
Published in: Proceeding of 6th International Symposium on Representations and Methodology of Future
 Computing Technology (RM2003), Trier, Germany, 10-11 March 2003, pp 63-68

 BDDs, Horn Clauses and Resolution
Mohammad GhasemZadeh Christoph Meinel

FB IV-Informatik, University of Trier FB IV-Informatik, University of Trier
 D-54286 Trier, Germany D-54286 Trier, Germany

GhasemZadeh@TI.Uni-Trier.DE Meinel@Uni-Trier.DE

Abstract
In this research we present the utilization of BDDs
in representing propositional logic programs and
implementing the refutation by resolution deduction
method.

A logic program is a collection of axioms from
which a goal clause can be proven. Axioms are writ-
ten in a standard form known as Horn clauses. In
logic programming, we try to find a collection of
axioms and inference steps that imply the goal. The
standard and usual method for this kind of inference
is ‘refutation by resolution’.

Binary Decision Diagrams, shortly called BDDs,
are data structures proposed for representing switch-
ing functions. BDDs have been found more practical
and more efficient in time and space than other
switching function representation methods.

One may consider a Horn clause as a switching
function and represent it as a BDD. In the same way,
all the clauses of a propositional logic program and
the goal clause can be represented by means of a
multi-rooted BDD. Because of the characteristics of
BDDs we can make the inference in some other
methods in addition to the standard method. In this
paper, this kind of representation as well as proving
the goal in formal linear resolution and Non-linear
resolution are investigated.

Keywords: Logic programming, Horn clauses,
Binary Decision Diagrams-BDDs, Normal Forms,
Resolution .

1 Introduction
In logic programming, the programmer specifies
what is known and what is the question to be solved.
Logic programming is also known as declarative
programming. This kind of programming is widely
used for Artificial Intelligence and knowledge based
systems (non-numeric Processing).

PROLOG (PROgramming in LOGic) is the popular
Logic Programming Language. PROLOG and most
of the other declarative programming tools use reso-
lution with backward chaining in order to prove

the goal. Most backtracking algorithms need expo-
nential run time and memory space.

BDDs are data structures proposed for representing
switching functions [3,4]. These data structures have
been extensively studied and have provided new
techniques powerful for verification and synthesis of
switching functions. In many cases where other
methods give exponential solutions, the use of
BDDs resulted in a polynomial solution or at least a
high decrease in run time and needed memory space.

A Logic program consists of a list of Horn clauses.
One can look at each clause as a switching function
and represent it as a BDD. So the idea and question
emerges: Is it possible to use BDDs also in logic
programming to obtain better results ?

In this paper we introduce the presentation of a logic
program and the goal by means of a multi rooted
BDD and we present two methods for proving the
goal.

2 Programming with Proposi-
tional Logic

2.1 Definitions
A propositional literal is a propositional variable or
the negation of a propositional variable. A positive
propositional literal is a propositional variable and a
negative propositional literal is the negation of a
propositional variable.

A propositional clause is a disjunction of pro- po-
sitional literals; it is a propositional formula where a
number of propositional literals are connected by the
∨∨∨∨ operator. Any propositional formula can be writ-
ten in terms of a conjunction of clauses, a number of
clauses connected together by the ∧ ∧ ∧ ∧ οperator. This
form is called Conjunction Normal Form (CNF).
An example of a propositional clause is: p ∨ ¬q ∨ r
∨ ¬s, where p, q , r and s are propositional variables.

We now consider a certain type of clause, known as
Horn clause, this class of clauses is particularly im-
portant for logic programming. A propositional
Horn clause is a propositional clause with at most

one positive literal. A Horn clause is thus in one of
the following three forms:

 1) q
 2) ¬p1 ∨ . . . ∨ ¬pn∨ q
 3) ¬p1 ∨ . . . ∨ ¬pn
Where p1, ... , pn , q are propositional variables.

Horn clauses of the forms outlined in (1) and (2)
with one positive literal are known as program
clauses. Horn clauses of the form outlined in (1)
are sometimes called unit clauses. Notice that the
Horn clause given in (2) can be rewritten as :

 ¬ (p1 ∧ . . . ∧ pn)∨ q
and this in turn can be rewritten as:

 (p1 ∧ . . . ∧ pn)→ q
Horn clauses of the type outlined in (3) are known as
goal clauses. The Horn clause given in (3) can be
rewritten as : ¬ (p1 ∧ . . . ∧ pn)

2.2 Propositional Resolution
Suppose we have C1∨ p and C2∨¬p, where
C1 and C2 are clauses and p is a propositional
variable. The rule of resolution allows us to obtain
an expression for C1∨ C2 which does not involve
the variable p. We can define resolution as the fol-
lowing inference rule :
 C1 ∨ p , C2 ∨ ¬p |−Res C1 ∨ C2
where the symbol |−Res denotes deduction using
only the resolution rule. In other words, we use reso-
lution to derive new statements from existing state-
ments. FFoorr iinnssttaannccee ::
 ¬Α ∨ ¬Β ∨ C, ¬C ∨ D |−Res ¬Α ∨ ¬Β ∨ D
which is the same as :

Α ∧ Β → C , C → D � Α ∧ Β → D
““IIff wwee kknnooww tthhaatt AA aanndd BB iimmppllyy CC,, aanndd CC iimmpplliieess
DD,, tthheenn wwee ccaann ddeedduuccee tthhaatt AA aanndd BB iimmppllyy DD..””

2.3 Refutation and Deduction
Resolution is the rule of inference that we use in
logic programming to perform deductions. A logic
program consists of a set of program clauses, which
can be considered as a set of hypotheses. The resolu-
tion rule can be applied to the hypotheses to deduce
consequents. There is a particular method used in
logic programming to perform these deductions.
This method is known as refutation and also known
as contradiction.

 Suppose we have a logic program. The program can
be presented with queries. These are statements that
are conjunctions of propositional variables. The
question being asked of the program is: 'Does the
query follow from the program ?' this is equivalent
to: 'Given a logic program P (which is a set of pro-

gram clauses) and a query Q, can we establish the
deduction : P |−Res Q ?
Now although the only rule to be used in the deduc-
tion is resolution, the method of establishing the
deduction is by refutation (contradiction). We will
add ¬Q as a hypothesis and use resolution to estab-
lish a contradiction in the form of the empty clause.

Using propositional resolution, the only way to ob-
tain the empty clause is by applying the rule to a
propositional variable p and ¬p, in which case we
have a contradiction. Our contradiction is really es-
tablished in the step before the empty clause is
reached. The empty clause is denoted by .

In logic programming we are interested in establish-
ing deductions of the form: P |−Res Q and the way
we do this is by first establishing a deduction of the
form: P, ¬Q . This method is called refutation
by resolution.

A query is a conjunction of propositional variable, it
will be in the form: p1∧ ... ∧ pn, its negation:
¬p1∨ . . . ∨ ¬pn,would be in the form of a goal
clause (Horn clause type 3). In our definitions a
negative literal cannot be a query. This is far too
restrictive and some methods of handling negative
queries will be needed later on. Negation in logic
programming is surprisingly complicated.

2.4 Formal Resolution Deduction
Suppose we have a set of propositional program
clauses and a query. The query, upon negation, be-
comes a goal clause. Resolution is then applied to
the hypotheses in an attempt to derive the empty
clause. Which clauses are to be combined in each
step? Prolog tries to solve the left most variable of
the goal first, also at a certain point in the deduction,
it always chooses the clause which is listed first; If
the wrong choice is taken then it ignores what was
done from the moment the choice was made and
considers the next option. This procedure is known
as resolution with backtracking.

Suppose we have the following program :

 (1) p∧ r∧ s → q (1) ¬p∨¬ r∨¬s∨ q
 (2) p ∧ w → q (2) ¬p∨¬ w ∨ q
 (3) p ∧ t → n (3) ¬p∨¬ t ∨ n
 (4) w → n (4) ¬w∨ n
 (5) s → w (5) ¬s∨ w

(6) t → r (6) ¬t∨ r
 (7) p (7) p

(8) t (8) t
 (9) s (9) s

also, suppose it is presented with the Query: q∧n∧w
which means that ¬q∨¬n ∨¬w should be added
as an extra hypothesis. The program could be re-

written in terms of ¬ and ∨. Then the resolution
deduction carried out as follows :

 (10) ¬q∨¬n∨¬w Negation of the Quary
 (11) ¬p∨¬r∨¬s∨¬n∨¬w Res. 10,1
 (12) ¬r∨¬s∨¬n∨¬w Res. 11,7
 (13) ¬t∨¬s∨¬n∨¬w Res. 12,6
 (14) ¬s∨¬n∨¬w Res. 13,6
 (15) ¬n∨¬w Res. 14,9
 (16) ¬w∨¬w Res. 15,4

(17) ¬w
 (18) ¬s Res. 17,5

(19) Res. 18,9

The empty clause has been deduced, so the hypothe-
ses combined with negation of the query are unsat-
isfiable, so the query: q∧n∧w succeeds.
Figure 1 displays the resolution tree.

Figure 1

3 Binary Decision Diagrams
3.1 Definitions
A Binary Decision Diagram is a rooted, directed,
acyclic graph with the following properties:

− Οne or more roots;
 Each root represents a boolean function

− Two distinct terminal nodes labeled with
 the Boolean constants 0 and 1

− Each non-terminal node is labeled with
 a boolean variable Xi and has two
 outgoing edges labeled with 0 and 1

Figure 2, displays a BDD
representing of the boolean
function: F=(x1 + x2). x3

 Figure 2

You can easily see how does an OBDD represent a
switching function.

BDDs are proposed as data structures for represent-
ing switching functions by Lee as early as 1959 [1],
and later by Akers [2]. In 1986, Bryant [3] showed
that tasks for manipulating switching functions can
be performed very efficiently if some variable order-
ing restrictions on the BDD structure are satisfied.

For this reason, Bryant proposed to employ Ordered
Binary Decision Diagrams (OBDDs). In an OBDD,
on each path, each variable is evaluated at most once
and in the specified variable order.

OBDDs have found more practical applications than
other representations of switching functions, mainly
for two reasons (see e.g. [4]). First, by applying re-
duction algorithms, OBDDs can be transformed into
a canonical form, which uniquely characterize a
given function. Second, in terms of their representa-
tion, Boolean operations on switching functions can
be performed quite efficiently in time and space. For
example, an AND composition of two switching
functions can be performed in time that is linear in
the product of the sizes of their OBDD representa-
tions.

3.2 The ITE(, ,) Algorithm
The usual way of generating new BDDs is to com-
bine existing BDDs with connectives like AND, OR,
EX-OR. If we want to make an OBDD for a given
boolean function, first we make OBDDs for each
variable of the Boolean function, and then we parse
the Boolean function and combine the existing
OBDDs to make OBDDs for the needed subfunc-
tions and finally the OBDD representing the whole
given Boolean function.

ITE(, ,) is the most important algorithm for com-
bining and constructing OBDDs. This procedure is
a combination of dynamic programming and
depth-first traversal. It receives OBDDs for two
Boolean functions F and G, builds the OBDD for
F<op>G. All two-argument operators can be ex-
pressed in term of ITE For example AND(F,G) is
ITE(F, G, 0) ; and Not(G) is ITE(G, 0, 1).

This procedure maintains a table called Computed
Table to avoid computing a subfunction many
times, also it maintains another table called Unique
Table to avoid subgraphs representing the same
subfunctions. The benefit of this technique is the
important result that ITE(, ,) is a polynomial
algorithm. Notice that the number of times we call
ITE(, ,) can be exponential and this would make
the whole computation exponential.

However, OBDDs share a fatal property with all
kinds of representations of switching functions: the
representation of almost all functions need exponen-
tial space.

There is another problem that occurs when repre-
senting switching functions by means of OBDDs:
the size of an OBDD (number of nodes), depends
on the order of the input variables. Figure 3, shows
the effect of variable ordering for a switching func-
tion. Both OBDDs represent the same Boolean func-
tion : F = (a1∧∧∧∧ b1)∨∨∨∨(a2∧∧∧∧ b2)∨∨∨∨(a3∧∧∧∧b3)

Good Ordering Bad Ordering

 Linear Growth Exponential Growth

Figure 3

Different functions have different ordering sensitivi-
ties. Some functions have a high and others have a
low variable order sensitivity.

The practicability of OBDDs strongly depends on
the existence of suitable algorithms and tools for
minimizing the graphs in the relevant applications.
Nowadays there exit many improvements, optimiza-
tion algorithms and additions to the basic OBDD
model.

By experience we know: Many tasks have reason-
able BDD representations; algorithms remain practi-
cal for up to 100,000 node OBDDs; and most pro-
posed heuristic ordering methods are generally sat-
isfactory.

Because of the practical applicability of this data
structure, the investigation and development of new
optimization techniques for OBDDs is still a reward-
ing research topic. For a detailed overview on
OBDDs and their applications see[4].

4 Logic Programming
Using OBDDs

4.1 Representing a Logic Program
 as an OBDD
Now we know that a propositional logic program is
a finite set of Horn clauses and a goal clause of
which we are interested to see whether it can be de-
duced or not. We can easily look at each Horn clause
as a Boolean function and represent it as an OBDD.

For example: ¬p∨¬r∨¬s∨q which is a Horn clause
type 2, can be represented in the form of the OBDD

displayed in Figure 4. Here we have considered the
variable order: π(P)< π(Q)<π(R)<π(S); but due to
the form of Horn clauses, the shape and size of
our OBDD would be variable order independent.

 ¬ ¬ ¬ ¬p∨∨∨∨¬¬¬¬r∨∨∨∨¬¬¬¬s∨∨∨∨q ¬¬¬¬s∨∨∨∨w ¬¬¬¬p∨∨∨∨¬¬¬¬w∨∨∨∨q ¬¬¬¬w∨∨∨∨n

 Figure 4 Figure 5

An OBDD may have several roots to present a
number of Boolean functions. Therefore we can
represent other clauses of our propositional logic
program and the goal clause in the same OBDD to
have a multi rooted OBDD that represents all the
program clauses and the goal clause. Figure 5, dis-
plays an OBDD representing three program clauses.

Here we can see the node and the subfunction shar-
ing property of our data structure. This property is
very important, specially when we have a big num-
ber of clauses. This time, the variable order and the
order on which the clauses are added to the OBDD
is important and may have a considerable effect.

4.2 Deduction in an OBDD-Based
Logic Program

The main purpose of a logic programming system is
deducing the goal clause from the set of program
clauses.

The standard method for this purpose is SLD-resolu-
tion with backward chaining. The SLD stands for
Linear resolution with Selection function for Defi-
nite clauses. We may apply this method for our
OBDD-Based logic programs. (But with some modi-
fications).

OBDD is a non-linear data structure, therefore we
can also try non-linear selection functions. This is
the second method of deduction we are considering.

From logic we know that if the set of program
clauses with the negation of the goal clause are in-
consistent, then the conjunction of them will be 0.
This observation leads us to the third method of
OBDD-based deduction.

4.2.1 Resolving a Clause with Query (Goal)
Here we will see how resolution could be in an
OBDD-based logic program.

0

b 3

a 3

b 2

a 2

1

b 1

a 1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

Suppose G=¬¬¬¬w∨ ∨ ∨ ∨ ¬¬¬¬q ∨ ∨ ∨ ∨ ¬¬¬¬s be the negation of the
goal we are going to solve. We will have G in our
OBDD as a root. The root node of this OBDD will
be the variable of G with the lowest variable order.
(the variable order of the OBDD). If we had consid-
ered the OBDD variable order the same as the al-
phabet order, then it would be better to look at our
goal clause as:

G = ¬¬¬¬q ∨ ∨ ∨ ∨ ¬¬¬¬s ∨ ∨ ∨ ∨ ¬¬¬¬w
This means that q will be at the root node of G.
Now we consider ¬¬¬¬q to be resolved with one or
more program clauses.
Now, suppose that we have the program clause:

C = ¬¬¬¬p ∨ ∨ ∨ ∨ q ∨ ∨ ∨ ∨ ¬¬¬¬s
We can resolve G and C according to q and ¬q , to
obtain another clause:
 G = ¬¬¬¬q ∨ ∨ ∨ ∨ ¬¬¬¬s ∨ ∨ ∨ ∨ ¬¬¬¬w ,
 C = ¬¬¬¬p ∨ ∨ ∨ ∨ q ∨ ∨ ∨ ∨ ¬¬¬¬s |−Res R = ¬¬¬¬p ∨ ∨ ∨ ∨ ¬¬¬¬s ∨ ∨ ∨ ∨ ¬¬¬¬w
For this purpose, we must remove ¬¬¬¬q from G to
obtain G’=¬¬¬¬s ∨ ∨ ∨ ∨ ¬¬¬¬w, remove q from C and obtain
C’=¬¬¬¬p∨ ∨ ∨ ∨ ¬¬¬¬s then compute: R=G’∨∨∨∨C’

 Figure 6

But we are not allowed to remove any node from the
OBDD, because it affects other functions (clauses)
that are represented in the multi rooted OBDD.

According to OBDD structure, since q is at the root
node, G’ will be the One-successor of G. Therefore
we may have G’ without any computations. Unfortu-
nately we don’t have the same condition for C to
obtain C’.

The resolving variable q could easily be somewhere
at the middle of the OBDD representing clause C. At
this time it seems that we must build C’ from C.
Figure 6 illustrates this concept.

4.2.2 Standard SLD-Resolation Deduction
As we have seen earlier, this method is the same as
working in a depth first manner from left to right in
the resolution tree.

A query can be a single or a conjunctions of sev-
eral variables. There will often be more than one
variable which matches the head of one of the pro-
gram clauses. In this instance, from the point of view

of automating the deduction process, it is reasonable
to introduce a selection function which picks out the
variable to consider from the goal clause. If this
succeeds, then the function picks out the next vari-
able and so on. The use of this selection function
with resolution is called SLD-resolution.

The selection function used in most Prolog imple-
mentations is to pick the left most subgoal (the left
most literal of the goal clause.) Since we are repre-
senting a logic program as an OBDD with a specific
variable order, as we mentioned above it’s better to
pick the subgoal variable according to our OBDD
variable order.

In order to implement this method, first we consider
a variable order, then we input each program clause
and the goal clause, and make OBDDs for each of
them. The OBDDs are not distinct OBDDs. We will
always have only one multi rooted OBDD. This de-
cision, because of the node and subfunction sharing
property in OBDDs, is very important

After reading the clauses and making the multi roo-
ted OBDD, we will have a list of pointers that each
of them points to the root of a program clause, also a
pointer that points to the root of the primary goal
clause. Here we may use a stack to implement our
resolution with backward chaining method. Figure 7,
displays an abstract interpreter for this purpose.

Input: A logic program P and a goal G presented as
 a multi rooted OBDD. (Program clauses
 pointer list and a pointer for the goal)

Output: Yes, if a proof of G from P was found,
 otherwise No.

Algorithm
Initialise the resolvent stack to be G. (the input goal)
/* considering the variable order: A1,..., An */
while the resolvent stack is not empty
 {
Pop a goal clause G = ¬ = ¬ = ¬ = ¬A1∨∨∨∨∨∨∨∨ ¬ ¬ ¬ ¬An
if G is empty exit
for all program clauses C:¬¬¬¬B1∨∨∨∨∨∨∨∨ ¬ ¬ ¬ ¬Bn∨∨∨∨A1(n≥≥≥≥0)
 {

Build the temporary clause C’: ¬¬¬¬B1∨∨∨∨............∨∨∨∨ ¬ ¬ ¬ ¬Bn
Let G’ to be the One-Successor of G
Compute R = C’∨∨∨∨ G’
Push R into the resolvent stack
}

}
 if G is empty , outputYes else output No

 Figure 7

This method is similar to the standard SLD-Resolu-
tion method. The differences lie beyond data struc-
ture, the selection function and the important factor
in OBDDs: the variable order.

We implemented and examined this algorithm for
many logic programs. Unfortunately there are sev-

eral dependent factors that make analyzing the ex-
perimental results vary hard. The most important
factors are: The logic program clause order, OBDD
variable order, Nature of the logic program and the
query, The logic program size, Number of preposi-
tional literals included in the logic program and A v-
erage size of each logic program clause.

In order to analyze the experimental results we have
to look for a suitable bench mark. At this moment
we suffice to the intuitive reasonable results.

4.2.3 Resolution with Non-Linear
 Selection Functions
OBDDs are non-linear data structures, therefore we
would expect to obtain better results if we try non-
linear selection functions. In linear selection, when
we have for example the goal G:¬¬¬¬A1∨∨∨∨............∨∨∨∨ ¬ ¬ ¬ ¬An
we only consider the variable ¬¬¬¬A1 and look for
program clauses like: C:¬¬¬¬B1∨∨∨∨............∨∨∨∨ ¬ ¬ ¬ ¬Bn∨ ∨ ∨ ∨ A1 to
resolve with.

Input: A logic program P and a goal G presented as
 a multi rooted OBDD

Output: Yes, if a proof of G from P was found,
 otherwise No.

Algorithm
Initialise the resolvent stack to be G, (the input goal)
while the resolvent stack is not empty
 {

Pop a goal clause G:¬¬¬¬A1∨∨∨∨............∨∨∨∨ ¬ ¬ ¬ ¬An
if G is empty exit
for all program clauses C:¬¬¬¬B1∨∨∨∨............∨∨∨∨ ¬ ¬ ¬ ¬Bn∨ ∨ ∨ ∨ A
{ s.t. A∈{A1An}

 Build C’ from C ;
 /* C’ would be the same as C but with out A */
 Build G’ from G ;
 /* G’ would be the same as G but with Ai= A */

Compute R = C’∨∨∨∨ G’
If null condition has happened exit

 Push R into the resolvent stack
}

}
if G is empty or null condition has happened, output

Yes else output No

Figure 8

But we can also consider all the variables in
G:¬¬¬¬A1∨∨∨∨............∨∨∨∨ ¬ ¬ ¬ ¬An and resolve G with any clause
which includes one of the variables A1,…,An. In
this case we should check for the null condition.
This condition occurs only when we find a clause
like ¬¬¬¬P as a result of resolving two clauses and we
had the unit clause P from the beginning. Figure 8,
displays an abstract interpreter for this method.

This method sometimes works more efficient than
the first method, but most times it leads to a larger
OBDD. It seems that if this method will be applied
with some useful heuristic then better or even inter-
esting results will be obtained.

5 Conclusions
In this paper we introduced the application of BDDs
in propositional logic programming. Also we intro-
duced two methods of deduction for an OBDD
based propositional logic program. The primary re-
sults are satisfiable, but we believe that in this topic
there is much more potentials. In any case more in-
vestigation efforts seem to be valuable.

References
 [1] C. Y. Lee: Representation of switching circuits

by binary decision programs, The Bell Systems
Technical Journal 38, 1959, pp. 985-999.

[2] S. B. Akers: Binary Decision Diagrams, IEEE
Trans. On Computers 27,1978, pp. 509-516

[3] R. E. Bryant: Graph Based Algorithms for Boo-
lean Function Manipulation, IEEE Trans. On
Computers 35, 1986, pp. 677-695

[4] Ch. Meinel, T. Theobald: Algorithms and Data
Structures in VLSI Design, OBDD Fundamen-
tals and Applications, Springer, Heidelberg,
1998.

[5] E. Burke, E. Foxley: Logic and its Applications,
Prentice Hall, 1996.

[6] R. L. Epstein, Predicate logic, Wadsworth,
2001.

[7] Ch. Meinel, H. Sack, V. Schillings, VisBDD - A
Web-based Visualization Framework for OBDD
Algorithms. IWLS 2002: 385-390

[8] The BDD Portal website :
http://www.bdd-portal.org/

