

A Security Improved OpenSST Prototype Combining with Smart Card

Xinhua Zhang Christoph Meinel Alexandre Dulaunoy
LIASIT

162a, avenue de la Faiencerie
L-1511 Luxembourg

University of Trier
 D54286 Trier Germany

Conostix S. A
66.rue de Luxembourg L-4221

Esch-Sur-Alzette
zhang@ti.uni-trier.de meinel@uni-trier.de adulau@connostix.com

Abstract

Open Simple Secure Transaction (OpenSST) protocol
aims to be a secure and transaction-oriented protocol for
the unsecured network. OpenSST is a open source
project, at present a simple prototype based on HTTP
protocol has been implemented. In this paper, we give
firstly an overview of openSST, and then we describe the
basic architecture of this prototype, as well as make an
analysis on its security. Then we introduce a security-
enhanced model based on this prototype, which utilize the
tamper-resistant nature of Smart Card. We will discuss
several possible ways of integrating Smart Card into the
OpenSST.

1. Introduction

In the recent past, the breakthrough of the Internet as a
worldwide-accepted communication medium, business
platform has stimulated many works in the area of high
security and reliable transaction protocols. These works
aim to provide user with the guarantee on confidentiality,
integrity, authentication and non-repudiation [3]. Here
confidentiality ensures that information exchanging
between two parts is kept secret from third parts, even if
that information exchanges through an insecure medium.
Integrity provides a way for the recipient to determine
whether any modifications are made when the information
is transmitting. Authentication means to verify sender and
receiver in order to prove the person is who he claims to
be. Non-repudiation prevents both sender and receiver
from denying a specific transaction, which is also a proof
of the integrity and origin of data exchanged in the
transaction.

 In the proceeding of the international conference of
Computer Networks and Mobile Computing (ICCNMC
03), Shanghai China, October 20th ~ 23th 2003.

Among almost all secure protocols, cryptography is
hard-core used to realize confidentiality, authentication,
integrity and non-repudiation. Although cryptography
solves security problems in open networks, it also brings
forward the requirement of secure key storage. On the
other hand, it is agued that Smart Cards are capable of
providing a secure storage and computation environment
for a wide range of user credentials such as Keys,
certificates and passwords.

 In this paper, we will firstly give a short overview of
Smart Card technology, and then we will make a brief
introduction of the protocol: Open Secure Simple
Transaction (OpenSST) [1, 2]. After this section, we will
principally narrate and analysis an OpenSST prototype
without Smart Card. A security-enhanced model, which
combines with a Smart Card, is presented in the fifth
section. In the last section, we summarize and add an
outlook to further development of OpenSST protocol.

2. Smart Card

A Smart Card is a device that feels and looks like a
credit card and can even be used as one, but it has a major
advantage over credit magnetic strips: its own processor.
The smart card processor allows a higher level of security
than a simple magnetic strip. It gives user the ability to do
computations internal to the smart card (primarily
signature and decryption). It also allows user to block out
certain parts of the card by PIN numbers. Smart cards
don¡flt alow direct access to stored information. With the
processor controlling access to the memory on the card,
commands have to be sent to the processor on the card
itself to get at the information on the card. This allows the
processor to require the user to authenticate them to the
smart card before information is returned. Depending on
the type of embedded chip, Smart Cards fall into three
major categories:

• Stored value cards are the most basic form of
Smart Card;

published as: X. Zhang, Christoph Meinel, A. Dulaunoy: A Security Improved opensst Prototype combining with Smart Card;
In Proceedings of International Conference on Computer Networks and Mobile Computing (ICCNMC 2003);
IEEE ICCNMC 2003 Shanghai (China), 2003, pp. 358-361.

• Microprocessor Memory Cards are much like a
mini computer and include RAM, ROM, and
EEPROM;

• Cryptographic Cards are high-end
microprocessor memory cards with additional
supports for cryptographic operations (digital
signatures and encryption).

3. Open Simple Secure Transaction

OpenSST is an open source project, it aims to be a
secure and transaction oriented protocol for the unsecured
network. OpenSST is both a protocol for securely
exchanging transactions and a message format to
encapsulate these transactions. OpenSST is designed to
allow each transaction to be signed, which is benefit for
non-reputation. OpenSST specifies a simple message
format in XML syntax, and it recurs to cryptography to
provide secure service. Normally, OpenSST consists of
two parts: OpenSST proxy lies in side of client and
OpenSST server lies in side of server. OpenSST will
firstly establish a secure session for each transaction
before this transaction takes place. This secure session is
established using public-key authentication with key
exchange between the proxy and server to derive a unique
session key that can then be used to ensure data integrity
and confidentiality throughout the session.

4. A prototype without Smart Card

In order to demonstrate the OpenSST protocol, a
prototype, the OpenSST Http Proxy implementation, has
been developed. Although this prototype is just one
approach of OpenSST, we still can insight into its main
features and basic work principle. In this prototype, both
the OpenSST proxy and Server are running behind, and
the browser is the main interface through which user
complete his transaction. Figure 1 shows the architecture
and mechanism of this prototype.

4.1 Architecture and mechanism

In this prototype, an entire transaction consists of two
steps: authentication and establishment of secure tunnel.

Authentication includes the following steps: (1) the
user gives a key ID and corresponding password from the

browser, which is used to protect the private key stored in
the key store file; (2) the proxy opens the key store file,
and reads out the private key with the password; (3) The
proxy then sign the user ID and key ID (if the user has
more than one key) with the selected private key identified
by key ID, and send this signature with user ID and key
ID to the OpenSST server; (4) The OpenSST server then
transfers this information to the authentication server; (5)
Authentication server verify the user¡fls si gnat ure wit h t he
public key corresponding to user ID and key ID, and
responds the verification result to the OpenSST server.
Hereto, the whole authentication process is over.

Once the authentication is successful, OpenSST is to
establish a secure tunnel between the OpenSST proxy and
the server as following: firstly the OpenSST server assigns
a session ID for this session, and generates a secure key
with a symmetric algorithm; Thereafter the server encrypts
the secure key and the session ID with the user¡fls publi c
key; A hash value is also computed with this cryptograph,
then the server signs the hash and sends it together with
the cryptograph to the proxy. On the client side, the proxy
verifies the signature and decrypts this message with the
private key to get the secure key. After both the proxy and
server have the secure key, each transaction between them
will be encrypted with this secure key. A secure
transaction tunnel is established.

4.2. Security analysis

As mentioned above, the private key of the user is
stored in software key container, a file in the client, where
the key itself is encrypted by a password [2]. Thus an
attacker can try to guess the password using a dictionary
attack if he has chance to access this key store file.
Because any password that the user can remember without
writing down is in principle subject to some form of
dictionary attack [4].

Presuming that the user wants to authenticate him in a
computer without his key-story file, and then he has to
copy the file to this computer. It is possible that he don¡flt
know whether or not there are some password crackers [6]
or keystroke capture programs already installed in this
computer in advance, so he is possibly at the risk of
exposing his private key to a hacker. Besides, if the user
does not work on his own computer, he must remember to
delete the copy of key-store file after he finished the

Figure 1 An OpenSST prototype without Smart Card

Key file

Web Server

Browser

O
pe

nS
ST

pr
ox

y

Client

O
pe

nS
ST

 S
er

ve
r

Authentication
Server

(1)

(2)

(3)

(4)

(5) Secure Tunnel

transaction. However it is also possible for people to
forget to do this.

5. A new model with Smart Card

Cryptographic Smart card is an important building
block in many modern security applications. In particular,
its tamper-resistant packaging, low cost, inherent
portability, and loose coupling to the host make it
especially attractive for use as secret key storage tokens
when the host cannot be trusted to itself store a secret key.
In the following we will present a security-enhanced
OpenSST model combined with Smart Card. In this
model, authentication server is responsible for a part of
functions of a Certificate Authority (CA). In [5], the
author calls this part-function CA as certificate issuer
(CI), it not only authenticates the user, but also issues
certificate.

Figure 2 shows the architecture of the new model. Due
to we introduce mainly the process between the Smart
Card and OpenSST, we draw other components in broken
line, and regard them whole as server.

5.1 Using Smart Card for authentication

In fact, in this situation it involves two authentications.
One is that the cardholder authenticates himself to the

card; this authentication is an inherent advantage of Smart
Card. The typical method used to authenticate the user to
the card involves the input of a Personal Identification
Number (PIN), which is verified by the Smart Card. This
verification is done by comparing the PIN with a
reference PIN stored in a secret area of the non-volatile

memory. Usually only three attempts are allowed before
the Smart Card locks out.

Another is that the user authenticate himself to the
server, this authentication involves the user of

cryptographic protocols [8]. This authentication can be
implemented by symmetric algorithm or asymmetric
algorithm.

5.1.1 Authentication with symmetric algorithm. In this
model, there is no need of certificate. The solution is
based on use of pseudorandom functions. The server
(exactly be CI or authentication server) firstly generates a
master key 0. , which is used to compute the secret key
on each Smart Card. Because every Smart Card has a
unique serial number 61 when it is manufactured. When
the CI issue a Smart Card to a user, it firstly computes

)(61fK ���� � = , which is the pseudorandom function

keyed by the mater key and evaluated at the serial number,
then the CI stores this � �K in the Smart Card. Besides, the

CI should also maintain a user-list which link an user
(maybe identified by an ID number) to his Smart Card
serial number.

When a user wants to authenticate himself to the
server, he encrypts his user ID with � �K and sends this

cipher together with his Smart Card 61 to the server. The
server will firstly use its master key 0. and 61 sent by
the user to regenerate � �K and then decrypt the cipher. At

last, it compares the user ID and user¡fls 61 with the
record in the user list to verify the user.

The advantage of this model is:
• Symmetric algorithm is faster than asymmetric

algorithm;
• For the server can recomputed the user¡fls secret

key with the serial number and the master key,
the server need not store a large number of secret
keys for all users. Whereas the server can easily

gain a secret key with a user when they need.

5.1.2 Authentication with asymmetric algorithm. In
this model, the user¡fls publi c key pair i s generat ed by t he

O
pe

nS
ST

Pr

ox
y

Web

Server

Authenticaion
Server

O
pe

nS
ST

Se

rv
er

Server

Smart Card

User

PIN

Chanllenge

Response

Browser

Figure 2 A new model with Smart Card

authentication server, and the private key is only stored in
user¡fls S mart Car d. At the same time, a public key
certificate signed by the Certificate Issuer is also stored in
the Smart Card. Authentication can be performed as
follows: firstly, the server generates a random challenge
and sends to the Smart Card. Then the Smart Card uses
the user¡fls pri vat e key t o generat e a di git al si gnat ure over
the challenge. As response, the digital signature together
with the certificate associated with the private key in the
smart card is sent to the server. At last, the server verifies
the certificate and then uses the public key contained in
the certificate to verify the signature.

5.2 Using Smart Card for encrypting message

By the reason of Smart Card has only limited resource
such as CPU, ROM and RAM etc. It cannot process data
at nearly the bandwidth of the host to which it is attached.
Smart Card is often used in such situation that the key
stored on the card is used only occasionally and speed
requirements are minimal, for example, digital signatures
of message digests and challenge-response authentication
protocols.

While in an application that requires large bulk
encryption with Smart Card based key management, a
possible scheme is that shifting work to the host
processor, the principle is that it should not increase the
trust requirements of old system. This scheme is difficult
but interesting. Once we can implement this scheme in
OpenSST, the secure tunnel can be set up directly with the
secret key stored in Smart Card. A similar protocol RKEP
[7] has resulted very ideal performance, which is used
mainly in the area of File Encrypt System, however it
prove partly that it is feasible to implement this function
in OpenSST.

5.3 Benefit

When Smart Card is used in OpenSST, it will enhance
OpenSST¡fls securit y fr o m several aspects

First, secure storage for private keys is a unique
attribute of the Smart Card [10]. Second, mobility is
another value-added quality of using Smart Card in
OpenSST. In old prototype, the user is limited to a
specific desktop system that contains his key store file.
Because Smart Card is such a device that can be easily
carried in a user¡fls wall et or packet, and it s mobilit y does
not sacrifice its security in the least, user can conveniently
and securely authenticate himself from different clients on
which OpenSST proxy is installed.

Non-repudiation is another advantage. Because all

cryptographic Smart Cards are designed to ensure that a
user¡fls pri vat e key never l eaves t he S mart Car d. That

means the private key cannot be copied, replicated or
misused by an invalid individual. So we can be extremely
confident the private key used in OpenSST is always in
the sole possession of the user who has done the
transaction.

6. Conclusion and future work

The protocol OpenSST is still rather young and future
extensions and approach supplementary researches are
important. In this paper, we present a model of integrating
Smart Card into OpenSST, which enhances remarkably
the security of OpenSST protocol. Since years, the PKI
(Public key Infrastructure) has become a de facto standard
for securing net-based communications and transactions
[9]. Especially in a closed system, A PKI system satisfies
almost all of the marketplace¡fls needs, i ncl udi ng f our basi c
security requirements. Thus, our next research interest will
focus on: how to establish a simple and efficient PKI
model based on OpenSST protocol.

7. References

[1] Alexandre Dulaunoy, S¤ƒbasti en St or macq, 2002.OpenSST:

Open Simply Secure Transaction. URL:
http://www.foo.be/current/opensst/

[2] Alexandre Dulaunoy, April 2002. A XML Schema for the
OpenSST message format. Internal Conostix document,

[3] Bruce Schneier, 1996. Applied Cryptography Protocols,
Algorithm and Source Code in C. second edition, John
Wiley & Sons, Inc. ,New York, USA

[4] D.N .Hoover, B.N.Kausik, 1999. Software Smart Cards via
Cryptographic Camouflage, IEEE symposium on Security
and Privacy

[5] Kaijun Tan, March 2002. Building Your Appropriate
Certificate-based Trust Mechanism For Secure
Communications In Rainbow Technologies V1.2

[6] Mark Taber, et al, 1998. Maximum Security. Second edition,
SAMS Publishing, Indianapolis, Indiana, USA

[7] Matt Blaze, High-Bandwidth Encryption with Low-
Bandwidth Smart cards. Cambridge Workshop on Fast
Software Encryption, February 1996

[8] M.Y.Rhee, 1994. Cryptography and Secure Communication
McGraw-Hill, Highstown, N.J. pp449-457

[9] Peter Gutmann, 2002. PKI: It¡fls not dead, j ust resti ngin
IEEE Computer society, Vol. 8, pp 41-49

[10] RSA Security Inc. The cryptographic Smart Card: a
Portable, Integrated Security Platform. CSC WP 0301

