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Abstract

Image computation is the core task in any formal verifica-
tion applications like reachable states computation or model
checking. In OBDD-based image computation a partitioned
representation of the transition relation is used. The quality
of the partitioning and the schedule in which the partitions are
processed is crucial for the efficiency of the image computa-
tion. In this paper we describe an approach to build a hierar-
chical modular partitioned transition relation. Based on this
partitioning we present a dynamic conjunction scheduling al-
gorithm that improves the flexibility and computational power
of the image computation. The concept is proven by symbolic
model checking experiments.

1 Introduction

The computation of the reachable states of a finite state ma-
chine (FSM) is an important task for synthesis, logic opti-
mization and formal verification. The increasing complexity
of sequential systems like controllers or protocols requires ef-
ficient reachable states computation methods. If the reachable
states are computed by using Ordered Binary Decision Dia-
grams (OBDDs) [2], the system under consideration is repre-
sented in terms of a transition relation. Since the monolithic
representation of the circuit’s transition relation usually leads
to unmanageable large OBDD-sizes, the transition relation has
to be partitioned [3, 5]. The quality of the partitioning is cru-
cial for the efficiency of the reachable states computation.

The partitioning problem consists of two parts: First, the
latches of the FSM have to be clustered. Second, the clusters
have to be scheduled for the image computation.

Many approaches [8, 15, 10] perform an ordering of the
latches before clustering. Instead we follow the paradigm of
grouping strongly related latches and perform clustering only
within those groups. In [14] an approach was presented that
derives a hierarchical partitioning from RTL information of
the design. We show how to obtain a hierarchical modular
partitioning without using external information. The benefit
of the hierarchical partitioning is that it provides a good basis
for dynamic conjunction scheduling. The dynamic scheduling
algorithm presented here is targeted to optimize the AndExist
operation, which is underlying the image computation.

The rest of the paper is structured as follows: In the next
section we describe the concept of a partitioned transition re-
lation and the image computation using such a transition re-
lation, also an overview of recent work on this area is given.
The next two sections present our new technique for building
a modular transition relation and the algorithm for dynamic
conjunction scheduling. In Section 5 we give an experimental
proof of the concept. The last section draws conclusions.

2 Preliminaries

2.1 Partitioned Transition Relations

The computation of the reachable states is a core task for opti-
mization and verification of sequential systems. The essential
part of OBDD-based traversal techniques is the transition rela-
tion:

TR(x; y; e) =Yi Æi(x; e) � yi;
which is the conjunction of the transition relations of all latches
(Æi denotes the transition function of theith latch,x; y; e repre-
sent present state, next state and input variables). Thismono-
lithic transition relation is represented as a single OBDD and
usually is much too large to allow computation of the reach-
able states. Sometimes a monolithic transition relation is even
too large for a representation with OBDDs. Therefore, more
sophisticated reachable states computation methods make use
of apartitionedtransition relation [3], i.e. a cluster of OBDDs
each of them representing the transition relation of a group of
latches. A transition relation partitioned over sets of latchesP1; : : : ; Pj can be described as follows:

TR(x; y; e) =Yj TRj(x; y; e) , where

TRj(x; y; e) = Yi2Pj Æi(x; e) � yi:
2.2 Image Computation using AndExist

The reachable states computation consists of repeated image
computationsImg(TR; R) of a set of already reached statesR: Img(TR; R) = 9x;e(TR(x; y; e) �R)
With the use of a partitioned transition relation the image com-
putation can be iterated overPi and the9 operation can be
applied during the product computation(early quantification):Img(TR; R) = 9vj (TRj � : : : � 9v2(TR2 � 9v1(TR1 �R) : : :);
wherevi are those variables in(x[ e) that do not appear in the
following TRk; (i < k � j).

The so calledAndExist[3] or AndAbstractoperation per-
forms the AND operation on two functions (here parti-
tions) while simultaneously applying existential quantification
(9xif = (fxi=1 _ fxi=0)) on a given set of variables, i.e. the
variables that are not in the support of the remaining partitions.
Unlike the conventional AND operation the AndExist opera-
tion only has a exponential upper bound for the size of the re-
sulting OBDD, but for many practical applications it prevents
a blow-up of OBDD-size during the image computation.
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Since the number of quantified variables depends on the or-
der in which the partitions are processed, finding an optimal
order of the partitions for the AndExist operation is an im-
portant problem. We refer to this problem as theconjunction
scheduling problem. Geist and Beer [8] presented a heuris-
tic for scheduling of partitions each representing a singlestate
variable. The so calledIWLS95-method[15] computes a con-
junction schedule by using a greedy scheme to minimize the
number of variables involved in the AndExist operation.

Related Work

After the IWLS95 method has been the standard method for
partitioning for several years, recently new approaches have
been published:

Moon, Hachtel and Somenzi [10] presented a heuristic that
minimizesactive lifetimeof the variables in the product to gain
a good conjunction schedule. The active lifetime is the number
of conjunctions in which the variable is involved schedule and
it is computed from a dependency matrix, which describes the
dependency between the different latches. Additionally, the
authors give a blocking strategy for the clustering, which for-
bids clustering across certain borders that have turned outto
produce too large clusters.

Meinel and Stangier [12] presented a method to utilize RTL-
information from the design to group related variables. A de-
pendency matrix is used in [13] to find groups of strongly re-
lated latches. In [14] a hierarchical partitioning based onstruc-
tural information from the design and a strategy for dynamic
conjunction scheduling is presented.

Chauhan et.al. [6] presented a heuristic that creates a parse
tree resulting in a non-linear quantification schedule. The
heuristic argument is to perform the cheapest (in OBDD-size)
conjunctions first. This strategy also allows dynamic conjunc-
tion scheduling.

Cabodi, Camurati and Quer [7] presented an improved bene-
fit heuristic, which allows adjustment of the partitioning when
reordering occurs. Also, they give an adaptive clustering ap-
proach, allowing dynamic conjunction scheduling and cluster-
ing.

Gupta et.al. [9] introduced a hybrid method that combines
OBDD and SAT techniques to reduce the complexity of the
OBDD-operations. Another hybrid method by Moon et.al [11]
combines transition functions and relations.

Except for [14] and [6], the basic idea of the pure OBDD
approaches still is ordering of bit-relations. This work will
focus on the grouping aspect of latches that has been proven to
be a powerful concept.

3 Building a Modular Transition Rela-
tion

Before images can be computed the transition relation has to
be built. It is possible to rebuild the transition relation dy-
namically for any image computation, but this is very costly.

Instead, the partitioned transition relation should be flexible
enough to adapt to changing requirements.

The paradigm we follow to build a partitioned transition re-
lation is to group semantically related latches. In [14] it was
shown how a hierarchical partitioning supports an efficientim-
age computation and allows dynamic conjunction scheduling.
Here, we want to build a hierarchical partition of the transition
relation by exploiting the structure of the matrix representing
the latch to latch dependencies.

In the following we present our algorithm for modular
grouping of the latches. Than, we describe the algorithm for
building OBDD clusters in these groups and discuss the ef-
fects.

3.1 The Grouping Algorithm

Our algorithm follows aseparate and groupstrategy. There-
fore, we utilize alatch dependency matrix(LDM). An entry of
the LDM gives the number of variables that latchli and latchlj have in common, i.e.LDM (li; lj) = jsupp(li) \ supp(lj)j:
A higher number denotes a high dependency and thus a strong
interaction of the latches. A low number reflects a weak rela-
tion of the latches.

The grouping algorithm proceeds in three phases, where in
the first two phasesseparatedmodules of latches are build,
while in the third phasegrouping inside the modules takes
place. The phases in detail:

1. Module definition phase: During this phase we create
completely independent modulesMi. In this phase the mod-
ules contain only a single latch, which serves as a representa-
tive for the module. A latch will be a representative for a new
module, whenever there is no dependency with the represen-
tatives of the other modules:8j : LDM (li;Mj) = 0. This
operation is performed for all latches. The threshold for the
dependency is 0 to keep a reasonably small number of mod-
ules. The latches are checked consecutively. The latches that
do not form an own module go in the setR of the remaining
latches. The modulesMi and the remaining latchesR serve as
a basis for the 2nd phase.

2. Module assignment phase:The remaining latches ofR
are assigned to the modules using a best-fit strategy, i.e. a latchli is put into a moduleMk containing the latchlj , which has
the highest common dependency with latchli:li !Mk : LDM (li; lj) = max; lj 2Mk:
A minimum dependency is required, otherwise this latch is a
representative for a new module. At the end of this phase all
latches are assigned to modules. The value of the minimum
dependency controls the number of additional modules.

3. In-module grouping phase: Now, we have medium to
strongly related latches inside the modules. To build groups
within the modules we have to apply a more complex heuristic
than those before. The heuristic has to be able to group latches
that are strongly related, but also has to avoid building one
large group containing all latches. Please keep in mind: All



latches in a single module have a certain dependency at least
to one other latch in the module.

We propose a grouping algorithm based on merging of
groups that utilizes agroup dependency matrix(GDM). An en-
try of the GDM denotes the number of shared variables from
thecommon supportof groupGi and groupGj. The common
support of a group is defined as the intersection of the support
of all members of the group:GDM (Gi; Gj) = jsupp(Gi) \ supp(Gj)j:
The algorithm works as follows for a moduleM :

1. Initialize the groups, such that each group contains a sin-
gle latchGi = li; li 2M and compute the initial GDM.

2. Compute the maximum dependency in the GDMmaxdep = maxi;j(GDM (Gi; Gj)).
3. Pairwise merge groupsGi and Gj whose dependency

equalsmaxdep.

4. Update the GDM, the support of a merged group is
the intersection of the support of the former groups:supp(Gi) = supp(Gi) \ supp(Gj).

5. Repeat 2-4 untilmaxdepis below a certain threshold or
the number of allowed runs is exceeded.

Step 2 of this phase guarantees that strongly related latches
are grouped. Performing an intersection of the support of the
groups that are merged (Step 4) and limiting the number of
runs avoids construction of groups with latches that are related
only very loosely.

The latches that could not be grouped after termination of
the algorithm are considered being the modules own latches.

The runtime of this algorithm is cubic in the number of
latches, but it is negligible in comparison to other operations
during construction of the transition relation (OBDD-AND,
variable reordering, etc.).

In our implementation we set the minimal required depen-
dency for the 2nd phase to 3 variables. In phase 3 we set the
threshold for maxdep to 5 and limited the number of runs to
10% of the number of latches.

3.2 Clustering

After the relations have been grouped, the clusters of the par-
titioned transition relation can be computed. A cluster of the
transition relation is solely built from latches of one group. If
the OBDD-size of a cluster exceeds a certain threshold an ad-
ditional cluster for this group is created. The OBDD-size is
a rather artificial indicator for the separation of clusters, but
it is used in all partitioning approaches to avoid size explo-
sion of the transition relation. Fortunately, the groupingap-
proach drastically limits the influence of this threshold onthe
efficiency of the image computation by providing more mean-
ingful borders for the clusters.

Figure 1 shows a schematic of the result of clustering the
hierarchical partitioned transition relation. Starting from the
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Figure 1: Result of the Modular Clustering.

root node (Main) that represents the whole design one reaches
the modules(M1, M2, etc.) of the design. These modules
hardly interact and can be seen as almost independent FSMs.
Attached to the main node we find relations that hardly inter-
act with any of the modules, but do not form an own module.
Those relations may be seen as global state variables.

Each module has a small number of children the so called
groups(G1, G2, etc.). Relations within a group strongly inter-
act and should stay as close as possible, in the best case within
one cluster. Attached to each module we find those relations
that do not interact strong enough to any of the groups to be at-
tached to one of them. Keeping those loosely coupled relations
separate in the module gives us more freedom in the choice of
the conjunction schedule.

Summarized, the modular grouping approach results in a hi-
erarchical partitioning consisting of a small number of sepa-
rate modules each consisting of a reasonable number of groups
whose relations strongly interact. The depth of the hierarchy is
always limited to three layers, because the grouping algorithm
only allows the creation of one main node, one module layer
and one group layer. The algorithm is not recursive.

For computation of the image based on this hierarchical
partitioning the algorithm forhierarchical image computation
presented in [14] is used.

4 Dynamic Conjunction Scheduling

After the transition relation has been built, the conjunction
scheduling problem has to be solved. The hierarchical parti-
tioning does not imply a schedule for the conjunctions of the
clusters, i.e. the order in which to apply the AndExist. It gives
a basic idea of how to conjunct members of a single group, but
there is no hint about how to schedule modules.

The following algorithm based on the heuristic in [14] ex-
ploits the concept of compact clusters to gain a schedule for
the conjunctions that not only tries to optimize single AndExist
operations, but is able to improve the entire image computation
process, as the following discussion will show.

4.1 The Scheduling Algorithm

The algorithm is called recursively for all modules starting
with the main module. When entering a new module a de-
cision is made whether to start the conjunction operations with



the submodules (children) of this module or its own cluster.
The decision is made depending on the maximum level of a
variable to be quantified out (for the submodules this value has
to be computed in advance). The group with the smaller value
is computed first. Notice that for any chosen cluster these val-
ues will change as the sets of variables to be quantified out
change, too. The group with the smallest value is chosen first.
So, BFS- and DFS-style recursion may interleave during the
recursion, but not within a module. Within a module the chil-
dren resp. the modules own clusters are ordered by the same
argument and chosen by increasing values.

After each AndExist step the quantify variables have to be
recomputed. Whenever there is a change in the variable or-
der of the OBDD, the ranking of the modules and clusters is
changing too, thus resulting in a completely dynamic conjunc-
tion schedule.

4.2 Discussion of the Algorithm

The efficiency of the dynamic conjunction scheduling algo-
rithm described in the previous section relies on thecompact
clusteringproduced by the hierarchical partitioning. Compact
clustering means that there are fewer support variables anda
higher number of quantify variables in each cluster. As a side
effect we can expect that variables of a compact cluster will
stay close in the variable order due to their high interaction
even during dynamic variable reordering.

To understand the effect of compact clustering on the And-
Exist operation let us take a closer look at the algorithm (see
Figure 2). The AndExist operation performs the quantifica-
tion of variables (9xif = (fxi=1 _ fxi=0))) while performing
a recursive AND. Thus, it follows the general scheme of any
recursive OBDD algorithm like ITE:

– First, terminal cases and the computed table are checked
(lines 1, 2).

– If the actual variable (top) is not to be quantified, the re-
cursion is called recursively with the successors of the
current nodes (10, 11) and a node is created from the re-
sultst; e of the recursion.

– If no more variables are to be quantified out, the recursion
switches to the regular AND (3, 8).

– If the actual variable is to be quantified out, the recursion
continues with the successors off andg (14, 15) as well,
but afterwards, an OR operation on the resultst; e of the
recursion is executed (16).

Let us recall: The OR operation is called within the recursive
step of the AndExist! This actually is the reason why AndExist
is not a polynomial operation. To make things even worse the
resultst ande of the recursive step are obsolete later and are
dereferenced (17), i.e. if not part of another OBDD they willbe
deleted. This means the AndExist operation produces – in con-
trast to any other OBDD operation – temporary nodes. These
temporary nodes are the main reason for a possible blow-up in
OBDD-size during image computation.

AndExistRecur(f,g,quanvars)f
1) Check terminal cases;
2) /*sink-nodes, recomputation, etc.*/
3) if(!quanvars) return BddAnd(f, g);
4) if(g == ONE) return BddExist(f, quanvars);
5) top = topmost variable in f and g;
6) top q = topvar in quanvars;
7) while(top q < top) top q = top q!T;
8) if(top q == ONE) return BddAnd(f, g);

9) if(top q > top)f /* no quantify */
10) t = AndExistRecur(f!T, g!T, quanvars);
11) e = AndExistRecur(f!E, g!E, quanvars);
12) return makeBDDnode(index of top, t,e);
13) gelsef /* quantify */
14) t = AndExistRecur(f!T, g!T, quanvars!T);
15) e = AndExistRecur(f!E, g!E, quanvars!T);
16) result = BddOr(t, e);
17) Deref(t); Deref(e);
18) return result;gg

Figure 2: Sketch of the AndExist Algorithm.

We think that the problem of temporary nodes is more pro-
found than the problem of having the OR operation inside the
recursion. We try to reach shortcuts (3, 4, 8) in the compu-
tation earlier, to keep the lifetime of temporary nodes shorter.
For this reason we will even accept a slightly more complex
OR operation.

In a compact clustering as shown (simplified) in Figure 3a
we have fewer variables in a cluster (Ti) of the transition rela-
tion than in a regular clustering as shown in Figure 3b. If the
clusters are ordered by choosing the cluster with the highest
maximum level of a quantify variable first, we can expect ear-
lier shortcuts in the AndExist operation. As the clusters have
fewer variables, the AND operation (3, 8) terminates earlier
(e.g. AND(f; 1) = f) leaving the bottom part ofR untouched.
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Figure 3: Schematic of Compact Clustering (a) vs. Regular
Clustering (b).

We can conclude that the dynamic conjunction scheduling
does not only try to improve single AndExist operations (e.g.
by performing the cheapest operations in terms of OBDD-size
first), instead the whole series of AndExist operations willbe
optimized. As the output of the AndExist operation is (except
for the last cluster) always an input to the next AndExist oper-
ation, this heuristic optimizes the complete image computation
process.



5 Experiments

We implemented our algorithms in the VIS-package [4] (ver-
sion 1.3) using the underlying CUDD-package [16] (ver-
sion 2.3.0). VIS is a popular verification and synthesis package
in academic research. It inherits state of the art techniques for
OBDD manipulation, image and reachable states computation
as well as formal verification techniques.

5.1 Benchmarks

For our experiments we used Verilog designs from the Texas97
benchmark suite [1] and from the VIS distribution. This pub-
licly available benchmark suite contains real life designsfrom
industry and academics including: MSI Cache Coherence Pro-
tocol, PCI Local BUS, PI BUS Protocol, MESI Cache Coher-
ence Protocol, MPEG System Decoder, DLX and PowerPC
60x Bus Interface. The benchmark suite also contains proper-
ties given in CTL formulae for verification.

Only those designs were considered, whose transition re-
lation could be build respecting our system limitations. We
computed 25 different benchmarks for which one or two sets
of properties have been checked (resulting in 41 experiments).
The runtime heavily depends on the chosen set of properties
to be checked and is not proportional to the number of image
computations. Therefore, it is reasonable to check more than
one set of properties. Some very small examples (CPU time<
5s) are not shown.

5.2 Experimental Setup

We left all parameters of VIS and CUDD unchanged. The most
important default values are: Partition cluster size = 5000, Par-
tition method for MDDs = frontier, Dynamic OBDD variable
reordering method = sifting, First reordering threshold = 4004
nodes. Before building the transition relation the OBDD was
minimized by an explicit call to variable reordering. The CPU
time was limited to 6 CPU hours and memory usage was lim-
ited to 200MB. All experiments were performed on Linux Pen-
tiumIII 500Mhz workstations.

5.3 Results

We compare our method (Groupmod) to the MLP method of
[10]. For results on runtime and space requirements see Ta-
ble 1. Icmp is the sum of forward and backward image compu-
tations performed during the analysis.Parts gives the number
of partitions of the transition relation. The OBDD-size of the
transition relation cluster and the peak number of live nodes
is given byTRn resp. Peakn. The CPU time is measured
in seconds and given asTime. The columns denoted with%
describe the improvement in percent1.

Table 1 gives a detailed comparison of the results for the
MLP method and the Groupmod method with dynamic con-
junction scheduling. The Groupmod method wins in 34 of the
41 cases, resulting in an overall cputime improvement of 39%.

10 < improvement< 100;�100 < impairment< 0.

In some – especially larger – cases the Groupmod method dras-
tically improves OBDD-size and runtime (up to 87%). The
Groupmod method performs worse only on seven small and
mid-sized benchmarks.

Although the Groupmod method introduces more clusters
(23%) than the MLP method, the overall number of OBDD-
nodes for the transition relation is 12% smaller. This is a good
indicator for the improved quality of the computed partitioning
Another indicator is the overall peak node size that improved
almost as good as the runtime (38%).

6 Conclusion

We presented an approach for partitioning the transition rela-
tion that follows the idea of grouping strongly related latches.
The resulting partitioning is flexible enough to allow a dy-
namic conjunction scheduling. The dynamic scheduling then
works towards a more efficient AndExist operation. We be-
lieve that the modular group partitioning is so powerful that it
might serve as a basis for more sophisticated dynamic schedul-
ing algorithms than the one presented here.

The MLP method seems to work more efficiently with fewer
clusters. A hybrid method combining MLP and Groupmod de-
pending on the number of clusters and the quality of the CDM
could be even more powerful.
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