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Abstract
In this research we present the utilization of  BDDs 
in representing propositional logic programs and 
implementing the refutation by resolution deduction 
method.

A logic program is a collection of axioms from 
which a goal clause can be proven. Axioms are writ-
ten in a standard form known as Horn clauses.  In 
logic programming, we try to find a collection of 
axioms and inference steps that imply the goal. The 
standard and usual method for this kind of inference 
is  ‘refutation by resolution’.

Binary Decision Diagrams, shortly called BDDs, 
are data structures proposed for representing switch-
ing functions. BDDs have been found more practical 
and more efficient in time and space than other 
switching function representation methods.

One may consider a Horn clause as a switching 
function and represent it as a BDD. In the same way, 
all the clauses of a propositional logic program and 
the goal clause can be represented by means of a 
multi-rooted BDD. Because of the characteristics of 
BDDs we can make the inference in some other 
methods in addition to the standard method. In this 
paper, this kind of representation as well as  proving 
the goal in formal linear resolution and Non-linear 
resolution  are investigated.

Keywords: Logic programming, Horn clauses, 
Binary Decision Diagrams-BDDs, Normal Forms,  
Resolution . 

1 Introduction
In logic programming, the programmer specifies 
what is known and what is the question to be solved. 
Logic programming is also known as declarative 
programming. This kind of programming is widely 
used  for Artificial Intelligence and knowledge based 
systems ( non-numeric Processing ).

PROLOG ( PROgramming in LOGic ) is the popular 
Logic Programming Language. PROLOG and most 
of the other declarative programming tools use reso-
lution with backward chaining in order to prove 

the goal. Most backtracking algorithms need expo-
nential run time and memory  space.

BDDs are data structures proposed for representing 
switching functions [3,4]. These data structures have 
been extensively studied  and have provided new 
techniques powerful for verification and synthesis of 
switching functions. In many cases where other 
methods give exponential solutions, the use of  
BDDs  resulted in a polynomial solution or at least a 
high decrease in run time and needed memory space.

A Logic program consists of a list of Horn clauses. 
One can look at each clause as a switching function 
and represent it as a BDD. So the idea and question 
emerges: Is it possible to use BDDs also in logic 
programming  to obtain better results ?

In this paper we introduce the presentation of a logic 
program and  the goal by means of a multi rooted 
BDD and we present two methods for proving the 
goal.

2 Programming with Proposi-
tional Logic

2.1 Definitions
A propositional literal is a propositional variable or 
the negation of a propositional variable. A positive
propositional literal is a propositional variable and a 
negative propositional literal is the negation of a 
propositional variable.

A propositional clause is a disjunction of  pro- po-
sitional literals; it is a propositional formula where a 
number of propositional literals are connected by the 
∨∨∨∨ operator. Any propositional formula can be writ-
ten in terms of a conjunction of clauses, a number of 
clauses connected together by the ∧  ∧  ∧  ∧  οperator. This 
form is called Conjunction Normal Form (CNF). 
An example of a propositional clause is: p ∨ ¬q ∨ r 
∨ ¬s, where p, q , r and s are propositional variables. 

We now consider a certain type of clause, known as  
Horn clause, this class of clauses is particularly im-
portant for logic programming.   A propositional 
Horn clause is a propositional clause with at most 



one positive literal. A Horn clause is thus in one of 
the following three forms:

  1) q
  2) ¬p1 ∨ . . . ∨ ¬pn∨ q
  3) ¬p1 ∨ . . . ∨ ¬pn
Where p1, ... , pn , q are propositional variables.

Horn clauses of the forms outlined in (1) and (2) 
with one positive literal are known as program 
clauses.  Horn clauses of the form outlined in (1)  
are sometimes called unit clauses. Notice that the 
Horn clause given in (2) can be rewritten as :

        ¬ ( p1 ∧  . . .  ∧ pn)∨ q
and this in turn can be rewritten as:

 ( p1 ∧  . . .  ∧ pn)→ q
Horn clauses of the type outlined in (3) are known as 
goal clauses. The Horn clause given in (3) can be 
rewritten as : ¬ ( p1 ∧  . . .  ∧ pn) 

2.2 Propositional Resolution
Suppose we have C1∨ p and C2∨¬p, where
C1 and C2 are clauses and p is a propositional 
variable. The rule of resolution allows us to obtain 
an expression for C1∨ C2 which does not involve 
the variable p. We can define resolution as the fol-
lowing inference rule :
   C1 ∨  p  , C2 ∨  ¬p |−Res  C1 ∨ C2  
where the symbol |−Res denotes deduction using 
only the resolution rule. In other words, we use reso-
lution to derive new statements from existing state-
ments.  FFoorr iinnssttaannccee ::
   ¬Α ∨ ¬Β ∨ C, ¬C ∨ D |−Res ¬Α ∨ ¬Β ∨ D  
which is the same as : 

Α ∧  Β  → C ,  C → D � Α ∧ Β → D                                  
““IIff wwee kknnooww tthhaatt AA aanndd BB iimmppllyy CC,, aanndd CC iimmpplliieess
DD,, tthheenn wwee ccaann ddeedduuccee tthhaatt AA aanndd BB iimmppllyy DD..””

2.3 Refutation and Deduction
Resolution is the rule of inference that we use in 
logic programming to perform deductions. A logic 
program consists of a set of program clauses, which 
can be considered as a set of hypotheses. The resolu-
tion rule can be applied to the hypotheses to deduce 
consequents. There is a particular method used in 
logic programming to perform these deductions. 
This method is known as refutation and also known 
as contradiction.

 Suppose we have a logic program. The program can 
be presented with queries. These are statements that 
are conjunctions of propositional variables. The 
question being asked of the program is:  'Does the 
query follow from the program ?'  this is equivalent 
to: 'Given a logic program P (which is a set of pro-

gram clauses) and a query Q, can we establish the  
deduction :  P |−Res Q ?
Now although the only rule to be used in the deduc-
tion is resolution, the method of establishing the 
deduction is by refutation (contradiction). We will 
add ¬Q as a hypothesis and use resolution to estab-
lish a contradiction in the form of the empty clause. 

Using propositional resolution, the only way to ob-
tain the empty clause is by applying the rule to a 
propositional variable p and  ¬p, in which case we 
have a contradiction. Our contradiction is really es-
tablished in the step before the empty clause is 
reached. The empty clause is denoted by .

In logic programming we are interested in establish-
ing deductions of the form: P |−Res Q and the way 
we do this is by first establishing a deduction of the 
form: P, ¬Q . This method is called refutation 
by resolution.

A query is a conjunction of propositional variable, it 
will be in the form: p1∧ ... ∧ pn, its negation: 
¬p1∨ . . . ∨ ¬pn,would be in the form of a goal 
clause (Horn clause type 3). In our definitions a 
negative literal cannot be a query. This is far too 
restrictive and some methods of handling negative 
queries will be needed later on. Negation in logic 
programming is surprisingly complicated.

2.4 Formal Resolution Deduction
Suppose we have a set of propositional program 
clauses and a query. The query, upon negation, be-
comes a goal clause. Resolution is then applied to 
the hypotheses in an attempt to derive the empty 
clause. Which clauses are to be combined in each 
step? Prolog tries to solve the left most variable of 
the goal first, also at a certain point in the deduction, 
it always chooses the clause which is listed first; If 
the wrong choice is taken then it ignores what was 
done from the moment the choice was made and 
considers the next option. This procedure is known 
as resolution with backtracking.

Suppose  we  have  the  following   program :     

      (1)  p∧ r∧ s → q (1)  ¬p∨¬ r∨¬s∨ q
      (2)  p ∧ w → q            (2)  ¬p∨¬ w ∨ q
      (3)  p ∧ t  → n      (3)  ¬p∨¬ t ∨ n
      (4)  w → n      (4)  ¬w∨ n
      (5)  s  → w      (5)  ¬s∨ w

(6)  t → r         (6)  ¬t∨ r   
      (7)  p   (7)  p

(8)  t      (8)  t
      (9)  s      (9)  s

also, suppose it is presented with the Query: q∧n∧w 
which means  that   ¬q∨¬n ∨¬w  should  be  added  
as   an  extra hypothesis. The  program  could be re-



written  in  terms  of  ¬ and ∨. Then  the  resolution 
deduction  carried  out as follows :               

     (10)  ¬q∨¬n∨¬w            Negation of the Quary                                           
     (11)  ¬p∨¬r∨¬s∨¬n∨¬w    Res. 10,1                                            
     (12)  ¬r∨¬s∨¬n∨¬w            Res. 11,7
     (13)  ¬t∨¬s∨¬n∨¬w            Res. 12,6
     (14)  ¬s∨¬n∨¬w Res. 13,6             
     (15)  ¬n∨¬w Res. 14,9
     (16)  ¬w∨¬w          Res. 15,4 

(17)  ¬w 
     (18)  ¬s Res. 17,5

(19)  Res. 18,9

The empty clause has been deduced, so the hypothe-
ses combined  with negation of the query are unsat-
isfiable, so the query: q∧n∧w succeeds.
Figure 1 displays the resolution tree.

Figure 1

3 Binary Decision Diagrams
3.1 Definitions
A Binary Decision Diagram is a rooted, directed, 
acyclic graph with the following properties: 

− Οne or more roots;
     Each root represents a boolean  function

− Two distinct terminal nodes  labeled with 
      the Boolean constants 0 and 1

− Each non-terminal node is labeled with
     a boolean variable  Xi  and has  two 
     outgoing edges labeled with 0 and 1   

Figure 2, displays a BDD
representing of the boolean
function: F=( x1 + x2 ). x3

                             Figure 2

You can easily see how does an OBDD represent a 
switching function.

BDDs are proposed as data structures for represent-
ing switching functions by Lee as early as 1959 [1], 
and later by Akers [2]. In 1986, Bryant [3] showed 
that tasks for manipulating switching functions can 
be performed very efficiently if some variable order-
ing restrictions on the BDD structure are satisfied. 

For this reason, Bryant proposed to employ Ordered 
Binary Decision Diagrams (OBDDs). In an OBDD, 
on each path, each variable is evaluated at most once 
and in the specified variable order.

OBDDs have found more practical applications than 
other representations of switching functions, mainly 
for two reasons (see e.g. [4]). First, by applying re-
duction algorithms, OBDDs can be transformed into 
a canonical form, which uniquely characterize a 
given function. Second, in terms of their representa-
tion, Boolean operations on switching functions can 
be performed quite efficiently in time and space. For 
example, an AND composition of two switching 
functions can be performed in time that is linear in 
the product of the sizes of their OBDD representa-
tions.

3.2  The ITE( , , ) Algorithm
The usual way of generating new BDDs is to  com-
bine existing BDDs with connectives like AND, OR, 
EX-OR. If we want to make an OBDD for a given 
boolean function, first we make OBDDs for each  
variable of  the Boolean function, and then we parse 
the Boolean function and combine the existing 
OBDDs to make OBDDs for the needed subfunc-
tions and finally the OBDD representing the whole 
given Boolean function.

ITE( , , ) is the most important algorithm for com-
bining and constructing OBDDs. This procedure is  
a combination of dynamic programming and 
depth-first traversal. It receives OBDDs  for two 
Boolean functions F and G, builds the OBDD for 
F<op>G. All two-argument operators can be ex-
pressed in term of  ITE  For example  AND(F,G) is  
ITE( F, G, 0 ) ;   and   Not(G) is  ITE( G, 0, 1 ).

This procedure maintains a table called  Computed 
Table to avoid  computing a subfunction many 
times, also it maintains another table called Unique 
Table to avoid  subgraphs  representing  the same 
subfunctions. The benefit of this technique is the 
important result that   ITE(  ,  ,  )  is a polynomial
algorithm. Notice that the number of times we call 
ITE(  ,  ,  ) can be exponential and this would  make 
the whole computation  exponential.

However, OBDDs share a fatal property with all 
kinds of representations of switching functions: the 
representation of almost all functions need exponen-
tial space. 



There is another problem that occurs when repre-
senting switching functions by means of OBDDs: 
the size of an OBDD (  number of nodes ),  depends 
on the order of the input variables. Figure 3, shows 
the effect of variable ordering for a  switching func-
tion. Both OBDDs represent the same Boolean func-
tion : F = (a1∧∧∧∧ b1 )∨∨∨∨(a2∧∧∧∧ b2 )∨∨∨∨(a3∧∧∧∧b3)

Good Ordering                  Bad Ordering

           Linear Growth                 Exponential Growth

Figure 3

Different functions have different ordering sensitivi-
ties. Some functions have a high and others have a 
low variable order sensitivity. 

The practicability of OBDDs strongly depends on 
the existence of suitable algorithms and tools for 
minimizing the graphs in the relevant applications.
Nowadays there exit many improvements, optimiza-
tion algorithms and additions to the basic OBDD 
model.

By experience we know: Many tasks have reason-
able BDD representations; algorithms remain practi-
cal for up to 100,000 node OBDDs;  and most pro-
posed heuristic ordering methods  are generally sat-
isfactory.

Because of the practical applicability of this data 
structure, the investigation and development of new 
optimization techniques for OBDDs is still a reward-
ing research topic. For a detailed overview on 
OBDDs and their applications see[4].

4 Logic Programming
Using OBDDs

4.1  Representing a Logic Program
       as an OBDD
Now we know that a propositional logic program is 
a finite set of Horn clauses and  a goal clause of 
which we are interested to see whether it can be de-
duced or not. We can easily look at each Horn clause 
as a Boolean function and represent it as an OBDD. 

For example: ¬p∨¬r∨¬s∨q  which is a Horn clause 
type 2,  can be represented  in the form of the OBDD 

displayed in  Figure 4. Here we have considered the
variable order: π(P)< π(Q)<π(R)<π(S); but due to   
the  form of Horn clauses, the  shape  and  size of  
our OBDD would be variable order independent.

 ¬ ¬ ¬ ¬p∨∨∨∨¬¬¬¬r∨∨∨∨¬¬¬¬s∨∨∨∨q           ¬¬¬¬s∨∨∨∨w    ¬¬¬¬p∨∨∨∨¬¬¬¬w∨∨∨∨q    ¬¬¬¬w∨∨∨∨n 

       Figure 4                                    Figure 5

An OBDD may have several  roots to  present a 
number of  Boolean functions. Therefore we can 
represent other clauses of our propositional logic 
program and the goal clause in the same  OBDD to 
have a multi rooted OBDD that represents all  the 
program clauses and the goal clause. Figure 5,  dis-
plays an OBDD representing three program clauses. 

Here we can see the node and the subfunction shar-
ing property of our data structure. This property is 
very important, specially when we have a big num-
ber of clauses. This time, the variable order and the 
order on which the clauses are added to the OBDD 
is important and may  have a considerable effect.

4.2 Deduction in an OBDD-Based
Logic Program

The main purpose of a logic programming system is 
deducing the goal clause from the set of program 
clauses.

The standard method for this purpose is SLD-resolu-
tion with backward chaining. The SLD stands for 
Linear resolution with Selection function for Defi-
nite clauses.  We may apply this method for our 
OBDD-Based logic programs. (But with some modi-
fications).  

OBDD is a non-linear data structure, therefore we 
can also try non-linear selection functions. This is 
the second method of deduction we are considering. 

From logic we know that if the set of program 
clauses with the negation of the goal clause are in-
consistent, then the conjunction of them will be  0.  
This observation leads us to the third method of 
OBDD-based deduction.

4.2.1 Resolving a Clause with Query (Goal)
Here we will see how resolution could be in an 
OBDD-based logic program.
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Suppose G=¬¬¬¬w∨ ∨ ∨ ∨ ¬¬¬¬q ∨ ∨ ∨ ∨ ¬¬¬¬s be the negation of  the 
goal  we are going to solve. We will have G in our 
OBDD as a root.  The root node of  this OBDD will 
be the variable of G with the lowest variable order. 
(the variable order of the OBDD ). If we had consid-
ered the OBDD variable order the same as the al-
phabet order, then it would be better to look at our 
goal clause as: 

G  = ¬¬¬¬q ∨ ∨ ∨ ∨ ¬¬¬¬s ∨ ∨ ∨ ∨ ¬¬¬¬w   
This means that  q will be at the root node of  G. 
Now we consider  ¬¬¬¬q  to be resolved with one or 
more program clauses.
Now, suppose  that we have the program clause:

C = ¬¬¬¬p ∨ ∨ ∨ ∨ q ∨ ∨ ∨ ∨ ¬¬¬¬s 
We can  resolve G and C according to q and ¬q ,  to 
obtain another clause:
    G = ¬¬¬¬q ∨ ∨ ∨ ∨ ¬¬¬¬s ∨ ∨ ∨ ∨ ¬¬¬¬w  , 
    C = ¬¬¬¬p ∨ ∨ ∨ ∨ q ∨ ∨ ∨ ∨ ¬¬¬¬s      |−Res   R = ¬¬¬¬p ∨ ∨ ∨ ∨ ¬¬¬¬s ∨ ∨ ∨ ∨ ¬¬¬¬w
For this purpose, we must remove ¬¬¬¬q from G to 
obtain G’=¬¬¬¬s ∨ ∨ ∨ ∨ ¬¬¬¬w,  remove q from C and obtain 
C’=¬¬¬¬p∨ ∨ ∨ ∨ ¬¬¬¬s  then compute: R=G’∨∨∨∨C’ 

                                Figure 6

But we are not allowed to remove any node from the 
OBDD, because it affects other functions (clauses) 
that are represented in the multi rooted  OBDD.

According to OBDD structure, since q is at the root 
node, G’ will be the One-successor of G. Therefore 
we may have G’ without any computations. Unfortu-
nately we don’t have the same condition for C to 
obtain C’. 

The resolving variable q could easily be somewhere 
at the middle of the OBDD representing clause C. At 
this time it seems that we must build C’ from C. 
Figure 6 illustrates this concept.

4.2.2 Standard  SLD-Resolation Deduction
As we have seen earlier, this method is the same as 
working in a depth first manner from left to right in 
the resolution tree. 

A query  can be a single or  a conjunctions of  sev-
eral variables. There will  often be more than one 
variable which matches the head of one of the pro-
gram clauses. In this instance, from the point of view 

of automating the deduction process, it is reasonable 
to introduce a selection function which picks out the 
variable to consider from the goal clause.  If this 
succeeds, then the function picks out the next vari-
able and so on. The use of this selection function 
with resolution is called SLD-resolution.

The selection function used in most Prolog imple-
mentations is to pick the left most subgoal (the left 
most literal of the goal clause.) Since we are repre-
senting a logic program as an OBDD with a specific 
variable order, as we mentioned above it’s better to 
pick the subgoal variable according to our OBDD
variable order.

In order to implement this method, first we consider 
a variable order, then we input each program clause 
and the goal clause, and make OBDDs for each of 
them. The OBDDs are not distinct OBDDs. We will 
always have only one multi rooted OBDD. This de-
cision, because of the node and subfunction sharing 
property in OBDDs, is very important  

After  reading the clauses and making the multi roo-
ted OBDD, we will  have a list of pointers that each
of them points to the root of a program clause, also a
pointer that points to the root of the primary goal 
clause. Here we may use a stack to implement  our 
resolution with backward chaining method. Figure 7, 
displays an abstract interpreter for this purpose. 

Input: A logic program P and a goal G presented as
               a multi rooted OBDD. ( Program clauses 
               pointer list and a pointer for the goal ) 

Output: Yes, if a proof of G from P was found, 
               otherwise No. 

Algorithm 
Initialise the resolvent stack to be G. (the input goal)
/* considering the variable order: A1,..., An */
while the resolvent stack is not empty  
 { 
Pop a goal clause G = ¬ = ¬ = ¬ = ¬A1∨∨∨∨ . . . . . . . . . . . .∨∨∨∨ ¬ ¬ ¬ ¬An
if G is empty  exit
for all program clauses C:¬¬¬¬B1∨∨∨∨ .. .. .. ..∨∨∨∨ ¬ ¬ ¬ ¬Bn∨∨∨∨A1(n≥≥≥≥0)
  {

Build the temporary clause C’: ¬¬¬¬B1∨∨∨∨............∨∨∨∨ ¬ ¬ ¬ ¬Bn 
Let G’ to be the One-Successor of G
Compute  R = C’∨∨∨∨ G’ 
Push R into the resolvent stack
}

}
 if G is empty , outputYes else output No

                         Figure 7

This method is similar to the standard SLD-Resolu-
tion method. The differences lie beyond data struc-
ture,  the selection  function and the important factor 
in OBDDs: the variable order. 

We implemented and examined this algorithm for 
many logic programs. Unfortunately there are sev-



eral dependent factors that make analyzing the ex-
perimental results vary hard. The most important  
factors are: The logic program clause order, OBDD 
variable order, Nature of the logic program and the 
query, The logic program size,  Number of preposi-
tional literals included in the logic program and A v-
erage size of  each logic program clause.

In order to analyze the experimental results we have 
to look for a suitable bench mark. At this moment 
we suffice to the intuitive reasonable results.  

4.2.3 Resolution  with  Non-Linear 
         Selection  Functions 
OBDDs are non-linear data structures, therefore we 
would expect to obtain better results if we try non-
linear selection functions. In linear selection, when 
we have for example the goal  G:¬¬¬¬A1∨∨∨∨............∨∨∨∨ ¬ ¬ ¬ ¬An 
we only consider the variable ¬¬¬¬A1 and  look  for 
program clauses like: C:¬¬¬¬B1∨∨∨∨............∨∨∨∨ ¬ ¬ ¬ ¬Bn∨ ∨ ∨ ∨ A1 to 
resolve with. 

Input: A logic program P and a goal G presented as 
                a multi rooted OBDD 

Output: Yes, if a proof of G from P was found, 
                otherwise No. 

Algorithm 
Initialise the resolvent stack to be G, (the input goal)
while the resolvent stack is not empty  
   { 

Pop a goal clause G:¬¬¬¬A1∨∨∨∨............∨∨∨∨ ¬ ¬ ¬ ¬An
if G is empty exit
for  all program clauses C:¬¬¬¬B1∨∨∨∨............∨∨∨∨ ¬ ¬ ¬ ¬Bn∨ ∨ ∨ ∨ A 
{ s.t. A∈{A1 . . . . . . . . . . . .An}

     Build C’ from C ; 
       /* C’ would be the same as C but with out A  */
       Build G’ from G ; 
       /* G’ would be the same as G but with Ai= A */

Compute  R = C’∨∨∨∨ G’ 
If null condition has happened exit                       

       Push R into the resolvent stack                       
}

}
if G is empty or null condition has happened, output

Yes  else  output  No

Figure 8

But we can also consider all the variables in 
G:¬¬¬¬A1∨∨∨∨............∨∨∨∨ ¬ ¬ ¬ ¬An  and resolve G  with any clause 
which includes one of the variables  A1,…,An.  In 
this case we should check for the null condition. 
This condition occurs only when we find a clause 
like ¬¬¬¬P as a result of resolving two clauses and we 
had the unit clause P from the beginning. Figure 8, 
displays an abstract interpreter for this method.

This method sometimes works more efficient than 
the first method, but most times it leads to a larger 
OBDD. It seems that if this method will be applied 
with some useful heuristic then better or even inter-
esting results will be obtained.

5 Conclusions
In this paper we introduced the application of BDDs 
in propositional logic programming. Also we intro-
duced two methods of deduction for an OBDD 
based propositional logic program. The primary re-
sults are satisfiable, but we believe that in this topic 
there is much more potentials. In any case more in-
vestigation efforts seem to be valuable.

References
 [1]  C. Y. Lee: Representation of switching circuits 

by binary decision programs, The Bell Systems 
Technical Journal 38, 1959, pp. 985-999.

[2]  S. B.  Akers: Binary Decision Diagrams, IEEE 
Trans. On Computers 27,1978, pp. 509-516

[3]  R. E. Bryant: Graph Based Algorithms for Boo-
lean  Function Manipulation, IEEE Trans. On 
Computers 35, 1986, pp. 677-695

[4]  Ch. Meinel, T. Theobald: Algorithms and Data 
Structures in VLSI Design, OBDD Fundamen-
tals and Applications, Springer, Heidelberg, 
1998.

[5]  E. Burke, E. Foxley: Logic and its Applications,
Prentice Hall, 1996.

[6]  R. L. Epstein, Predicate logic, Wadsworth, 
2001.

[7]  Ch. Meinel, H. Sack, V. Schillings, VisBDD - A 
Web-based Visualization Framework for OBDD 
Algorithms. IWLS 2002: 385-390

[8]  The BDD Portal website : 
http://www.bdd-portal.org/


