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Abstract

This paper describes a probabilistic method for verifying the equiv-
alence of two multiple-valued functions. Each function is hashed to an
integer code by transforming it to a integer-valued polynomial and eval-
uating it for values of variables taken independently and uniformly at
random from a finite field. Since the polynomial is unique for a given
function, if two hash codes are different, then the functions are not
equivalent. However, if two hash codes are the same, the functions may
or may not be equivalent, because different polynomials may happen to
hash to the same code. Thus, the method presented in this paper deter-
mines the equivalence of two functions with a known (small) probability
of error, arising from collisions between inequivalent functions. Such a
method seems to be an attractive alternative for verifying functions
that are too large to be handled by deterministic equivalence checking
methods.

Index terms: Multiple-valued function, equivalence checking, probabilistic

verification

*A preliminary version of this paper has appeared in [1].



1 Introduction

Many problems in digital design, especially on high and system levels of ab-
straction, can be formulated as a sequence of operations on functions of sym-
bolic variables, taking their values from a finite set of values. Symbolic vari-
ables are often more naturally associated with the problem specification than
the variables obtained by a binary encoding. For example, a traflic light con-
troller is best described by "green”, ”yellow” and "red” values of a symbolic
variable rather than an obscure encoding ”00”, ”01” and ”10”. A description
using symbolic variables is usually simpler and more compact. It is also eas-
ier to understand and analyze and therefore less prone to errors compared to
the one obtained by binary encoding. In addition, symbolic variables better
preserve the inherent structure of the specification. This is beneficial, for ex-
ample, when Decision Diagrams are used as a data structure [2], [3], since the
analysis of this structure might help selecting a good ordering for the symbolic
variables, minimizing the total size of the diagram.

The problem formulation involving symbolic variables can be modeled us-
ing multiple-valued functions of type f : M™ — M on a fixed set M g
{0,1,...,m — 1} [4]. Each of the n variables z1,%2,...,7, of f takes its
value from M. However, the variables do not have to depend on all the values
of M, i.e. their range may vary.

Apart from modeling the problems on higher levels of abstraction, multiple-
valued functions are used in logic design of electronic circuits, which employ
more than two discrete levels of signals. In the last few years years, advances in
integrated circuit technology made feasible fabrication of several commercial
multiple-valued logic products, including 256-Mbit 4-valued flash memory [5]
and 4-Gbit 4-valued DRAM [6]. Multiple-valued logic circuits offer several



potential opportunities for the improvement of present VLSI circuit designs.
For example, serious difficulties with limitations on the number of connections
of an integrated circuit with the external world (pin-out problem) as well as on
the number of connections inside the circuit encountered in some VLSI circuit
synthesis could be substantially reduced if signals in the circuit are allowed
to assume four or more states rather than only two. In addition, there is a
clear mathematical attraction of using multiple-valued number representation
in many applications. For example, residue [7], [8] and redundant number
systems [9], [10] allow to reduce or eliminate the ripple-through carries which
are involved in normal binary addition or subtraction, resulting in high-speed
arithmetic operations.

In spite of these potential advantages, practicality of multiple-valued logic
design heavily depends on the availability of efficient computer-aided tools for
representation, manipulation and verification of multiple-valued logic func-
tions. Some existing tools, such as Berkeley’s tool for verification and synthe-
sis VIS [11], provide a solution for the special case of multiple-valued input
binary-valued output functions of type M™ — {0, 1}, but the general problem
is still open.

This paper focuses on the problem of equivalence checking of multiple-
valued functions. Up to now, very little research is done in this area. Some
techniques for verification of Boolean circuits, such as random simulation or
symbolic simulation, can be directly applied to verification of multiple-valued
logic case [12], [13]. Similarly, verification procedures employing Reduced Or-
dered Binary Decision Diagrams (ROBDDs) [2] can be adapted to Multiple-
valued Decision Diagrams (MDD) [3] as shown in [14]. However, the MDD
verification methods representing functions as single, monolithic graph can not

guarantee to be feasible for all functions. As in the case for Boolean functions,



deterministically testing the equivalence of multiple-valued functions might
cause an exponential growth in size for the used data structures, because
the representation has to be unique. Otherwise, if we are employing a more
compact representation, the worst case time complexity of the deterministic
verification algorithms becomes exponential.

In this paper we present a probabilistic method for checking equivalence of
two multiple-valued logic functions, which generalizes the method developed
in [15] for the Boolean case. We define a functional transformation A which
converts a multiple-valued function f : M™ — M into a polynomial of type
Anlf] : Z; — Z, over a finite field of integers Z, modulo p, for some prime
p. This polynomial is used to generate a hash code for f, by evaluating the
value of A,[f](z1,...,2,) for the assignment of variables z;, © € {1,...,n},
taken independently and uniformly at random from Z,. Since a polynomial is
unique for a given function, if two hash codes are different, then the functions
are certainly not equivalent. On the other hand, if two hash codes are the same,
the functions may or may not be equivalent, because two different polynomials
may happen to hash to the same code. Thus, the method we are going to
present guarantees verification of the equivalence of two functions with a known
probability of error, arising from collisions between inequivalent functions.

The paper is organized as follows. In Section 1, the A-transform is defined
and its properties are studied. Section 2 shows how to compute the integer-
valued polynomial given by the A-transform. Section 3 defines the notion of
hash code for a function. In Section 4, we give a conclusion and describe the

topics for further research.



2 Definition and properties of the A-transform

In this section we generalize the functional transformation introduced in [15]
for Boolean functions to the multiple-valued case. Unless specified otherwise,
all the operations are over Z,, i.e. ” -” is the mod p multiplication and ” +”
is the mod p addition, with p being a prime.

To define the transformation A, we first associate a key polynomial with
each of the m” input assignments of a multiple-valued function f(zy,...,zn).
We then sum up the key polynomials of assignments producing the non-
zero output value of f, and interpret the result as a integer-valued function
Aplfl(m1, ..., zn) over Z,,.

The key polynomial for a given row of the truth table is a product of
terms, where each term is associated with a particular input variable z;, ¢ €
{1,...,n}. If b; represents the value of z; in a given row of the truth table, then

the corresponding term w(b;, z;) in the key polynomial is defined as follows.

Definition 1 For any m > 1, w: Z, x Z, = Z, is defined by

ml( ! f=b 1 j—x)
im0 \seripd — 1 jehiqnd 7
It is easy to see that [] %zlforb:iand II EzOforb;éi.
jeM—{i} jeM—{i}
Therefore, parameter b acts as a selector between the terms H 7— for
' ]EM—{z .
different values of i € M, i.e. w(0,z) = [] =2 w(l,z) = 1I =
jeM—{o0} _ jeM—{1}
and so on. On the other hand, each of the terms H Jﬁ, represents a
jE€M—{3}
polynomial which evaluates to 1 for z = 7 and evaluates to 0 for z € M — {3}.

So, such a polynomial has a behavior similar to the behavior of the literal

operator :%:, which is defined by

Ji; o | m—1 ifzx=1
10 otherwise,
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except that for z = ¢ the literal z evaluates to m — 1, and not to 1.
Since the definition of w(b, z) involves division operation, we have to prove

that the resulting value of w(b, ) is always an integer from Z,. As shown

above, the term H " - is always either O or 1, depending on b. It remains
jem—(ip) "

to show that H o € Z,. This is proved in the following Lemma.

jeM—ayJ

-

Lemma 1 For any i € M and any z € Z,, H J €z,

jeriqyd 1

Proof: For any fixed : € M and any z € Z,, H J, — a: has the following
jem—ipd
structure:

(O—I)-(l—x)-...-((i—l)—x).(('L'—l-l)—:::)-...-((m—l)—a;)
0=3) - 1—9) . (-1 —1) (1) —d)- (m—1)—1)

Note, that no term in the divisors can be 0 since we fixed 7 and j # 4. If any of
the terms on the dividends is 0, the Lemma, trivially holds, so we will consider
the case when none of the terms on the dividends is 0.

By multiplying all the terms of the first fraction by -1 and reversing their

order, we get:

(:c—(i—l))-...-(ac—l)-a:.((i+1)—x)-...-((m—1)—x)
1.2 (-1)-i 1.2 ((m—1)—i)

It is easy to see that

(@—(-1) .. (z—1)-z

1-2-...-(i—1)-1 :(E)

(i+1)—z)...-(m—1) — =) _ ( (m—l)—x)
1:2-...-((m—1)—1) (m—1)—1

which are in known be integers, as long as z,%,(m — 1) —z and (m — 1) — i

and

are integers. Since i € M and z € Z,, z,i,(m — 1) — 2 and (m — 1) — i are



always integers and therefore H ], — m €z, a
jem—Aipd T °
The key polynomial W, for an assignment (by,...,b,) € M™ of n variables

is defined as the product of the w(b;, z;) terms, i € {1,...,n}.

Definition 2 For any n > 0 and m > 1, the key polynomial W, : Zf,” — Z,
18 defined by

n

Wn(bl, .. .,bn,Il, Ce ,.'L‘n) = Hw(bi,mi).

=1

For example, for m = 3:
1
WQ(O, 1, .’131,272) = 5(1 — 2?1)(2 — .'131)232(2 — xz).

Similarly:
W1, 2, 31, 22) = 71(2 — xl)(—%xz)(l _ ).

Now, we define the transformation A as a sum of key polynomials W,
for all assignments (b1, ...,b,) € M™", each multiplied by the value of f for
the corresponding assignment. We give a definition, applicable for discrete
functions Z — Z, over the field Z,. Note that, since M C Z,, the multiple-
valued functions M™ — M are a subset of the discrete functions Z; — Z,.
While a discrete function over Z, is defined for inputs z; ¢ M as well, the
values that the function produces for such assignments do not participate in
the definition. To distinguish between multiple-valued functions and discrete
functions over Z,, throughout the paper we use the unsubscribed letters f, g
for multiple-valued functions of type M™ — M and the subscribed letters f, g,

for discrete functions of type Z; — Z,.

Definition 3 Given a function of type f, : Z; — Z, and m > 1, the polyno-
mial Ap[f.] : Z; — Z,, is defined by
Am[fz](xla---;xn): Z fz(bla--abn)'Wn(blﬁ"abnawla"',mn)

(bl,..,bn)GM"



For example, for m = 3 and n = 2, the polynomial As[f,](z1,z2) is given by

As[f)(z1, 72)

(1—21)(2—z1)(1 — 22)(2 — x2) +
(1 —21)(2 = 21)z2(2 — x2) +
(1- $1)§2 — 1) (=22)(1 — 72) +
)

83 B 0 =

1(2—.’1,‘1 (1—1)2)(2—1'2) +
71(2 — 21)72(2 — 25) +
'371(2—371)( 2)(1—z2) +
s(=z) (L= 21)(1 - 22) (2 — 22) +
%( 71)(1 — 21)22(2 — 22) +

)2
(=z1)(1 — 21)(=22)(1 — 2).
) =

e i |
wwwr—-l—w—tooo
N O NEFHEONHO

For instance, for the 3-valued function f(zi, 2. MIN(zq,z,), the corre-

sponding polynomial is

As[fl(z1,22) = 21(2 — 21)72(2 — 32) + 21(2 — 1) (~22) (1 — 2) + (—21)(1 -

£1)T2(2 — 22) + 2(—21) (1 — 21) (=22) (1 — 22) = 3120 — 2127 — 222y + 2}l

Lemma 2 summarizes some properties of the polynomial A,,[f], obvious

from Definition 3.

Lemma 2 For any functions f, and g, over Z, and any constant c € Z,, the
following two properties hold:

(a) Anlc- f:] = ¢+ An[fa].

(b) Amlfs + g:] = An[fz] + Amlg:].

Next, we show that even though applying the A-transform to a multiple-
valued function f increases the domain of the function from M™ to Z7, the
value of the polynomial A,,[f] equals to the value of f for any assignment
(by,...,b,) € M™ To identify the functions treated identically by the A-

transform we first introduce the notion of m-equivalence.



Definition 4 The functions f, and g, of type Z; — Z, are m-equivalent if
and only if f,(b1,...,bs) = g.(by,...,by) for any assignment (by,...,b,) €
M.

We write f, Z g, to denote that f, and g, are m-equivalent. If both f and
g are multiple-valued functions of type M™ — M then f 2 g is the same as
f=g

By Definition 3, f, £ g, implies A,,[f,] = An[f.]. However, can we con-
clude A,,[f.] # Awl[f.] from f, ;né g,? To answer this question let us examine
the behavior of polynomial A,,[f], when it is evaluated for some assignment
(by,...,by) € M™. Tt is easy to see that for any b, € M, w(b, V') =1if b=V,
and w(b,b’) = 0, otherwise. Therefore, for any (b1, ...,bs), (b,...,8,) € M",
Wby, ... bp,by,..., b)) =1ifb; =08 for alli € {1,...,n}, and W(by,...,b,,
bi,...,bl) =0, otherwise. Using these facts, we can prove the following theo-

rem:
Theorem 1 For any function f, : Z) — Z,, An|f.] = f..

Proof: By Definition 3, for any (b},...,b.) € M™ we have:

Anlf ), 0 = Y. falbr, .o ba) - Walby, ., ba, bY, . B)

(b1 sbr)EM™
Since W (by,..., by, b, ...,b.) =1 only if b; = b} for all s € {1,...,n}, and 0
otherwise, this gives us A,,[f,](b},...,b,) = f(b4,...,8,) - 1. Since it holds
for any (b},...,b") € M™, we get An[f.] £ fa. O
The theorem shows that the the value of A,,[f] is the same as the value of f
for any assignment (by,...,b,) € M™. Therefore, the polynomials for two dif-
ferent multiple-valued functions f and g differ on all assignments (by, ..., b,) €

M™ for which f(by,...,b,) # ¢(b1,...,b,). Consequently, f # ¢ implies
Am[f] # An[g].



3 A method for deriving A-transform

Computing A-transforms using Definition 3 is feasible only for very small
functions. For larger functions, we present an alternative method, which is
described in this section.
Let f,=; denote a subfunction of the function f(z,...,z,) with the vari-
able z; being fixed to the value j, i.e. fz=; 4 F(@1y -y i1, Jy Tit1y - - - > Tn)-
The following Theorem presents a decomposition of Ay,[f] which expresses
the polynomial of a function f(zi,...,z,) in terms of the polynomials of the

subfunctions fz,—j, ¢ € {1,...,n}, j € M.
Theorem 2 Every polynomial Ap[f], m > 1, can be decomposed with respect
to a variable z; of f, 1 € {1,...,n}, in the following way

k—a:i
k-3

Am[f] = mz_:l ( H ) : Am[f:c,:j]-

j=0 \keM—{j}
Proof: In order to simplify the exposition and without loss of generality, we

show the proof for the case of z; = z;. We use X as an abbreviation for

T1y.--,Znp.

10



Anlf] = 5 flbireeerbn) - Walbr, ..., bn, X)

(b1..,bn)EM™
{Definition 3}

m—1
= Z Z f(jab%";bn)'Wn(jin""abn)X)

5=0 (b2,...ba)E M1
{re-grouping}

m—1
=Y X fGbeba) T A=

F=0 (bg,...,bp)EM™—1 keM—{5}
: Wn—l(b2> RN bm T2y axn)

; — k—zx e
{w(G,z1) = ]I T, Definition 2}

ke M—{j}
-5 I ) Antiacd
3=0 \keM—{5}
{Definition 3} O
Next, we prove a lemma showing how the term H , j € M, can be

kEM%J}
expressed by an m-equivalent polynomial in linear form.

Lemma 3 For any variable x from Z,, any fited j € M and m > 2, the

following m-equivalence holds:
¢ m—1 )
> apzt, fj=0
i=0 _
I E=2 w0300 +ajona™,if j € M~{0}
ker—(n" and j #m—j

| aj;27, if j € M—{0} and j = m—j,

where Vi, € M, a;; = &j-, with D and D;; given by
i = D J
m—1 m—1
— H ,1;1: _ H i(m_i),
=1 =1

11



(m—1 - om—1 .
H kkEBmz _ H k(m—k)ﬂ)nn’ ij =0
k=1 k=1
m—1
# I[# fi#0andj=1andj#m—i
k=1
m—1
Dij = < _(mii)i ’ kl:IIkm_k’ if j 7é 0 and j =m—:1
and j #1
m~—1 m—1
& (Hkk— Hkm_k>, if 7 #0 and j=1i
| 0, otherwise,

(1)
where ” @,, " denotes addition modulo m and all other operations are reqular

arithmetic operations in Z,.

Proof: We compute the coefficients a;;, ¢,j € M, by solving the following
system of m linear equations with m unknown elements:
ag; - 0%+ agj - 01 4+ agj - 02 + ... + agm_1); - 0™ 1= by
agj 19+ a1+ ag; - 12+ ...+ apu_nyj - 1™ 1 =by
agj - (m—1)°+ay;- (m—1) +ag - (m—1)*+...
oot Qo) (M= 1) = by,

where Vi € M, b; = H ,’:—:; Such a system can be described by matrices as

ke M—{j}
X -a =Db, where
0° 0! 02 om—1
10 11 12 1m—1

X = ,
(m=1° (m=1)! (m=1)?2 ... (m—1)™"
a()j h{]
h[

o
I

©e

L&
o
I

Q(m-1)5 b1

From linear algebra we know that such a system always has a solution, and this

solution is unique [16]. We compute the ith element of a by applying Kramer’s

12



rule, which says that, for any 1 € M, a;; is given by the formula a;; = %i,

where D is the determinant of X, and Dj; is the determinant computed after
the replacement of the ith column of X by vector b.
Observe that matrix X has a very regular structure, namely for allz,j € M,
z;; = /. Therefore, by applying standard rules for computing determinants
[16], it is easy to show that D and D;; are given by the equation (1).
Examining the structure of D,;, we can derive the following properties of
the elements of a;;:

%i Vi,7: such that j=0ori=jorte=m—
G5 = . (2)
0  otherwise.
So, the only elements a;; which can possibly have non-zero values are a;o for
all i € M, and aj; and a;(m—j) for all j € M — {0}. Therefore, the expression,

m-equivalent to the term H ’fc—:—]“?, can be simplified to:

ke M—{j}
¢ m—1 )
Zaiox’, ifj=0
=0 ;
[ 7% = )ajol+ ajemga™, if j € M—{0}
kem—(yF —J and j # m—j
‘ajj:vj, if j € M—{0} and j = m—j.

O

As we mentioned above, H ’;2%? has a behavior similar to the behavior
_ ke M—{j} .
of the literal operator a]v, except that for x = j the literal 7 evaluates to m — 1,

and not to 1. Therefore, Z 2 (m —1)- [] +=2, and thus, from Lemma 3,

ke M—{j}
we can conclude that
4 m—1
(m—1)- > agat, if j=0
. i:O - .
Zm ) (m=1)-(aj;2) + ajmyz™?), if j € M—{0}
and j £ m —j
(m—l)-ajjxj, ifjeM—{0}and j=m—7j

13



We use Theorem 2 and Lemma 3 to derive another type of decomposition

of Anm[f], which will be used later to derive a canonical expansion for A,[f].

Theorem 3 Every polynomial A,[f], m > 1, can be decomposed with respect
to a variable  of f in the following way:

case 1: if m is odd, then

m—1

Amlf] = a0 Am[fz=0] + Z ((ajoAm[fz=0]+
j=1

+05iAm| fomi] + @iom- Am| fo=m-3]) - )

case 2: if m is even, then

m—1
Amlf] = a0 Am[fe=0] + Z ((ajoAm[fa=o] +
i

+ 0 Am[fo=s] + Gjm—i) Aml fa=m—j]) - T+
+ (a'%OAm[f:c:O] + a%%Am[fz:m/Q]) : xm/2)

where Vi,j € M, a;; = D4 and D and D;; given by (1).
Proof:

m—1
Am[f] = Z ( H %) : Am[fa:iZk] {Theorem 2}
71n=_01 keM—{5} -

= Zaiomi - A fa=o] +
=0
A fz=;] ’ {Lemma 3}

m—1
j=1
+ aj(m—j)Am[f r=m—jl) * z’ {reordering}

(05527 + @j(m—5z™7)-
=1

d

Let F be the vector of coefficients of the truth table of the function f and

A™ be a transformation matrix defined as follows.

14



Definition 5 The m™ x m™ matriz A™ is defined inductively by:

1. A0 L
aopo 0 0 0 i
aio aii 0 a1(m—1)
a9 0 ao9 0
a(m_2)0 0 a(m_2)2 0
| Am-1)0  O(m—1)1 0 e Q(m—1)(m—1) ]

where Vi, j € M, the coefficients a;; are given by (2).
2. 40 L Al A,

where ” @ ” denotes the Kronecker product of two matrices [16].

Clearly, if Theorem 3 is successively applied to the polynomials Ay |fz,=k]
of subfunctions fz,—x about all the remaining variables, we will finally get an
expression in which A,,[f] is expanded in all the variables of f, allowing us to

derive the coefficients of An[f].

Theorem 4 Every polynomial Ap[f], m > 2, of an n-variable m-valued func-

tion f can be expressed in the following canonical form
mt—1 ) ] )
J— 11 12 2
Am[f] —_ E CJ ‘ .Tl * .'172 *ene " .’I?,nn,
=0

where (iiz . ..1,) 18 the m-ary ezpansion of i, with i; being the least signifi-
cant digit, and the coefficients c; are given by the vector C g [cocy - - - Cmn—1]

computed as C = A™ - F'.

Proof: By induction on n. We show the proof only for the case of m being

odd. For m being even the proof is similar.

1) Let n = 1. According to Theorem 3, any polynomial A [f] of a function

15



f(z) of one variable z can be decomposed with respect to z as:

Am[f] = Qoo ° m[f:z: 0] + Z ajo * m[f:c—O] +
j=
+ ajj * Am[fo=j] + ajm—j) - A[fz—m—J])
where fy—x = f(k). By Lemma 2, A.,[c] = ¢ for any constant c € Z,. So, we

can express the above as:
m—1
m[f] - aOO f + E ajo - f(O +a_7_1 f(]) + Aj(m—j) ° f(m .7))
j=1

which can be rewritten as
m—1 )
Anlf] = D
i=0

where ¢y = ago - f(0) and ¢j = ajo - f(0) + ajj - f(j) + ajm—yj) - f(m — 7), for
all j € M — {0}. Examining the structure of the matrix A', we can conclude

that C = Al - F

2) Hypothesis: Assume the result for n. According to Theorem 3, any Ap[f]
of a function f of n + 1 variables can be decomposed with respect to z,4; in

the following way:

m—1

An[f] = aooAm[ foni=0] + Zl (ajoAm|fz=0] +

+ 655 Am[fo=j] + aj(m—j)j‘lm[fmm—j])  Thys
By the induction hypothesis, we can express each A,, of the subfunctions of
n variables in the canonical form. We use the notation cf to denote the ith
coefficient of the canonical form of the subfunction f;,,,—x and Fj for the truth

table vector of f;,,—. To simplify the exposition, we also use the abbreviation

X to stand for the term %' - z% - ... - zi». So, we replace each of An[fs,, =k,

16



m—1
k€ M, by Y cf- X, with ¢ given by Cp = A" - F;.. Then we get:
=0
mt—1

m"—1 m—1
An[fl=a00- >, & - X+ (ajo- S X+
=0 j=1

i=0
i m"—1 . y
m—j 7
+aji - D¢ X+ ajim—g)© D G 'X) " Tl
i=0 i=0
Since ” - ” is distributive over ” +”, we can re-order the above as
mt—1 m—1 /m™—1
— 0 0 .
Am[f] - < Z Qoo * C; X) .xn+1+ Z ( Z(G’JO
i=0 j=1 \ i=0
0 j m—j J
- ¢ +ajjc + ajm-pe; ) 'X) " Tntls
which can be re-written as

mt—1

Anlfl= 3 cj-ap -2 ... 2,
=0
where ¢; = ago - ¢?, for 0 <i <m —1, and ¢; = ajo - €§ + a5 - d+ aj(m_j)c;"—j,
forj-m<i<j-m+m-—1,forall j € M—{0}. Since the coefficients c) are
given by C; = A™ - F}, this is equivalent to C = (A' ® A") - F = A™*' . F.
O

For example, for m = 3 and n = 2, the matrix A? is constructed as follows:

1 0 0
Al = 3 9 1
IR |
2 2
and A? =
1 0 0 0 0 0 0 0 O]
-3 2-1 0 0 0 0 0 O
il -1 L 0 0o 0 0 0 O
-3 0 0 2 0 0 -3 0 O
$ 3 3 -3 4 -1 % -1 ;
1
i R I
10 0-1 0 0 4 0 O
4 1 231
1 1 11 1 -1 L _1 1
4 2 4 2 2 4 2 44



So, we can compute As[f] for f = MIN(zy,z,) with F=[00001101 2],
asC=A?"F=[00002 —10 —1 1], giving As[f](21,22) = 2122 — 7127 —

2 1,.2,.2
Ty -+ 5T1T5.

4 Hash code computation

We compute the hash code of the function f by assigning randomly chosen
integer values from Z, to the input variables of f, and then evaluating Ay[f]
for this values. The resulting number is the integer hash code of f. This
code requires less space than the canonical MDD representation of the same
function and distinguishes any pair of multiple-valued functions with a quan-
tifiable probability of success. The hash codes for two equivalent functions are
always the same. Thus, the equivalence of two functions can be verified with
a known probability of error, which arises from collisions between inequivalent
functions. According to Schwartz-Zippel Theorem [17, p. 165], if the assign-
ments of values of variables z1, ..., z, are taken independently and uniformly
at random from a field F of size |F|, then the hash codes for two equivalent
functions can be distinguished with the probability at least IRTI In our case
F =12Z, and |F| = p, so we get 5 We are able to conclude this error bound

in the following way:

Theorem 5 Let f and g be the functions of type M™ — M, such that An[f] #
Anlgl, and let (ay,...,a,) be an assignment of values of variables Z1y. .-, &n)
whose elements are taken independently and uniformly at random from Z,.
Then

Prob(Anlfl(@s, .-, an) # Anlgl(ar, ..., an)) (%)

Proof: It follows from Lemma 2 that, for any (a1, ..., as) € Zy, An[f](a1,...,a,) #
Amlgl(ay, ..., ay) holds if and only if A,[f —g](a1,...,an) # 0. To show, how
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many n-tuples (ay,...,a,) € Z, really do fulfill this property, we require the

following lemma:

Lemma 4 For any function f, : Z, — Z,, such that f, # 0, and for any set

S CZ,, s=|S|, there are at least (s —1)™ assignments (a1, ...,an) € S™ such

that An|f:)(a1, ..., an) # 0.

Proof. For determining the number of assignments (a1,...,a,) € S™ that
fulfill the required property, we can make use of a binary encoding of the
function f,. For encoding a finite set Z, with |Z,| = p elements, we are using
[log p] bits. Thus, f, can be encoded as f,:{0, 1}Mlegrln {0 1}Moer] This
means that f, can be encoded in [logp] binary functions f; : {0,1}" — {0, 1},
1 < i < [logp], and for each of these functions f,; it can be shown that the
required property holds. According to [15], the binary A-transform As[f;] for
f» can be written as:
Aolfu] = (1—z5)- A2[fzi1j=g] + z; 'AZ[fzixj=1]
- Aol — foiny o) + Aol )
If feio,oo = friz,—o, then Ao faig,m — fziz]:o] = 0. By applying induc-
tion on n, it is easy to show that there are at least (s — 1)»~! assignments
(@1,-.-,Gj_1,0j41,--.,an) € S*7!, such that AZ[fzinzo] # 0. Since z; can be

chosen arbitrarily, we have s(s—1)"~! > (s—1)" possible assignments resulting

in As[f.] # 0.

Otherwise, there are at least (s—1)"! assignments (a1, ..., @j—1,@j41,--,0n) €
Sn~1 such that AQ[,)‘““-,}_:l - f!-J_J___O] # 0. Since z; can be chosen arbitrarily,
with z; # —bwlfilrj;”]ﬁ_”], we have (s — 1)(s — 1) ! = (s — 1)" possible
assignments which compute Ay[f,:] # 0. a

Thus, we can conclude that there are at least (p — 1)" out of p™ possible

assignments such that A,[f — g](a1,...,a,) # 0 and the claimed probability
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bound can be achieved. O

Note that the error is therefore bound by € = 1 — (1 — %)" ~1—e P
and if p > n, then 1 — e P = %. Thus, the error probability can be reduced
by either choosing a larger field Z,, or by independently performing several
experiments.

For an example, consider the 3-valued 2-variable function f = MIN(z,,z)
and let the variables be assigned the random values z; = 2, zo = 4. Since
Alf] = 32135 — 1157 — ziwy + J237], the hash code for f is 4.

As another example, consider the function ¢ = MAX(MIN (2,%1,%2),
MIN(1,#,2,)). Since As[g] = —2z, + 27,25 — 17122 + 237 — 2z2xy + Latad,
if we assign z; = 2 and 7, = 4 we obtain the same hash code 4 as for MIN
function and therefore get collision between two inequivalent functions.

However, we can substantially decrease the probability of collision by mak-
ing multiple runs. On each run, an independent set of input variable assign-
ment is randomly chosen, and the two function values are computed. If the
values differ, we are assured that the two functions are not the same. If they
are equal, we choose a new set of input assignments and reevaluate. The
probability of incorrectly deciding that the functions are equal decrease expo-
nentially with the number of runs: if the error probability of a single run is ¢,
then after k runs the error probability is €* [18]. For example, if we make a
second run for the functions specified above, with the random values z; = 3

and z, = 1, then the hash code for MIN function is 0 and hash code for ¢

function is 3. So, we can conclude that f # g.
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5 Conclusion

This paper develops supporting theory for a probabilistic method for equiva-
lence checking of two multiple-valued functions. We define a functional trans-
formation and use it to obtain hash codes from multiple-valued functions.
Comparing hash codes allow us to verify the equivalence of two functions with
a known probability of error.

We are currently developing an algorithm for efficient computing of hash
codes. A straightforward way to compute a hash code is to build an MDD
(or similar structure) from the input function and then to apply a procedure
for reducing it to an appropriate integer. However, the efliciency of such a
scheme is limited by the need to create and evaluate an MDD representation
of the entire function. A better approach, which we are pursuing, is first to
symbolically decompose the function, and then hash it incrementally. This
can be done by hashing some of the function’s parts, and then using them to
complete the hashing of the entire function.

Another method for probabilistic equivalence checking, based on Haar
transform, has been recently presented in [19]. It would be interesting to
explore how selecting a different transformation type influences the time re-

quired to compute hash codes and accuracy of the result.
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