server instead of IPTP. Finally the
conclusion will be made to summarize and outline
our future research.

2 Smart Data Server System

The Smart Data Server (SDS) is a middleware
server, which acts as middle tier in a three-tier

architecture (Client-SDS-Database). SDS not only
makes the advance security communication
possible through building SDS network [3], but
also provides a general framework for distributed
computing [2]. It is a pure Java implementation, so
it inherits all the advantages of Java, namely
writing once and running everywhere. The SDS can
work with the client-server components and also
some other middleware server. For example, when
the SDS works with a Java servlet server, a servlet
can also server as the client toward the SDS. When
a client browser send a request to a servlet, the
servlet-engine will interpret it and send a request to
SDS if the servlet includes the code to call a
distributed function of the SDS. The result returned
from the SDS will then be transferred back to the
browser via the servlet-engine. The SDS offers a
general frame to build environment independent
modules with distributed functions. The internal
structure of SDS contains three layers: session
layer, service layer and function layer, which are
illustrated in the following Fig.1.

Fig.1 Internal Structure of the SDS

The Session Layer is responsible for handling
client request, checking user authorization and
creating timer based on requests. It contains the
basic functionality for network-connections,
session handling, protocol analysing and other
request-related functionality. The protocol module
establishes the connection with client using the
socket from Listener module. In the original
system the IPTP has been employed and the SOAP
will be added to improve the SDS in this paper.

The Service Layer consists of a set of general
services that is engaged by both the function layer
and session layer modules. The logger module is
used to record any error, warning and running state
information, which are convenient for
administrator to debug and check the SDS system.
The database module provides many practical
interfaces of database transaction for the function
modules. And the FURB module which means
Function Request Broker can gains the module,
object name and the method to be called from

Client

 S D S

Function
Layer

Service
Layer

Session
Layer

Timer Session Protocol

Listener

System Admin Module Module Module

Database Mail Auth Logger FURB

S D S

S D S

S D S

session layer, and invoke the local code if it exists
in local server or ask for help from another SDS
system.

Function Layer contains some application
functionality, including system module,
administrator module and some user-defined
modules in which reside all the methods to be
called from remote client.

3 Protocol Improvement to the SDS

As described previously, the protocol module of
the SDS is engaged to transfer the request from the
client and send back the result from the server. The
original protocol is the Information Package
Transfer Protocol, which is similar with HTTP for
accessing Hyper Text document. In the following,
a new promising protocol SOAP will be brought
into the SDS instead of IPTP.

3.1 The Original Protocol-IPTP

Information Package Transfer Protocol (IPTP)
includes a header and a body. The body holds the
definition of the request message from client or of
the result message from the SDS. The header holds
some header elements including the information as
following [2]:

• Which function-module has to answer the
request?

• Who wants to access this function-
module?

• Is this request part of a user-session (not a
network - session), and which session is it?

• What type of the body will follow?
• How is the body encrypted?

The request and its results are stored in the body,
which contain many elements constructed by the
hashtable-type which include the hashtable-keys of
“ FUNCTION” , “ PARAMETERS” , “ DATA” and
“ RETURN” . “ FUNCTION” defines the function
inside the module to be called, “ PARAMETERS”
defines the parameters of the function, “ RETURN”
defines which result is requested, and the “ DATA”
will be used if some data is requested. The
definition and data type of each element in the
body of IPTP will be clarified in Fig.2.

If a request or response is transferred between the
SDS and the client, all the structural data types
will be parsed into XML-like text structure. This
text will be transferred via socket. After receiving

this text, the information will be unparsed back to
structural data type.

 Fig.2 Body Elements Definition

3.2 SOAP Protocol in SDS

SOAP is an XML based protocol, which provides
a simple mechanism for exchanging structured
message in a distributed environment. Similar
technologies appear in some other solutions, such
as CORBA of OMG, DCOM from Microsoft,
Sun’ s RMI and EJB and so on. But just like the
SDS, all of them have some common problems:
it’ s not easy to communicate among the different
solutions and they are not friendly to the firewall.
Though IIOP, ORPC and RMI are also standard
protocols for object-oriented message transport,
they are incompatible and not supported in most
platforms. Another problem is that these older
protocols are implemented through some specific
socket ports, which are always forbidden in the
most of firewalls. All of these difficulties will
disappear immediately with the arising of SOAP.
SOAP formats messages using XML that is a
universal format for structural data in the Internet.
It transfers its request and response through HTTP,
which is a commonly used protocol for
transportation of web content in the Internet. So
when SOAP is added into the SDS as a transfer
protocol instead of IPTP, the SDS has gained the
following advantages immediately:

• It can collaborate with other distributed
computing system because SOAP is
increasing accepted by most vendors.

• The SDS can be applied widely for its
SOAP request and response messages
have been transferred through the common
used transfer protocol-HTTP and HTTP’ s
popular socket port 80 is seldom forbidden
in firewalls.

Struct ::= String | Vector | Hashtable
Vector ::= [Struct]
Hashtable ::= {(String, Struct)}

FunctionDef ::= (“ FUNCTION” ; String)
ParametersDef ::= (“ PARAMETERS” , Hashtable)
DataDef ::= (“ DATA” , Hashtable)
ReturnDef ::= (“ RETURN” : Hashtable)
ResultDef ::= (“ RESULT” : Hashtable)

RequestDef ::= {FunctionDef, ParametersDef,
DataDef, ReturnDef}
AnswerDef ::= {FunctionDef, ResultDef}

Fig.3 Workflow of the Soap Communication in the SDS

As illustrated in Fig.3, under any client platform
circumstance, the request will be encoded into
HTTP request using the SOAP package after the
client makes the remote method call. This HTTP-
SOAP request would then be sent to the SDS
through HTTP protocol. When the receiver of SDS
catches the HTTP-SOAP request, from which the
module and called method name can be extracted,
the distributed computing components of the SDS
will be executed to generate the call result. The
result will also be wrapt into HTTP response to be
sent back, and in the client terminal the SOAP
package will again be used to decode the SOAP
response and get the return result.

In order to enhance the security of the remote
invocation in the SDS, the module name,
containing the objects and its relative methods, has
to be provided in the client end. Normally, the
SOAP only transfers the object, method and its
parameters to the server. So how can we transfer
this module name to the SDS? As we know, in the
SOAP request message, the object and method
name is only one, but its parameters can be many
if it need. So we can take the module name as the
method’ s first parameter, and its real parameters
can be the second and the third parameter, as
illustrated in following Fig.4 and Fig.5.

At last all of the necessary remote invocation
information can be transferred to the server and we
only need to separate the module name and its
parameters after XML is parsed by the SOAP
Protocol in the SDS. In our implement, Apache

Fig.4. Client SOAP Request

Fig.5. SDS SOAP Response

SOAP toolkit has been adopted as the client
implementation, and the Microsoft SOAP toolkit
can also be a good substitute. The SOAP

 SOAP HTTP
 Serializer / Deserializer Encoding / Decoding

 SOAP Package

Serialize
method call

into a
Soap-XML

request

Deserialize
Soap-XML
Response

into
Method

Encoding
Soap-XML
request into

HTTP
request

Decoding
Soap-XML
Response

from HTTP
Response

Client
platform
(Java, VB,
Perl e.g.)

Make
method

call

Return
result

 S D S

SOAP
Protocol

Receiver

Marschall
SOAP

Unmarschall
SOAP

Sender

Session

FURB

Module

<SOAP-ENV:Body>
 <ns1:computeAdd
 xmlns:ns1="urn:SdsSoapService"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <module xsi:type="xsd:string">
 SimpleCompute
 </module>
 <param1 xsi:type="xsd:double">
 35.0

</param1>
<param2 xsi:type="xsd:double">

64.0
</param2>

 </ns1:computeAdd>
</SOAP-ENV:Body>

<SOAP-ENV:Body>
 <ns1:computeAddResponse
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns1="urn:SdsSoapService">
 <addResult xsi:type="xsd:double">
 99.0

</addResult>
 </ns1:computeAddResponse>
</SOAP-ENV:Body>

serializing implementation of the SOAP protocol
inside the SDS has been completed with the help
of IBM’ s SOAP Envelope API [8].

4 Conclusion and Future work

SOAP, as a promising protocol for exchanging
message based on XML, impels the distributed
computing be applied more conveniently and more
widely. As the result of its application in the Smart
Data Server, the SDS can work with other
distributed computing system, and can be invoked
by the client under any platform using any
programming language. These achievements are
benefited to the popularity of SOAP and the
support for SOAP in most of the distributed
computing solutions. Now the SDS, as a
middleware for distributed computing, has been
achieved great success. But with the popularity of
the mobile device, such as mobile phone, personal
digital assistant (PDA) and palm computer, there
appear some new requirements, for which the
middleware of wired distributed computing can’ t
be applied directly. So our next research interests
focus on: how to add some new features to the
SDS to adapt the temporary loss of network
connectivity, frequent and unannounced changes
happening in their executing environment and
other problems with the arising of mobile devices.

References:
[1] U.Roth, E.G.Haffner, T.Engel, Ch.Meinel. The

Smart Data Server - A New Kind of Middle
Tier. Proceedings of the IASTED International
Conference Internet and Multimedia Systems
and Applications, 1999, pp361-365.

[2] U.Roth, E.G.Haffner, T.Engel, Ch.Meinel. An
Approach to Distributed Functionality: The
Smart Data Server. Proceedings of the
WebNet International Conference 1999,
pp931-935.

[3] E.G.Haffner, U.Roth, A.Heuer, T.Engel,
Ch.Meinel. Managing Distributed Personal
Firewalls with Smart Data Servers.
Proceedings of the World Conference on
WWW and Internet, AACE WebNet 2001,
pp466-471.

[4] The Common Object Request Broker:
Architecture and Specification. Object
Management Group, 1995.

[5] N.Brown, Ch.Kindel. Distributed Component
Object Model Protocol – DCOM/1.0,
Microsoft Corporation.

http://www.globecom.net/ietf/draft/draft-
brown-dcom-v1-spec-03.html

[6] D.Box, D.Ehnebuske, G.Kakivaya, A.Layman,
et.al Simple Object Access Protocol (SOAP)
1.1. Worl Wide Web Consortium,
http://www.w3.org/TR/SOAP/

[7] Apache Soap,
http://xml.apache.org/soap/index.html

[8] IBM SOAP Envelope API,
http://www.trl.ibm.com/projects/xml/soap/env

[9] Java Remote Method Invocation Specification,
Sun Microsystems Inc.
http://java.sun.com/products/jdk/rmi/

[10] Enterprise Java Beans Specification, version
2.0, Sun Microsystems Inc.
 http://java.sun.com/products/ejb/docs.html

[11] Licia Capra, Cecilia Mascolo, Stefanos
Zachariadis and Wolfgang Emmerich.
Towards a Mobile Computing Middleware: a
Synergy of Reflection and Mobile Code
Techniques. Proc. of the 8th IEEE Workshop
on Future Trends of Distributed Computing
Systems (FTDCS’2001). October 2001.

