
Discovering Characteristic Individual Accessing
Behaviors in Web Environment

Long Wang1,2 Christoph Meinel2 and Chunnian Liu3

1 Computer Science Department, Trier University, Campus II, 54296 Trier, Germany
Long.wang@hpi.uni-potsdam.de

2 Hasso Plattner Institut, Potsdam University, 14482 Potsdam, Germany
Meinel@hpi.uni-potsdam.de

3 Beijing Municipal Key Lab. of Multimedia and Intelligent Software Technology,
Beijing University of Technology, 100022 Beijing, China

cslcn@but.edu.cn

Abstract. Discovering diverse individual accessing behaviors in web en-
vironment is required before mining the valuable patterns from behaviors
of groups of visitors. In this paper, we investigate the data preparation in
web usage mining, and especially focus on discovering characteristic in-
dividual accessing behaviors and give a systematic and formalized study
on this topic. Based on the target usage patterns, individual user behav-
ior through the web site can be discovered into five different categories:
granular accessing behavior, linear sequential behavior, tree structure
behavior, acyclic routing behavior and cyclic routing behavior. We also
give different algorithms for discovering different kinds of behaviors. The
experimental studies show that our discovery of individual behavior is
very useful and necessary in web usage mining.

1 Introduction

It is necessary to clean and collect usage data for different visitors before mining
usage pattern in web environment. Different web service providers use different
methods to record the tracks of their visitors, such as web server logs, cookies
functions, personalized agents [10] or other interactive scripts. Traditional mining
tools such as association rules, sequential patterns, and classification help much
to find the usage patterns, but there are some other typical web characteristics
that could be revealed from visitors accessing by these tools, such as revisiting
and routing.

Many other experts have made great works on mining characteristic patterns
in web environment. In [9], the user browsing model is built based on classifying
the objects (pages) into content page and auxiliary page. The format of user
browsing model is represented by a sequence, so the main contribution of such
representation is to mine the usage patterns as association rules and frequent
traversal paths. In [7], a maximal forward reference is formed from the start of
an access till the occurring of revisiting a previously visited object by the same
access. And the large reference sequences are used to depict the path traversal
patterns and mined from maximal forward references. In [1,4], web access pattern

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3642, pp. 466–476, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

published as: L. Wang, Christoph Meinel: Discovering Characteristic Individual Access
Behaviors in Web Environment;
Proceedings of 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining,
and Granular Computing (RSFDGrC 2005); Regina (Canada), LNAI 3642, pp.466-476.

Discovering Characteristic Individual Accessing Behaviors 467

is the sequence of accesses pursued frequently by many visitors which may exist
repeated objects.

Characteristic usage patterns are mined from the personalized individual ac-
cessing behaviors, so it is necessary to investigate individual accessings, which
is far more than the above defined usage patterns. In this paper, we give a new
view on discovering individual accessing behavior in web environment. An in-
dividual accessing behavior is beyond the visited objects and also the routing
process among these objects. Based on the target mined patterns, an individ-
ual accessing behavior can be discovered into five different categories: granular
accessing behavior, linear sequential behavior, tree structure behavior, acyclic
behavior and cyclic routing behavior. In these methods, discovering individual
behaviors are combined in the process of session reconstruction.

Individual accessing behaviors are discovered from reconstructed sessions.
A session is defined as a group of requests made by a single user for a single
navigation purpose [11]. This definition gives a better illustration on ”session”,
but ”session” is firstly refereed to a time concept, which means that a session
must have happened within a couple of time boundaries.

There are different methods to rebuild sessions from web logs. In [2], timeout
method is used to identify different session. In this method, a session shift is
identified between two requests if the time interval between two requests is more
than a predefined threshold. In [9], a single visitor can be identified by IP address,
client information and even the direct links from any of the objects visited by the
same IP and client information. And two timeouts are used to identify individual
sessions from all the objects accessed by each visitor. While in [6], proactive
strategies like cookie-based identification were used to reconstruct session. A
method named maximal forward reference is used in [7]. And in [11], Zhang
used a statistical language modelling to identify sessions from web logs.

In [6], it is showed that there is no best method for session reconstruction.
In our experiments, we refereed the method from [9] to identify different visitors
and different sessions. The problem of session identification is beyond our discus-
sion in this paper, our contribution concerns on recovering individual accessing
behaviors from reconstructed sessions. In this paper, our work is done based on
the assuming that the sessions are already identified.

Different from [9] in session reconstruction, we don’t care if there is hyperlink
between two successively accessed objects, because it is possible for a visitor
to use bookmark or URL hints cached by browser within a session. And also
unrelated information should be removed from sessions. If an object was accessed
continuously within a session, we omit the repeat happenings. The reason for the
continuously repeat happenings of the same object is mainly due to ”reloading
or refreshing the same object” or ”the existence of hyperlink to itself”.

The rest of the paper is organized as follows. In section 2, we present the
necessary terminology and formally define individual behavior. Section 3 gives a
detailed view on the algorithms of discovering individual accessing behavior. We
analysis our experiment results on three different kind of web sites in section 4.
Section 5 provides a conclusion and overview on the future works.

468 L. Wang, C. Meinel, and C. Liu

2 Problem Statements

Let W be the target web site that gives us the web usage logs, and L be the
target cleaned logs. Let V be the set of all visitors identified from L and T be
the set of all time requests recorded in L, and O be the set of possible object
requests in W . An object is a page, media file or a visitor’s action captured by
the web server.

L is a list of actual object requests from V , and each of these object requests
is recorded as a logline entry termed as l. So L can be regarded as a set, but all
the loglines are ordered by the timestamp of their invocation. We use l.visitor to
denote the visitor of the logline l ∈ L, and l.time to denote the request time of l,
and l.url to denote the URL request in l and l.obj to denote the object requested
by l.visitor. It is obvious that for each logline l, l.visitor ∈ V , l.time ∈ T , and
l.obj ∈ O.

A session s is denoted:

s = {l1, . . . , lm} : l ≤ i < j ≤ m, li.visitor = lj .visitor, li.time < lj.time.

And also s should satisfy the following conditions:

∀i(1 ≤ i < m) : li+1.time − li.time ≤ T imeout1, lm.time − l1.time ≤ T imeout2.

T imeout1 and T imeout2 are the two time thresholds needed to identify sessions,
and T imeout1 is the threshold that constraints the time delay between two
continuously accessed objects and T imeout2 aims to constraint the time duration
of a session. As the same definition for logline l, we also denote s.visitor the
visitor of this session, and s.length the number of objects in s.

With the above definition, we can map web logs L into a session set S, for each
logline linL, l belongs to exactly one session, and this ensures that S partitions
L in an order-preserving way.

We give a function to get the ith accessed object in a session s:

Object(s, j) = li.obj : liins.(∗)

(1) The firstly accessed object in a session s:

EntranceObject(s) = l1.obj : l1ins.

(2) The last accessed object in a session s:

ExistObject(s) = ls.length.obj : ls.lengthins.

We call the object objj ”target object” of object obji and objj ”source object” of
objj , if objj is accessed after obji. And we also call the last accessed object ”final
target object” of a session.

(3) The set of repeated objects in a session s:

Repeated(s) = {obj1, . . . , objk}, ∀i(1 ≤ i ≤ k), ∃i′, j′(1 ≤ i′ <> j′ ≤ s.length) :
Object(s, i′) = Object(s, j′) = obji.

Discovering Characteristic Individual Accessing Behaviors 469

(4) The set of access objects in a session s:

ObjectSet(s) = {obj1, . . . , objk},
∀i, j(1 ≤ i <> j ≤ k), ∃i′, j′(1 ≤ i′ <> j′ ≤ s.length) :
Object(s, i′) = obji, Object(s, j′) = objj , obji <> objj .

(5) An access sequence in a session s:

Sequence(s) = obj1obj2 . . . objk,
∀i, j(1 ≤ i < j ≤ k), ∃i′, j′(1 ≤ i′ < j′ ≤ s.length) :

Object(s, i′) = obji, Object(s, j′) = objj , obji <> objj , obji.time < objj .time.

(6) An access path in a session s:

Path(s) = obj1obj2 . . . objk,
∃i′(1 ≤ i′ < s.length), ∀i, j(1 ≤ i <> j ≤ k) :

Object(s, i + j′) = obji, Object(s, j + i′) = objj , obji <> objj .

From the definition (5) and (6), the difference between accessed sequence and
path is that all the objects in a sequence are accessed in the same time order
as in the original session, while in a path, all the objects must be continuously
accessed one by one as the order in the session. So access path can be seen as the
special access sequence. Even with removing continuously repeatedly accessed
objects in the raw session, it doesn’t affect the final results of finding sequences
and paths in a session.

We use q.length and p.length to denote the lengths of a sequence and a path.
And the definitions for the ith object in a sequence and a path are the same as
in (*), which only the parameter ”s” is replaced by ”q” or ”p”.

Access sequence Seq′ = obj′1obj
′
2 . . . obj′k is called a subsequence of access

sequence Seq = obj1obj2 . . . objn and Seq a super-sequence of Seq′, denoted as
Seq′ ⊆ Seq, if and only if there exist 1 ≤ i1 < i2 < . . . < ik ≤ n, such that
obj′j = objij for (1 ≤ j ≤ k). Access path P ′ = obj′1obj

′
2 . . . obj′k is called a sub

path of access path P = obj1obj2 . . . objn and P a super-path of P ′, denoted
as P ′ ⊆ P , if and only if there exist a const c, such that obj′j = objj+c for
(1 ≤ j ≤ k).

It is well acknowledged that a web site is a complex graph, and any kind of
information can find its position in this graph. In our study, we take the objects
accessed by visitors as the basic unit, then these objects are the vertices and the
hyperlinks among them are edges in this graph. The relationships among the ac-
cessed objects in a session, such as tree structure, undirected and directed graph,
are hidden in a session which is a form of sequence. Tree structure relationship
is characterized by the nodes that lead to different objects in a session, which
mean divert or different paths after an object. Thus we call this tree structure
relationship ”divert path tracking” in web usage. Furthermore, in the routing on
a graph, it is popular that there is more than one path between two selected
vertices, which looks like a rhombus structure. And we call this relationship
”parallel path tracking” in web usage.

470 L. Wang, C. Meinel, and C. Liu

(7) A circle path in a session s:

CirclePath(s) = obj1 . . . objk,
∃i′(1 ≤ i′ < s.length), ∀i(1 ≤ i ≤ k) : Object(s, i + i′) = obji, obj1 = objk.

(8) The diverged paths in a session s:

DivertPath(s) = {Path(s)1, . . . , Path(s)k},
∀i, j(1 ≤ i <> j ≤ k) : Object(Pi, 1) = Object(Pj , 1).

(9)The parallel paths in a session s:

ParallelPath(s) = {Path(s)1, . . . , Path(s)k}, ∀i, j(1 ≤ i <> j ≤ k) :
Object(Pi, 1) = Object(Pj , 1), Object(Pi, Pi.length) = Object(Pj , Pj .length).

The above definitions reveal the diversities of the usage activities endowed
with the special characteristics in web environment, such as entrance page, hy-
perlinks, backtracking, revisiting and so on. It is possible for an individual ac-
cessing session to be interpreted with one of these definitions or the combination
of several definitions, which is far more than object sets and sequences patterns
as discussed in [4,9]. We use a plain term ”Action” to uniform these 9 different
basic functions, because each of them characterizes the unique activity perfumed
by a visitor on some objects in a session. So an action of a visitor is embodied
with the organization of some objects in a session.

We now give the definition of individual accessing behavior: An individual
accessing behavior is the combination of several actions performed by a visitor
during his session with the web server.

3 Discovery Algorithms

An individual accessing behavior is the combination of actions extracted from a
session and it displays not only the accessed objects and part of site structure,
but also the concept hierarchies and the routing activities on these objects.

Individual accessing behavior can be discovered by using several recovery
techniques. The choice of proper discovering method is decided by what kind of
access patterns we want to mine in the next step. From simple to complex, we
show here some strategies of behaviors discovery. We illustrate this problem by
using a real session reconstructed from our server logs. The objects here are the
web pages, so in the rest of the paper, we replace the term ”object” with ”page”,
and every page is titled with its ID. This session is listed as following:

s = {0, 292, 300, 304, 350, 326, 512, 510, 513, 512, 515, 513, 292, 319, 350, 517, 286}.

0 and 286 were accessed separately as entrance and leaving pages, and
Repeated(s) = {292, 350, 513, 512}. Any piece of session without repeated pages
can form a path, for example:

Path1(s) = 300-304-350-326-512, and Path2(s) = 512-515-513-292.

Discovering Characteristic Individual Accessing Behaviors 471

3.1 Simple Behaviors Discovery

This strategy overlooks all the repeated pages in a session. The behavior of this
visitor can be simply discovered into the largest set of accessed objects, and the
longest access sequence. We also call the largest set of accessed objects ”granular
behavior” and longest access sequence ”linear sequential behavior”. These two
kinds of behaviors are the extensions of the definitions of ”set of access objects”
and ”access sequence” in section 3; and the former is defined as ObjectSetL(s)
and the latter is SeqL(s). To discover the longest accessed sequence, we choose
the first request time as the time for the same repeated pages in a session. For
the above session, we remove the 10th, 12th, 13th, and 15th pages:

ObjectSetL(s) = {0, 286, 292, 300, 304, 319, 326, 350, 510, 512, 513, 515, 517}.
SeqL(s) =< 0−292−300−304−350−326−512−510−513−515−319−517−286 >.

We can see that any sub set of ObjectSetL(s) is one of the sets of accessed ob-
jects by this visitor. Any subsequence of SeqL(s) is one of the accessed sequences
in this session.

Motivated by other data mining applications in [4,9], given a large group of
accessed objects and accessed sequences by different sessions, we can mine the
most popular set of accessed objects and the most popular accessed sequences.

3.2 Tree Structure Behaviors Discovery

The tree structure behavior is characterized by diverged paths in a session defined
in (8). From this definition, some paths in a session can form diverged path
because they share the start accessed object. Though all the accessed objects
are ordered by timestamp in a sequence, we can find those repeated objects that
lead to different target objects. Tree structure behaviors displayed not only the
visiting patterns, but also some conceptual hierarchy on site semantics.

To discover tree structure t from a session s, a pointer pr is used to point
to the last read node in t. Every page is read in the same order as in s and this
page is inserted as the child node of pr if it firstly happens in t ; but if the same
page already exits in t, we do nothing but only setting pr point to this page in t.

The tree structure behaviors for the above session can be discovered with our
strategy as the figure 1.

Based on this algorithm, there is some property in the discovered tree struc-
ture behaviors:
Property 1: Given a discovered tree structure behavior, the nodes that
lead to diverged paths are the repeated objects in this session.

292 300 304 350 326 5120 510

319 517

286

515

513

Fig. 1. Tree Structure Behavior

472 L. Wang, C. Meinel, and C. Liu

The diverged path in this session is:

DivertPath1(s) = {< 292 − 300 − 304 − 350 >, < 292 − 319 >},
DivertPath2(s) = {< 350 − 326 − 512 >, < 350 − 517 − 286 >},

DivertPath3(s) = {< 512 − 510 − 513 >, < 512 − 515 >}.

Similar from [8], given a large group of discovered individual tree behaviors,
the most popular tree structure access patterns can be mined.

3.3 Acyclic Routing Behaviors Discovery

“Acyclic routing behavior” means that in a session, there exist at least two dif-
ferent pages between which there are at least two different access paths. This
kind of behavior is characterized by the parallel paths in a session. It shows that
a visitor can access the same target object from the same start object but via
different paths. With acyclic routing behaviors, we can further query the short-
est path and most popular path between two pages. Because this discovered
behavior has a lattice structure, we also call it semi-lattice behavior.

The final discovered behavior is like a lattice structure defined as l, and we
used pr pointing to the last read node in l. The pages are read in the same
sequence as in s, and for every page, we check if the same page exits in l. If this
page firstly happens in l, we insert this as a new child node of pr, and let pr
point to this new node. If this page already exits in l, there are four different
relations between this page and the last read page:

– This page is the same as pr :
1. Do nothing.

– This page can be backward tracked from pr :
1. Set pr point to this page.

– This page can be forward tracked from pr :
1. Build new edge directed from pr to this page, if there is not directed

edge from pr to this page,
2. Set pr point to this page.

– This can not be tracked from pr :
1. Build new edge directed from pr to this page,
2. Set pr point to this page.

Figure 2 displays the recovered acyclic routing behavior from the above ses-
sion. It is clear that if an acyclic routing behavior can be discovered from a
session, the session must have the following property:

Property 2: An acyclic routing behavior can be recovered from a ses-
sion s iff there exist obji, objm, objj, objv, objk, objw(1 ≤ i < m < j < v <
w ≤ s.length) in s, and obji==objv; objj==objw; objm <> objk.

The parallel paths in this session are:

ParallelPath1(s) = {< 292 − 300 − 304 − 350 >, < 292 − 319 − 350 >},
ParallelPath2(s) = {< 512 − 515 − 513 >, < 512 − 510 − 513 >}.

Discovering Characteristic Individual Accessing Behaviors 473

292 300 304 350 326 5120 510

319 517

286

515

513

Fig. 2. Acyclic Routing Behavior

3.4 Cyclic Routing Behaviors Discovery

If there are back tracked or revisited objects in a session, directed links will be
built from every revisited objects to one of its source object. From the semantic
level, we call these two object can be mutually heuristically evoked. So in this
situation, the individual behavior can be discovered as cyclic routing behavior
and this kind of behavior is characterized by the circle path hidden in the session.

The strategy for discovering cyclic routing behavior is similar to but more
complicate than discovering acyclic routing. The following figure shows cyclic
routing behaviors discovered from the same example.

292 300 304 350 326 5120 510

319 517

286

515

513

Fig. 3. Cyclic Routing Behavior

The circle paths in this session are:

CirclePath1(s) = 292 − 300 − 304 − 350 − 326 − 512 − 510 − 513 − 292,
CirclePath2(s) = 512 − 510 − 513 − 512.

4 Experiment Results

Our experiment data was taken from three web sites:www.informatik.uni-trier.de
(INFO), www.hpi.uni-potsdam.de (HPI) and www.tele-task.de (TTK). These
three sites are chosen because of their differences: INFO is a well frame based
site, and TTK is a site dedicated to multimedia lectures and HPI has launched
a new version. The time durations for these logs are one month for INFO and
HPI, and 12 months for TTK because of the small access count.

The distribution of repeated pages is closely related with the web structure.
It is clear that a structure with many pages has more repeated pages than those
with small number of pages. It can be seen from the different distribution that
TTK has a small number of repeated pages than INFO and HPI. But for the
ratio of repeated pages, the simple structure has a higher possibility of repeated

474 L. Wang, C. Meinel, and C. Liu

Table 1. Pages, Sessions and Repeated Pages on INFO, HPI and TTK

INFO HPI TTK
Pages 728 253 52

Sessions 5828 28308 33894
Number of Repeated Pages(Ratio) 29(∼3.9%) 21(∼8.3%) 6(∼11.5%)

happenings than complicate structure; the reason is that a visitor could have
more choices in a site with many pages which could reduce the happening of
repeated visits. Another factor is related site structures, the difference of the
number of repeated pages from INFO and HPI is not as so big as the number of
total pages on this two sites, this is because the a big part of pages from INFO
are those with few links in their contents and are seen as the bottom pages or
the leaf pages on the site graph.

The average of the length of session is 3∼4. It has been discussed in the
previous parts that for every session a granular behavior and linear sequence
behavior can be discovered, but for tree structure behavior there must be re-
peated objects in a session, and for semi-lattice structure behavior, two or more
different objects must be repeated. We compute the number of the sessions with
1 or 2 repeated pages, and also the number of the sessions that can discover tree
and semi-lattice behaviors. We also give the ratio of these numbers with respect
to the session set. The following table gives the statistic results.

Table 2. Statistics of Repeated Pages and Recovered Behaviors

INFO HPI TTK
Sessions with 1 R-Page (ratio) 701(∼12%) 3998(∼14.1%) 1319(∼3.9%)
Sessions with 2 R-Pages (ratio) 350(∼6%) 2493(∼8.8%) 237(∼0.7%)
Sessions with T-Behavior (ratio) 642(∼11%) 3911(∼13.8%) 1085(∼3.2%)
Sessions with L-Behavior (ratio) 72(∼1.2%) 402(∼1.4%) 22(∼0.06%)

From the table2, we found that tree behaviors and semi-lattice behaviors exist
in some sessions, and their hosts are the most valuable visitors for the sites. And
the visiting behavior is closely related with site structure and content. Firstly,
the more complex of the web site, the more complex of the behavior; secondly,
most of the sessions with repeated pages can discover tree behavior, but great
drawdown of semi-lattice behavior from sessions with 2 or more pages, which is
due to the constraints among objects in a lattice behavior. And also, HPI has
more complex link relations than INFO, so in HPI the lattice behavior happens
frequently than in INFO.

Based on the discovered individual behaviors, we further mine the popular
and characteristic web usage patterns. By analyzing the accessing information
of entrance page and exit page, these three different sites have the same access-
ing distribution: the entrance pages concentrate on a very few number of pages,
which have much higher popularities than other pages accessed as entrance page.

Discovering Characteristic Individual Accessing Behaviors 475

The exit pages concentrated on a number of pages, while the difference on access-
ing popularity is not as violently as on entrance page. This phenomenon gives
us the hint that the exit page plays more important on discriminating visitors
from different interests. The analysis on mining popular co-accessed pages and
popular sequences from discovered simple behavior set is the same as that from
other researchers, so we don’t give the mined examples here. Mining complex
patterns from discovered complex behaviors such as tree behaviors and semi-
lattice behaviors, we build a complex tree structure named DIXT (Double Index
Three-Dimension Tree) to index and agglomerate individual behaviors, and this
will be detailed discussed in another paper. Based on the properties analysis in
the above sections, one required conditions for recovering tree structure behav-
ior is the existence of at least 1 repeated object in a session; and one required
conditions for recovering lattice behavior is the existence of at least 2 different
repeated objects in a session.

We now give some general statistics on the mined popular tree patterns and
parallel patterns on these tree sites separately with different support thresholds.

Table 3. Statistic on Tree Patterns

INFO HPI TTK
Sessions with
T-Behavior 642 3911 1085

Tree Patterns
(sup=0.005) 21 48 23

Tree Patterns
(sup=0.01) 6 11 8

Table 4. Statistic on Lattice Patterns

INFO HPI TTK
Sessions with
L-Behavior 72 402 22

Lattice Patterns
(sup=0.02) 64 7 14

Lattice Patterns
(sup=0.05) 3 0 3

For further analysis, lattice behavior surely includes its corresponding tree
structure if we keep only one incoming connection for a node that is repeatedly
accessed from different nodes. A tree pattern is shared by two individual tree
structure behaviors, if both of them have one same node that connects to at least
two same nodes. If one parallel path in a discovered individual lattice behavior
shares the same start node and also the same end node with another parallel
path in another individual behavior, we call these two behaviors share the same
parallel path, while we don’t care if the middle nodes on separate path for two
parallel path are the same or not. From above two tables about distribution
of tree patterns and parallel patterns, we find that both of them are the rare
patterns, which can be seen as the unexpected patterns in web usage mining;
and also the complexity of such behaviors makes it less possible to find tree
patterns or semi-lattice patterns. We can also further find from these two tables
that the number of semi-lattice patterns is larger than that of tree patterns
while the former support number is also larger than the later, one reason for this
phenomenon is that our constraint for a semi-lattice patterns is less stricter than
that of tree patterns, and the second reason is that more complex of individual
behavior, and more impossible to find dominated popular complex patterns,
although the size of discovered tree behavior set is larger than that of discovered

476 L. Wang, C. Meinel, and C. Liu

semi-lattice behavior set. So the support number on thousands of individual tree
behaviors is set smaller than that of hundreds or less than hundred of individual
semi-lattice behaviors. A circle path is a special sequence, which the start node
is the same as the end node, so mining circle paths is the same as mining the
largest forward paths from other researchers.

5 Conclusion

The bottleneck of enlarging the mining applications in web usage field is the ex-
ploding of web knowledge and the specialities of web environment, which attract
us to deeply investigate the individual access behavior.

In this paper, we discuss the individual access behavior through the web,
and how to discover these behaviors from web logs. The complexity of web
structure and the variety of visitors, and also the target patterns pursued decide
that access behaviors can not be simplified into one category, and we define five
different categories of individual access behavior. Before these behaviors were
given, we also define 9 different basic actions that could be performed during a
session. And individual access behavior is the combination of these basic actions.
The experiment results show that our defined actions and behavior universally
exist in many websites. And they are the necessary for mining the useful usage
patterns with web characteristics in the following mining steps.

References

1. B. Berendt and M. Spiliopoulou: Analysis of navigation behavior in web sites in-
tegrating multiple information systems, The VLDB Journal, (2000).

2. D. He and A. Goker: Detecting Session Boundaries from Web User Logs, 22nd
Annual Colloquium on IR Research, (2000).

3. J. Srivastava, R. Cooley, M. Deshpande and P. Tan: Web Usage Mining: Discovery
and Application of Usage Patterns from Web Data, ACM SIGKDD, (2000).

4. J. Pei, J. Han, B. Mortazavi-Asl and H. Zhu: Mining Access Patterns Efficiently
from Web Logs, PAKDD, (2000).

5. J. Pei, J. Han and W. Wang: Mining Sequential Patterns with Constraints in Large
Databases, ACM CIKM, (2002).

6. M. Spiliopoulou, B. Mobasher, B. Berendt and M. Nakagawa: A Framework for the
Evaluation of Session Reconstruction Heuristics in Web Usage Analysis, INFORMS
Journal on Computing, (2003).

7. M. Chen, J. Park and P. Yu: Data Mining for Path Traversal Patterns in a Web Envi-
ronment, 16th International Conference on Distributed Computing Systems, (1996).

8. M. J. Zaki: Efficiently Mining Frequent Trees in a Forest, ACM SIGKDD, (2002).
9. R. Cooley, B. Mobasher and J. Srivastava: Data Preparation for Mining World

Wide Web browsing Patterns, Knowledge and Information System, Journal of
Knowledge and Information System, (1999).

10. T. Joachims, D. Freitag and T. Mitchell: WebWatcher: A Tour Guide for the World
Wide Web, IJCAI, (1997).

11. X. Huang, F. Peng, A. An and D. Schuurmans: Dynamic Web Log Session Iden-
tification with Statistical Language Models, Journal of Information Science and
Technology, (2004).

	Introduction
	Problem Statements
	Discovery Algorithms
	Simple Behaviors Discovery
	Tree Structure Behaviors Discovery
	Acyclic Routing Behaviors Discovery
	Cyclic Routing Behaviors Discovery

	Experiment Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

