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Fig. 1. Grayscale image matting and colorization results.A andB are the input grayscale images to our algorithm, whileA
′

andB
′

are the output color images.

ABSTRACT

This paper presents a novel approach to grayscale image
matting and colorization. The first part of this approach is
an efficient grayscale image matting algorithm in Bayesian
framework. The foreground and background color distri-
butions, and the alpha’s distribution are modelled with spa-
tially varying sets of Gaussians. The major novelties of this
matting algorithm are the introduction of alpha’s distribu-
tion and gradient into the Bayesian framework and an ef-
ficient optimization scheme. This grayscale image matting
algorithm can effectively handle objects with intricate and
vision sensitive boundaries, such as hair strands or facial
organs. In the second part, by combining the grayscale im-
age matting algorithm with color transferring techniques, an
efficient colorization scheme is proposed, which provides
great improvement over existing techniques for some diffi-
cult cases, such as human faces or images with confusing
luminance distribution.

1. INTRODUCTION

Digital image matting is a critical operation in commercial
television, film production, and advertisement design. The
basic process of matting techniques is to extract embedded
foreground objects from a background image by estimating

a color and opacity for the foreground element at each pixel.
The opacity value at each pixel is typically called itsα, and
the opacity image, taken as a whole is referred to as theα
matte. Usually, the extracted foreground objects and their
corresponding mattes are used to composite new images or
video clips, which enable designers or directors a great free-
dom to achieve imaginative and impressive visual effects.

Nevertheless, extracting matte is particularly difficult
for some notoriously intricate cases such as thin wisps of
fur or hair. Recently have seen great advances in digital
matting techniques that achieved impressive results for dif-
ficult cases [1, 2, 11]. To our knowledge, Chuang et al.’s
Bayesian approach [2] achieved the best results for difficult
cases. However, this method only works very efficiently for
color image. For grayscale image, the matting problem is
less constrained and the direct adaptation of Chuang et al.’s
method will lead to failure. The method in this paper fol-
lows Chuang et al.’s Bayesian framework and improves it
by modelling alpha’s distribution and introducing the im-
age gradient into the model. After such improvement, the
Bayesian method works very well for grayscale image.

One of the important applications of grayscale im-
age matting algorithm is to combine with color transfer-
ring techniques to achieve object-based colorization, where
objects in the same image are colorized independently.
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Grayscale image colorization can find its applications in
black and white photo editing, classic movies colorization,
and scientific illustrations. Colorization can increase dra-
matically the visual appeal of grayscale images and percep-
tually enhance scientific illustrations.

Welsh et al. [3] proposed a grayscale image coloriza-
tion method that works very impressively for natural images
and scientific illustration images. In general, Welsh et al.’s
method works well on scenes where the image is divided
into distinct luminance clusters or where each region has
distinct textures. However, their current technique does not
work very well with human faces. In this paper, we combine
the efficient grayscale image matting algorithm and color
transferring techniques to improve the colorization dramat-
ically. Fig. 2 shows the overview of our algorithm.
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Fig. 2. Algorithm overview. First, the source grayscale im-
age is separated into different objects using the grayscale
image matting algorithm. Then, the objects are colorized
using color transferring technique. Finally, the colorized
objects are composited using alpha blending to reach the
ultimate colorization.

2. PREVIOUS WORK

In this section, we describe the main components of pre-
vious work: digital matting and color transferring tech-
niques. For each case, we discuss existing work, the partic-
ular methods we have selected and the adaptation and im-
provement.

2.1. Digital matting

In 1984, Porter and Duff [13] introduced the digital analog
of the matte — the alpha channel — and showed how syn-
thetic images with alpha could be useful in creating complex
digital images. The most common compositing equation is
as follows:

C = αF + (1− α)B (1)

whereC, F , andB are the pixel’s composite, foreground,
and background colors respectively, and alpha is the pixel’s
opacity component.

Blue screen matting [9] was among the first techniques
used for live action matting. One limitation of blue screen is
the reliance on a controlled environment. The more general
approach to digital matting is to extract foreground objects
and their mattes from natural images, known as natural im-
age matting.

Corel’s Knockout is the most successful commercial
package for natural image matting. The key technique be-
hind this tool is described in patents by Berman et al. [14].
In [1], Ruzon and Tomasi proposed a comparable technique
based on statistical observation of natural images. More
recently, Hillman et al. [11] used principle component
analysis to estimate the optimal foreground, background,
and alpha simultaneously. Chuang et al. [2] introduced a
Bayesian approach and achieved impressive results for color
natural images. For difficult cases, such as fur and hair, the
Bayesian approach achieved the best result.

Here we describe concisely the Bayesian approach [2].
Given a know pixelC, the algorithm tries to find the most
likely values forF , B, andα in the composition equation
(1). Using Bayesian rule, the problem is taken as the maxi-
mization over a sum of log-likelihoods:

arg max
F,B,α

P (F,B, α|C) (2)

= arg max
F,B,α

P (C|F,B, α)P (F )P (B)P (α)/P (C)

= arg max
F,B,α

(L(C|F,B, α) + L(F ) + L(B) + L(α))

whereL(·) is the log-likelihood function, i.e. the log of
probabilityL(·)=log(P (·)), and theL(C) term is dropped,
because it is constant with respect to the optimization pa-
rameters (α, F , B). The algorithm proceeds by growing,
contour by contour, into the unknown region, heading in-
ward both from the foreground and the background bor-
ders. At each unknown pixel, a circular region encom-
passes a set of trimap foreground and background pixels, as
well as any foreground and background values previously
computed nearby in the unknown region. The foreground
and background samples are then separated into clusters,
and weighted mean and covariance matrices are used to
derive Gaussian distributions. Given these distributions,
the Bayesian matting approach solves for the maximum-
likelihood foreground, background, and alpha at the un-
known pixel.

In this algorithm, they assume that the log likelihood for
opacityL(α) is constant and thus omitted from the maxi-
mization in equation (2). To solve the equation efficiently,
they break the problem into two quadratic sub-problems.
For the first sub-problem, they assume thatα is a constant
and get the optimizedF andB by taking partial derivatives.
The value of the assumedα is estimated from the neighbor-
hood of the current pixel. Then, for the second sub-problem,
they assume thatF andB are constant and yield a quadratic



equation in alpha and get the solution by projecting the ob-
served colorC onto the line segmentFB in color space.

2.2. Color transferring

One of the most common tasks in image processing and
editing is to alter an image’s color. Recently, Ruderman et
al. [5] developed a color space, calledlαβ color space,
which minimizes correlation between channels for many
natural scenes. Reinhard et al. [4] used this color space to
transfer color from one color image to another and achieved
impressive visual effect. In [3], Welsh et al. introduced
color transfer technique to colorize grayscale images. The
basic idea of that paper is to combine the color transfer-
ring technique in [4] with texture synthesis techniques. This
technique works very well on scenes where the image is di-
vided into distinct luminance clusters or where each of the
regions has distinct textures. However, the technique does
not work very well with faces. It fails to classifying the
difference between skin and lip. More generally, this prob-
lem exists in colorizing grayscale images with regions that
with similar or confusing luminance distribution. Directly
employing this technique will fail to colorize these differ-
ent regions with user specified colors, even though with the
help of swatches.

In our approach, we first extract each object from the
grayscale image by employing the grayscale image mat-
ting algorithm proposed in this paper. Then each object is
colorized with specific colors following Welsh et al.’s algo-
rithm. Finally, the colorized objects are composited to form
the colorized version of the original grayscale image. By us-
ing this simple scheme, we achieve visually pleasant results
for difficult cases.

3. GRAYSCALE IMAGE MATTING

In this section, we describe our grayscale image mat-
ting algorithm in detail. This algorithm follows the
Bayesian framework and sliding window scheme proposed
by Chuang et al. [2]. However, our method differs from
theirs in three key aspects. Namely, (1) it modelsα as
a Gaussian distribution and introduces image gradient to
weight the standard deviation ofα′s distribution; (2) it op-
timizes the objective function inF , B, andα simultane-
ously; (3) it uses a simple and efficient color clustering al-
gorithm. By introducing these improvements. We can effec-
tively handle the underconstrained grayscale image matting
problem.

3.1. Modelling likelihoods

The matting pipeline of our algorithm includes user interac-
tion and solving the Maximum A Posteriori (MAP) problem

for each unknown pixel. Given a grayscale image, user seg-
ments conservatively the image into three regions: ”back-
ground,” ”foreground,” and ”unknown”. For each pixelC
in the unknown region, we try to find the most likely esti-
mates ofF , B, andα. We take the same formula (2) and
define the log-likelihoods,L(C|F,B, α), L(F ), L(B), and
L(α) in a new way.

The first term in (2) is modelled by measuring the differ-
ence between the observed brightnessC and the brightness
that would be predicted by the estimatedF , B, andα:

L(C|F,B, α) = −‖C − αF − (1− α)B‖2/2σ2
C (3)

This log-likelihood models error in the measurement ofC
and corresponds to a Gaussian probability distribution with
meanαF + (1− α)B and standard deviationσC . HereσC

is a constant and models the noise in imaging process.
The second termL(F ) is modelled as the error term in

a Gaussian distribution with meanF and standard deviation
σF . Formally,L(F ) is expressed as:

L(F ) = −‖F − F‖2/(2σ2
F + 2σ2

C) (4)

F andσF are computed in the neighborhood of pixelC to
exploit the spatial coherence of the source image. To more
robustly model the foreground brightness distribution, we
use the same weighting scheme in [2] to stress the contri-
bution of nearby pixels and pixels with large opacity value.
Since the estimated foregroundF is also subject to the influ-
ence of imaging noise, the image noise term is added to the
standard deviation of the Gaussian probability distribution.
Such noise is critical to regularize the optimization process
and avoid most of the degenerate cases. Similarly, we define
L(B) as:

L(B) = −‖B −B‖2/(2σ2
B + 2σ2

C) (5)

For the likelihood ofα, instead of take it as constant [2],
we model it as the error term in a Gaussian distribution.

L(α) = −‖α− α‖2/2σ2
α (6)

whereα andσα are mean and standard deviation in Gaus-
sian distribution. The computation ofα andσα is weighted
by using a Gaussian filter to stress the contribution of nearby
pixels. Instead of computingσα from neighborhood, we set
it constant to model the noise ofα.

The introduction ofα′s distribution constrains the MAP
problem and gets better result than only modelling fore-
ground, background and the error between observedC and
predicted brightness. But it is a difficult task to set the ap-
propriate standard deviation ofα′s distribution. The larger
theσα, the smaller influence ofα on the MAP problem and
the formula (2) degenerates to a model withoutα′s con-
straint. On the other hand, the smaller theσα, the stronger
influence ofα on the MAP problem and the edge, where
alpha changes rapidly, will be blurred.



To avoid blurring, while keep the constraint ofα, we
introduce image gradient into theα′s distribution based on
such observation that when the gradient is large, theα has
more chance to change greatly. The adoption of gradient
keeps the spatial coherence of alpha in smooth area and
looses the constraint for area with large gradient. Formally,
we revise formula (6) as:

L(α) = −‖α− α‖2/2σ2
αwgg (7)

whereg is the normalized gradient of current pixel,wg is
the weight of the influence of gradient on the alpha’s distri-
bution. In our experiments, we setwg around0.5 ∼ 2, and
get satisfying results.

3.2. Optimization

Here, we propose an efficient optimization scheme based on
Variable Metric Method (VMM) [12] and a simple and fast
color clustering algorithm.

In formula (2), the optimization is inF ,B, andα. In [2],
the authors optimized the problem in a two-step scheme.
For grayscale image matting with the definitions of like-
lihoods in this paper, we find the two-step optimization
scheme doesn’t work efficiently. Alternatively, we employ
a Variable Metric Method to optimizeF , B, andα simul-
taneously. Furthermore, we also include the constraints:
0 ≤ F ≤ 255, 0 ≤ B ≤ 255, and0 ≤ α ≤ 1.

In most of the color image matting algorithms [1, 2,
11], the authors employed previous powerful color quan-
tization methods to settle the problem when there are mul-
tiple distinct sets of color in the neighborhood. These color
quantization algorithms are necessary for color image mat-
ting with complex background or foreground color distri-
bution. For grayscale images, the direct simplification of
these color quantization algorithms can achieve very good
clustering results. However, in experiments, we found these
techniques are not necessary respect to the tradeoff between
computational cost and performance improvement. We pro-
pose a very simple clustering algorithm for grayscale image
matting. Given a set of colorsS, the objective of clustering
is to separate them ton subsets. In our clustering algo-
rithm, we first find the largest and the smallest brightness,
Imin andImax in S. Then we cluster each colorI in this
way: Index(I) = b(I − Imin − ε)n/(Imax − Imin)c. ε is
a small positive number to avoidIndex(I) = n. This algo-
rithm is very fast and independent of the number of subsets.
In experiments, we don’t find visual improvement after us-
ing very efficient color quantization algorithm [7].

4. COLORIZATION AND COMPOSITION

In this section, we combine grayscale image matting algo-
rithm with color transferring techniques to enable region-
based colorization. Before colorization process, objects that
will be colorized with different color mood are extracted
from the grayscale image. Then, each object is colorized
using color transferring. Finally, these colorized objects are
seamlessly composited to reach the ultimate colorization re-
sult.

Our basic color transferring algorithm is based on the
method of Welsh et al. [3]. There are two methods de-
scribed in [3]. One is global colorization which is apt to the
cases where the source image and target image have glob-
ally similar texture or luminance distributions. When the
user wants to colorize the specific regions of the grayscale
image with specific color moods in color images, a multi-
swatch color transferring method is proposed.

We follow the multi-swatch method and extend it to a
more general and accurate method. Here, we assume each
extracted object has a uniform color mood. For example, the
skin on human face has a uniform color mood while the lip
has another uniform color mood. For each extracted objects,
we first find color images with aimed color mood. Then
we select a pair of swatches from the source image (color
image) and the target image (grayscale image). In order
to account for global differences in luminance between the
two swatches, we perform luminance remapping [6] to lin-
early shift and scale the luminance histogram of the source
swatch to the target swatch. Since the color transferring of
a pair of swatches is very fast, user can interactively select
an adequate pair of swatches. After getting the right pair of
swatches, the rest region of the object is colorized by trans-
ferring colors from the colorized swatch. This divide-and-
conquer method is more efficient than multi-swatch scheme
in [3], because it is not necessary to decide transferring col-
ors from which swatch and the object is only colorized in
masked region.

Object-based colorization simplifies the colorization
process when the image has no distinct texture or luminance
distribution. However, it poses great difficulty for compo-
sition. Using traditional segmentation or masking tools to
extract objects from image will cause serious ghost effect
along boundaries.

In our solution, the objects are efficiently extracted from
the background grayscale image. In our experiments, we
find the colorized objects can seamlessly composited using
standard alpha blending. Even for vision sensitive objects,
such as lip and skin, we also get seamless results.
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Fig. 3. Colorizing a flower. The input grayscale image is first separated into flower object and leaves object. The objects
are colorized by transferring colors from example color images. Then the colorized objects are composited to reach the
colorization result. Grayscale image courtesyc©S. Ballard - California Academy of Science
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Fig. 4. Colorizing a human face. The input grayscale image is first separated into seven objects. Four objects are colorized
by transferring colors from example color images, while three objects keep grayscale. Then the colorized and uncolorized
objects are composited to reach the colorization result. Grayscale image courtesyc©http://www.imagegarden.net

5. EXPERIMENTS AND RESULTS

In this section, we describe how to extract, colorize and
composite objects from grayscale image to get the seam-
less color image. Results for two difficult cases are demon-
strated, a flower and a human face.

5.1. Colorizing a flower

This flower image (Fig. 3) is difficult in two points. First,
the leaves and the flower have regions with very similar lu-
minance distributions. This similarity will cause the col-
orization method in [3] failed, even using multi-swatch
method. Second, the boundaries between the flower and
leaves are very delicate. Typically, the flower and the leaves
will be colorized with distinct colors which are in strong

contrast each other. Human vision is very sensitive to slight
inadequate colorization in such area. Any clean-cut seg-
mentation or insufficient matting algorithm will cause visual
defect.

In our solution, we first extract the flower and leaves as
two distinct objects. Then we transfer colors from a petal
of a peony to the flower. The colors of the leaves are trans-
ferred from a color leaf. The results demonstrate that our
solution can solve the difficulties effectively.

5.2. Colorizing a human face

Human vision is very sensitive to any small defects on syn-
thetic human face, which poses great challenge for facial
image editing. The most difficult problem in facial coloriza-
tion is how to smoothly colorize the skin and how to keep



the seamless connections among hair, skin, lip, eye, eye-
brow, and background.

In our experiment (Fig. 4), the facial image is first sep-
arated into seven objects: background, hair (including eye-
brow), skin (face and body skin), lip, eye white, eyelash
(including pupil and eye black), and shoulder strip. Then
we colorize the skin and lip by transferring colors from an-
other color facial image. The background and the shoulder
strip are only assigned constant chromatic values. The hair,
eye white, eyelash are not colorized. The results demon-
strate the objects in this facial images are well separated
and seamlessly composited. The delicate details near the
object boundaries are kept. The whole colorization result
is more lively than the grayscale image. It is natural to as-
sume, there are many other possibilities to colorize the girl
in realistic or artistically unrealistic way.

6. CONCLUSION AND FUTURE WORK

The problem solved in this paper is how to extract objects
from grayscale image, colorize the objects and composite
them seamlessly, especially for difficult cases, such as hu-
man face and natural images with confusing luminance dis-
tribution or delicate boundaries. There is still no efficient
technique to solve this problem. We deal with this problem
in a three-step, divide-and-conquer way. First, we present
an efficient grayscale image matting algorithm in Bayesian
framework. The major novelty and improvement over pre-
vious algorithms are the introduction of alpha’s distribution,
where the image gradient is used to weight the standard de-
viation. Then we transfer colors from example color images
to the extracted grayscale objects. Finally, the colorized ob-
jects are composited back to reach the ultimate colorization
of the grayscale input image. The results demonstrate this
solution can handle difficult cases effectively.

There are still a number of avenues for future work. Cur-
rently, we just use multi-sized brushes to mask the trimap in
matting process. We plan to incorporate object selection
tools [10] into our algorithm to facilitate the user interac-
tion. Another possible extension is to colorize facial video
clips. In [8], Chuang et al. extended the Bayesian color
image matting technique [2] to video matting by combining
with robust optical flow technique. Finally, we would like
to find new applications for our grayscale image matting al-
gorithm.
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