
In Proceedings of the IADIS International Conference of Applied Computing 2005 (IADIS AC2005), 22-25
February 2005, Lisbon, Portugal, Vol. II, pp. 306-311.

A SIMPLE APPLICATION OF DESCRIPTION LOGICS FOR
A SEMANTIC SEARCH ENGINE

Serge Linckels
Hasso-Plattner-Institut für Softwaresystemtechnik, University of Potsdam

Postfach 900460, D-14440 Potsdam
linckels@hpi.uni-potsdam.de

Christoph Meinel

Hasso-Plattner-Institut für Softwaresystemtechnik, University of Potsdam
Postfach 900460, D-14440 Potsdam

meinel@hpi.uni-potsdam.de

ABSTRACT

In this paper we present a simple application of Description Logics in order to improve the semantic search
engine of a multimedia e-Learning tool. CHESt (Computer History Expert System) allows students to enter a
freely formulated question about computer history. The system returns a very short commented list of
multimedia clips in which the user finds the answer to his question. Finding the semantically pertinent clip(s)
is the challenge. In this paper we illustrate how the semantic reasoning process can be improved by using
Description Logics as a formal representation language for specifying documents and queries.

KEYWORDS

Description Logics, semantics, inference, search engine, e-Learning.

1. INTRODUCTION

We presented in [12] our new e-Learning tool CHESt (Computer History Expert System) that understands
students' questions. Details about the pedagogical background of this e-Learning tool can be found in [11].
The tool disposes of a knowledge base with 300 multimedia clips that cover the main events in computer
history. The user enters a question by means of natural language (NL) and the system returns a list of
appropriated clips as an answer. Because the multimedia clips are recorded and stored as RealMedia files,
their content is not available as text. However, to allow the search engine to understand the meaning of the
documents, it is useful to describe the knowledge base with metadata [2]. In the former version of CHESt, we
used RDF(S) to describe the semantics of the multimedia clips.

Here we will briefly recapitulate how the former version of CHESt works. The semantic search engine
gets a NL question from the user and maps it to a general assertion. To do this, it firstly searches for
semantically important words and translates them into RDF. We use a specific domain dictionary to retrieve
the semantics for every word in the sentence. For example, the question "Who invented the operating system
CP/M?" would be transformed into a set of well-known-words

Φ = {(dc:creator;"invented"),(chest:OS;"CP/M")}.

Semantically unimportant words like {what, did} or too general words like {operating, system} are ignored.
Secondly, this transformed question is mapped to a general assertion. The set of general assertions is given to
the system, and generally contains only few elements. In the above example, the system would map the
question to the general assertion "An invention was invented by an inventor", because of the predicate
dc:creator. Based on that interpretation, an RDQL [13] query is generated and launched against the
knowledge base. In the example, the query would look like this:

published as: S. Linckels, Christoph Meinel: A Simple Application of Description Logics for a Semantic Search Engine;
Proceedings of the IADIS International Conference on Applied Computing (AC 2005);
Lisbon, Portugal, Vol. II, pp. 306-311.

SELECT WHERE (?x;dc:creator;"CP/M")

where ?x is the missing part of the query. A commented list of pertinent clips is returned to the user.
Unfortunately, more advanced and complex reasoning is not possible in RDF, mainly due to the weak

possibilities in expressing properties and rules over properties. In this paper, we report main improvements in
the inference engine of our tool by using OWL (Web Ontology Language) instead of RDF(S). In section 2 we
will show how the knowledge is represented formally with DLs. In section 3 we will present the reasoning
process, which is the main advantage of this change. We will conclude in section 4 with some
(dis)advantages of the proposed solution.

2. KNOWLEDGE REPRESENTATION FOR CHEST

In this section we will briefly introduce the main concepts for representing knowledge and reasoning about it
by using DLs. The fact that OWL builds on RDF(S) simplifies the serialization task (which is not covered in
this paper).

2.1 Description Logics Preliminaries

Description Logics is a formal language for representing knowledge and reasoning about it [1]. In DLs, the
conceptual knowledge of an application domain is represented in terms of concepts (unary predicates) that
are interpreted as sets of individuals, and roles (binary predicates) that are interpreted as binary relations
between individuals. The semantics of a concept description is defined by the notion of interpretations as
given below.

Definition 1 (Interpretation): An interpretation I = (∆I,⋅I) consists of a non-empty set ∆I, the domain of the
interpretation, and an interpretation function ⋅I that maps each concept name to a subset of ∆I and each role
name to a binary relation rI, subset of ∆I × ∆I.

A typical DL knowledge base comprises two components: a terminology, also called a TBox, and assertions,
also called an ABox. Both are described in this section.

Definition 2 (Knowledge Base): A knowledge base (KB) is a pair K = 〈T, A〉, where T is a TBox, and A is
an Abox.

2.1 Knowledge Terminology in a TBox

The TBox defines the vocabulary to use in the KB by terms of concepts and roles. The concepts are either
defined as new concepts or by using previously defined concepts. The resulting terminologies can easily be
serialized as OWL.

Definition 3 (Terminology): Let A be a concept name and C a concept definition. Then A C and A C
are terminological axioms. The first is a complete definition, the second an incomplete one. A terminology T
is a finite set of terminological axioms such that no concept name appears more than once in the left-hand
side of a definition. If a concept A occurs in the left-hand side of a definition, it is called defined concept. The
other concepts are called primitive concepts.

The concepts in CHESt are organized in a taxonomy. Figure 1 illustrates the translation of the hierarchy of
concepts (HC) into the acyclic ALC-concept description TCHESt. A special case in our taxonomy is the
concept Firm, which can be an inventor (something was invented by that firm) or an invention (a firm was
founded by an inventor). The language ALC [15] is sufficiently expressive for our purposes. It is in fact a
subset of the logics implemented in most "state of the art" DL systems, for example those based on highly
optimized tableaux algorithms, see for example [8, 6]. ALC concepts are built using a set of concept names
(NC) and role names (NR). Valid concepts are defined by the following syntax:

C ::= A | | ⊥ | ¬A | C1 C2 | C1 C2 | ∀R.C | ∃R.C

with A ∈ NC is a concept name and R ∈ NR is a role name.

Figure 1. Example of a hierarchy of concepts and the according ALC-terminology for TCHESt.

2.1 Knowledge Assertions in an ABox

In the ABox, one introduces individuals, by giving them names, and one establishes properties for these
individuals. Figure 2 shows some examples of CHESt assertions translated into DLs, noted ACHESt.

Definition 4 (Model of Assertions): The interpretation I = (∆I,⋅I) satisfies the concept assertion C(a) if
aI ∈ CI, and it satisfies the role assertion R(a,b) if (a,b)I ∈ RI. An interpretation I satisfies the ABox A if it
satisfies each assertion in A. In this case we say that I is a model of the ABox.

Person(Kildall)
String("Gary Kildall")
Date(1942)
Date(1994)
hasName(Kildall,"Gary Kildall")
wasBorn(Kildall,1942)
isDeceased(Kildall,1994)

Firm(DR)
String("Digital Research)
Date(1973)
hasTitle(DR,"Digital Research")
wasCreated(DR,1973)
hasInventor(DR,Kildall)

OS(CPM)
String("CP/M")
Date(1974)
hasTitle(CPM,"CP/M")
wasCreated(CPM,1974)
hasInventor(CPM,DR)

Figure 2. Examples of concept assertions for ACHESt. The person Gary Kildall (1942-1994) founded the firm Digital
Research in 1973, which has published the operating system CP/M in 1974.

3. INTERPRETING A USER QUESTION

A DL system not only stores terminologies and assertions, but also offers services that reason about them,
called logical inference. This allows to make explicit some implicit knowledge that is contained in the KB.
We first present the main kinds of reasoning performed in DLs before showing their application in CHESt.

3.1 Main Kinds of Reasoning

Reasoning in a DL KB is mainly based on determining subsumption relationships and satisfiability with
respect to the axioms in the TBox, and instance checking with respect to the assertions in the ABox. An
exhaustive list is described in [1].

Definition 5 (Subsumption): Let C and D be concept names, D subsumes C with respect to T (noted
T C D) iff CI ⊆ DI for all interpretation I that satisfies T.

Person ∃hasName.String
∃wasBorn.Date
∃isDeceased.Date

Clip Inventor Invention
Inventor Person Firm

Invention Firm Software Hardware
 ∃hasTitle.String

∃wasCreated.Date
∃hasInventor.Inventor

Software Language OS
Hardware EComponent Computer

Computer hasComponent.EComponent

Invention

Software Hardware

EComponent Computer

Inventor

Clip

Language OS

Person Firm Firm

Definition 6 (Satisfiability): A concept C is satisfiable with respect to T if there exists a model I of T such
that CI is nonempty. In this case we say also that I is a model of C.

Definition 7 (Instance Checking): An assertion α (a concept assertion or a role assertion) is entailed by A
(written A α) if every interpretation that satisfies A, that is, every model of A, also satisfies α.

3.2 Reasoning in CHESt

The interpretation of a user question in CHESt is performed in two steps: the mapping of concepts over the
TBox, and the transformation of the user question into an ABox query. Both are explained below.

3.2.1 Mapping of Concepts
In [9] a matching algorithm is proposed. It is not the topic of this short paper to explain this algorithm in
detail. However, for a better understanding of its use in our e-Learning tool, we will summarize its
mechanism briefly. The algorithm takes a query description TQ and a document description TD and returns a
mapping that identifies corresponding elements in the two descriptions. This mapping consists of a set of
mapping elements indicating that certain concepts of the query are related to certain concepts in the
document. A concept Ai from TQ is related to a concept Bi from TD if their names and their descriptions are
similar. The algorithm uses the difference operation presented in [16] and improved in [10]; since the result
of the difference operation is a description or a set of descriptions, it can be used for retrieving sets of
individuals matching the difference between two descriptions. In other words, only similar documents from
the KB are found. The algorithm works in three steps: computing the similarity of concepts (step 1 and 2),
which is quantified by two coefficients (the name and the description coefficient), and mapping similar
concepts (step 3).

Step 1: Matching of names. It is based on the notion of semantic relatedness that measures the extent to
which two lexicalized concepts are close. This measure is based on the semantic relations of a knowledge
source, for example WordNet. This result is called the name similarity coefficient (nsim).

Step 2: Matching of description. It consists in comparing the concept descriptions occurring in the two
terminologies. This phase uses name similarities between concepts appearing in the concept descriptions.
This result is called the description similarity coefficient (dsim).

Step 3: Mapping of concepts. The resulting weighted similarity (wsim) is a mean of nsim and dsim. A
mapping ρ is deduced from those coefficients by choosing pairs of elements with maximal similarity. A
mapping ρ from TQ to TD is computed as follows:
ρ(Qi) = Dj with 1 ≤ i ≤ n, 1 ≤ j ≤ m,

if wsim(Qi, Dj) > ε and wsim(Qi, Dj) > wsim(Qi, Dk) for all Dk ∈ TD , k ≠ j
where ε is the minimal tolerated difference.

ρ(Qi) = otherwise.

We had to modify this algorithm in two points in order to use it in CHESt.
• The reasoning mechanism must be improved in order to perform a query over a non-empty ABox.
• It must not consider the documents content, but the metadata, which describe the document. As already

stated in the introduction, this is necessary because we are dealing with multimedia clips where a textual
content is not available.

3.2.2 The Generating of a Semantic Query
We start from the assumption that all documents in the KB KCHESt are represented by DL terminologies, but
the user's question Q is expressed in NL. Thus, the latter must be transformed into a query w.r.t. the ABox.
The so generated query allows to retrieve all documents from the KB that satisfy the expression RQ. This
means that it must be checked if there exists at least one model I of ACHESt such (RQ)I ≠ ∅. In other words,
there must exist an individual y in ∆I that is an element of (RQ)I. Figure 3 shows an example where the
system must find all objects in the KB that are individuals of the concept Inventor and are involved in the

invention of the operating system "CP/M". A model w.r.t. the ABox (see figure 2) is the Firm DR.
Technically, the reasoning over the KB and the retrieval of individuals can be performed with most DL
reasoners. We experimented with the Java interface of RACER [6], which builds on the OWL-API
(http://owl.man.ac.uk). More information about the use of DLs as query language for retrieving sets of
individuals matching a description from the KB can be found for example in [4, 5, 7].

Q = Who invented the operating system CP/M?

ACHESt RQ = OS(x) ^ hasTitle(x,"CP/M") ^ hasInventor(x,y?) ^ Inventor(y?)

Figure 3. Example of a NL user question Q and the according ALC query expression w.r.t. the ABox. The variable y is
the missing part and should be the result of the query.

4. RELATED WORK

We found three very promising projects that have several concepts in common with our method. In [3] the
algorithm CTXMATCH is presented, which allows to coordinate hierarchies of concept (HC). Semantic
coordination, namely the problem of finding an agreement on the meaning of heterogeneous semantic
models, is one of the key issues in the development of the Semantic Web. CTXMATCH is a new algorithm for
discovering semantic mappings across hierarchical classifications based on a new approach to semantic
coordination. This approach shifts the problem of semantic coordination from the problem of computing
linguistic or structural similarities (what most other proposed approaches do) to the problem of deducing
relations between sets of logical formulae that represent the meaning of concepts belonging to different
models. The authors show how to apply the approach and the algorithm to an interesting family of semantic
models, namely hierarchical classifications, and present the results of preliminary tests on two types of
hierarchical classifications, web directories and catalogs.

In [14] a similar but maybe more specific project was presented, stating that the need for Natural
Language Interfaces to databases (NLIs) has become increasingly acute as more and more people access
information through their web browsers, PDAs, and cell phones. Yet NLIs are only usable if they map natural
language questions to SQL queries correctly. People are unwilling to trade reliable and predictable user
interfaces for intelligent but unreliable ones. With their work, the authors introduce a theoretical framework
for reliable NLIs, which is the foundation for the fully implemented PRECISE NLI. They prove that, for a
broad class of semantically tractable natural language questions, PRECISE is guaranteed to map each
question to the corresponding SQL query. They report on experiments testing PRECISE on several hundred
questions drawn from user studies over three benchmark data-bases. They find that over 80% of the questions
are semantically tractable questions, which PRECISE answers correctly. PRECISE automatically recognizes
the 20% of questions that it cannot handle, and requests a paraphrase. Finally, they show that PRECISE
compares favorably with Mooney's learning NLI and with Microsoft's English Query product.

A larger system is the KIM Platform (http://www.ontotext.com), which provides a novel Knowledge and
Information Management (KIM) infrastructure and services for automatic semantic annotation, indexing, and
retrieval of unstructured and semi-structured content. The most direct applications of KIM are:
• Generation of meta-data for the Semantic Web, which allows hyper-linking and advanced visualization

and navigation;
• Knowledge Management, enhancing the efficiency of the existing indexing, retrieval, classification and

filtering applications.
As a base line, KIM analyzes texts and recognizes references to entities (like persons, organizations,

locations, dates). Then it tries to match the reference with a known entity, having a unique URI and
description. Alternatively, a new URI and description are automatically generated. Finally, the reference in
the document gets annotated with the URI of the entity (semantic annotation). This sort of meta-data can be
used for indexing, retrieval, visualization and automatic hyper-linking of documents. In order to allow the
easy bootstrapping of applications, KIM is equipped with an upper-level ontology (KIMO) of about 250
classes and 100 properties. Further, a knowledge base (KIM KB), pre-populated with about 200 000 entity
descriptions, is bundled with KIM. Its role is to provide as background knowledge (resembling a human's

common culture) a quasi-exhaustive coverage of the entities of general importance - those, which are
considered well-known and because of this, typically, not introduced in the documents.

5. CONCLUSION

In this paper we have presented a simple application of DLs to improve the semantic search mechanism of a
multimedia e-Learning tool. The advantages of this upgrade are firstly, that the serialization in OWL is still
compatible with the former RDF(S) description. Secondly, the inference engine allows logical reasoning
tasks that go beyond the heuristics of the earlier system. Thirdly, queries can be classified with respect to
each other into a subsumption hierarchy. It is very useful to have the user questions organized so that the
results of previous related queries can be reviewed, for example to implement a kind of learning mechanism.
Unfortunately, one of the main problems of the solution presented here is that the matching algorithm
mentioned in section 3.2 was created for being used with WordNet as knowledge source. We think that a
large-scale dictionary like WordNet is not the best possible solution for a domain ontology about computer
history. First of all, different meanings for the same word are possible. Hence, our information retrieval
system must set the different interpretations in a context to find the best match. Secondly, large-scale
dictionaries often lack specific domain expressions. For these reasons we propose either to use an existing
domain specific dictionary or to create a dictionary of its own.

REFERENCES

[1] Baader F. et al, 2003, The Description Logic Handbook: Theory Implementation and Applications. Cambridge
University Press, Cambridge, UK.

[2] Baeza-Yates R., Ribeiro-Neto B., 1999, Modern Information Retrieval, Addison-Wesley, USA.
[3] Bouquet P.,Serafini L., and Zanobini S., 2003, Semantic coordination: a new approach and an application.

Proceedings Second International Semantic Web Conference (ISWC2003), Sanibel Island, Florida, USA, pp. 130-
145.

[4] Buchheit M. et al., 1994, Subsumption between Queries to Object-Oriented Databases. Information Systems,
Special issue on extending database technology 19(1), pp. 33-54.

[5] Donini F.M. et al., 1998, AL-log: Integrating Datalog and Description Logics. Journal of Intelligent Information
Systems,Vol. 10.

[6] Haarslev V., Möller R., 1999, RACE System Description, Proceedings DL99, Linköping, Sweden, pp. 130-132.
[7] Horrocks I., Tessaris S, 2000, A conjunctive query language for description logic aboxes. Proceedings of

AAAI2000, Austin, Texas, USA, pp. 399-404.
[8] Horrocks I., Patel-Schneider P., 1998, FaCT and DLP, Lecture Notes in Artificial Intelligence No. 1397, Springer,

Berlin, pp. 27–30.
[9] Karam N. et al, 2004, Semantic Matching of Natural Language Web Queries. Proceedings of ICWE2004, Munich,

Germany, pp. 416-429.
[10] Küsters R., 2000, Non-Standard Inferences in Description Logics. Springer Lecture Notes in Artificial Intelligence

LNAI 2100, Germany.
[11] Linckels S., Meinel Ch., 2004, An Educational Tool that Understands Students' Questions. Proceedings of

AECT/All That Jazz Conference, Chicago, Illinois, USA.
[12] Linckels S., Meinel Ch., 2005, A Simple Application for an Intelligent Librarian System. Proceedings of IADIS

AC2005, Lisbon, Portugal.
[13] Miller L. et al, 2002, Three Implementations of SquishQL, a Simple RDF Query Language. Proceedings of

ISWC2002, Sardinia, Italy.
[14] Popescu A.-M., Etzioni O., Kautz H, 2003, Towards a theory of natural language interfaces to databases. Proc.

ACM IUI, Miami, FL, USA.
[15] Schmidt-Schauss M., Smolka G., 1991, Attributive concept descriptions with complements. Journal of Articial

Intelligence, 48(1), pp. 1-26.
[16] Teege G., 1994, Making the Difference: A Subtraction Operation for Description Logics. Proceedings KR94, Bonn,

Germany, pp. 540-550.

