
Recovering Individual Accessing Behaviour from Web Logs

Long Wang1,2, Christoph Meinel2

1 Computer Science Department, Trier University
Campus II, 54296 Trier, Germany

long.wang@hpi.uni-potsdam.de
2 Hasso Plattner Institut, Potsdam University

14482 Potsdam, Germany
Meinel@hpi.uni-potsdam.de

Abstract

In this paper, we present a new view on the data preparation in
web usage mining. We concentrate on recovering individual usage
behaviour from accessing records on web site. We defined five
categories of individual behaviours such as granular accessing
behaviour, linear sequential behaviour, tree structure behaviour,
acyclic routing behaviour and cyclic routing behaviour. The
algorithms for recovering different behaviours were also
introduced. And the final experimental studies show that our
recovery of individual behaviour is very useful and necessary in
web usage mining.

1. Introduction

 Tracking the traversal of different visitors through the
internet is the main aim in web usage analysis. Different
web service providers use different methods to record the
tracks of their visitors. But for most of the rest web sites
which are published for governments, educations,
companies and personals, all the usage data are recorded
by web servers as web logs or called click-streams in a
timestamp order, and in this case, the task to discriminate
visitors and their behaviours and interests becomes much
harder.
 Web usage mining aims to find the characteristic usage
patterns in web environment. The traditional mining tools
such as association rules, sequential patterns, and
classification are necessary to find the usage patterns, but
not enough to depict the web characteristics revealed from
visitors accessing, such as revisiting and routing. In [6], the
maximal forward reference is formed from the start of an
access till the occurring of revisiting a previously visited
object by the same access. In [1], a web access pattern is
the sequence of accesses pursued frequently by many
visitors in which repeated pages could happen. The similar

definitions can be found in [3]. Each of these efforts is
dedicated to define and mine only one type of usage
patterns. But the valuable information hidden in web logs is
far more than the above defined usage patterns. An
individual accessing behaviour not only refers to the
contents that were visited, but also the way that the same
access performed. The former reveals the visitor’s interest
on the content and the latter reveals the visiting custom of
this visitor, and also reveals the site structure or semantics
relations among these visited objects. To get the useful
usage pattern that reveals the web characteristics, it is
necessary to investigate individual accessing. The aim of
recovering individual accessing behaviour is to reconstruct
the browsing scenario, which is the necessary foundation
to get the useful and meaningful usage patterns from all the
accessing behaviours. This task is the further integration
and reorganization of individual usage data and it outputs
the exact single user data for the further usage mining and
knowledge discovery.
 In this paper, we give a detailed view on recovering
individual accessing behaviour. Based on the target mined
patterns, an individual accessing behaviour can be
recovered into five different categories: granular accessing
behaviour, linear sequential behaviour, tree structure
behaviour, acyclic behaviour and cyclic routing behaviour.

The rest of the paper is organized as follows. Section 2
gives the context and the data preparation for “recovering
individual accessing behaviour”. Section 3 presents the
necessary terminology and formally defines this problem.
We give the algorithms of recovering individual behaviours
in section 4 and analyze our experiment results in section 5.
Section 6 provides a conclusion and overview on the future
works.

2. Related Works

published as: L. Wang, Christoph Meinel: Recovering Individual Access Behaviors from Web Logs;
In Proceedings of the 17th International Conference on Software Engineering and Knowledge Engineering (SEKE 2005); Taipei (China), pp.590-595.

 In [8], Cooley gave an overview on data preparation for
web usage mining. In their work, they firstly remove
irrelevant items such as scripts and attached files from web
logs, and then a single visitor can be identified by IP
address, client information and even the direct links from
any of the objects visited by the same IP and client
information. Two timeouts are used to identify individual
sessions from all the objects accessed by each visitor. The
web objects (pages) are classified into content page and
auxiliary page, and user browsing model is represented by a
page sequence. While in [5], proactive strategies like
cookie -based identification was used to reconstruct
session .
 In our experiments, we refereed the method from [8] to
identify different visitors. A visitor can be identified by a
triple unit <IP Address, Client OS, and Client Browser>.
And we use two timeout thresholds to identify different
sessions from all the objects accessed by the same visitor.
In [5], it is showed that there is no best method for session
reconstruction. The problem of session identification is
beyond our discussion in this paper, our contribution
concerns on recovering individual accessing behaviour
from reconstructed session.
 Before accessing behaviour recovering, unrelated
information should be further removed from sessions. If an
object was accessed by the same visitor within a session,
we omit the second happening for behaviour recovering.
The reason for the continuously revisit of the same object
is mainly due to “reloading or refreshing the same object”
or “the existence of hyperlink to itself”.

3. Problem Statements

 Let W be the target web site that gives us the web usage
logs. After removing the errors and useless information
from logs, we take some part of cleaned logs as our target
denoted as L. Visitors, Times and Objects are the three key
parameters in web usage mining. Let V be the set of all
visitors identified from L and T be the set of all time
requests recorded in L, and O be the set of possible object
requests in W. An object is a page, media file or a visitor’s
action captured by the web server.
 L is a list of actual object requests from V, and each of
these object requests is recorded as a logline entry termed
as l. So L can be regarded as a set, but all the loglines are
ordered by the timestamp of their invocation. We use
l.visitor to denote the visitor in the logline l∈L, and l.time
to denote the request time in l, and l.url to denote the URL
request in l and l.obj to denote the object requested by
l.visitor. It is obviously that for each logline l, l.visitor ∈
V, l.time ∈ T, and l.obj∈ O.
L is denoted as :

L = {l1, l2, … , ln}, nji ≤<≤1 , li .time< lj.time.
A session s is denoted:

s = {l1, l2, … , lm }, mji ≤<≤1 ,

li .visitor = lj.visitor, li .time< lj.time.
This means that a session s preserves the same order of
requests as in L, and s satisfies the following conditions:

For mii ≤+<≤ 11 , li+1 .time- li .time ≤Timeout1,
lm .time- l1 .time ≤ Timeout2.

Timeout1 and Timeout2 are the two time thresholds needed
to identify sessions. As the same definition for logline l, we
also denote s.visitor the visitor of this session, and s.length
the number of objects in s.

With the above definition, we can map web logs L into a
session set S, for each logline l∈L, l belongs to exactly one
session, and this ensures that S partitions L in an order-
preserving way.

 Additionally, a hyperlink within a web site is a binary
relation on the object set O. We define Hyperlink (O) as
the set of all the hyperlinks among the elements in O, and
as well, hyperlink (obji, objj) as the link from object o i to o j:

Hyperlink (O) ⊆O ×O,

∀ hyperlink(o i, o j) ∈ Hyperlink (O): there is a
hyperlink from o i to o j.

We give a function to get the ith accessed object in a
session:

Object(s, i) = li.obj. (*)
Given a session s, we define some functions on it:
(1) The firstly accessed object in a session:

EntranceObject(s) = l1.obj.
(2) The last accessed object in a session:

ExistObject(s) = ls.length.obj.
We call the object objj “target object” of object obji and

obji “source object” of objj, if objj is accessed after obj.i.
And we also call the last accessed object “final target
object” of a session.

(3) The set of repeated objects in a session:

Repeated(s) = {obj1, …, objk},
)1(kii ≤≤∀ , ∃ i’, j’(1 ≤ i’<> j’ ≤s.length.): Object(s,
i’) = Object(s, j’)= obji .

(4) The set of access objects in a session:

ObjectSet(s) = {obj1, …, objk},
∀ i, j(1 ≤ i<> j ≤ k), ∃ i’, j’(1 ≤ i’<> j’ ≤ s.length.):
Object(s, i’)= obji , Object(s,j’)= objj , obji <>objj.

(5) An access sequence in a session:

Sequence(s) = obj1 obj2 … objk,

∀ i, j(1 ≤ i < j ≤ k), ∃ i’, j’(1 ≤ i’< j’ ≤ s.length.):
Object(s, i’)= obji , object(s,j’)= objj , obji <>objj.

(6) An access path in a session:

Path(s) = obj1 obj2 …objk,
∃ i’(1 ≤ i’<s.length), ∀ i, j(1 ≤ i<>j≤k.):

Object(s, i+ i’)= obji,
Object(s, j+ i’)= objj, obji <>objj.

The difference between accessed sequence (5) and path

(6) is that all the objects in a sequence are accessed in the
same time order as in the original session, while in a path,
all the objects must be continuously accessed one by one
as the order in the session. So access path can be seen as
the special access sequence. The lengths of accessed
sequence and path are defined as the same as the length of
a session, and q.length and p.length are used for these two
lengths. And also the definitions for the ith object in a
sequence and a path are the same as in (*), which only the
parameter “s” is replaced by “q” or “ p”.

Access sequence Seq ’ = obj’ 1 obj’ 2 …obj’ k is called a
subsequence of access sequence Seq = obj1 obj2 … objn and
Seq a super-sequence of Seq’, denoted as Seq’ ⊆ Seq, if
and only if there exist 1 ≤ i1 < i2 < … < ik ≤n, such that
obj’ j= objij for (1 ≤ j ≤ k). Access path P’ = obj’ 1 obj’ 2 …

obj’ k is called a sub path of access path P = Obj1 obj2 … objn

and P a super-path of P’, denoted as P’ ⊆ P, if and only if
there exist a const c, such that obj’ j= objj+c for (1 ≤ j ≤k).

(7) A path with hyperlinks in a session:

LinkedPath(s) = obj1, …, objk,
 ∃ i’(1 ≤ i’<s.length), ∀ i(1 ≤ i<i+1 ≤k.):

Object(s, i+ i’)= obji , Object(s, i+ i+1’)= obji+1 ,
hyperlink(obji, obji+1) ∈ Hyperlink (O) .

(8) A path without hyperlinks in a session:

UnlinkedPath(s) = obj1, …, objk,
 ∃ i’(1 ≤ i’<s.length), ∀ i(1 ≤ i<i+1 ≤k.):

Object(s, i+ i’)= obji , Object(s, i+ i+1’)= obji+1 ,
hyperlink(obji, obji+1) ∉Hyperlink (O) .

From the above defined functions, we can find some
accessing behaviour revealed from a session. For example,
the repeated accessed objects may play great importance in
deciding the visitor’s routing from web structure or
semantic level. And also the unlinked accessed object
sequence attracts us to find how and why the visitor
suddenly jumps to another unlinked object.

It is well acknowledged that a web site is complex graph,
and any kind of information can find its position in this
graph. In our study, we take the objects accessed by
visitors as the basic unit, then these objects are the vertices
and the hyperlinks are edges in this graph. The accessing

of every visitor is a directed routing process of the sub
graph. Regardless of the repeat and backwards tracking, we
only care about the relationships among the accessed
objects in a session, so maybe tree structure, undirected
and directed graph relationships are hidden in a session.
From the point of visitor tracking, the tree structure
relationship is characterized by the nodes that lead to
different objects in a session, which mean divert or different
paths after an object. Thus we call this tree structure
relationship “divert path tracking” in web usage.
Furthermore, in the routing on a graph, it is popular that
there is more than one path between two selected vertices,
which looks like a rhombus structure. And we call this
relationship “parallel path tracking” in web usage.

In the following, we give the formally definitions of
“circle path”, “divert path tracking” and “parallel path
tracking” in web usages.

(9) A circle path in a session:

CirclePath(s) = obj1, …, objk,
∃ i’(1 ≤ i’<s.length), ∀ i(1 ≤ i ≤ k.):

Object(s, i+ i’)= obji, obj1 = objk.

(10) The diverged paths in a session:

DivertPath(s) = {Path(s) 1, …, Path(s) k},
∀ i, j(1 ≤ i<>j ≤k.): Object(Pi, 1)= Object(Pj, 1).

(11) The parallel paths in a session:

ParallelPath(s) = {Path(s) 1, …, Path(s)k},
∀ i, j(1 ≤ i<>j ≤k.): Object(Pi, 1)= Object(Pj, 1),

Object(Pi, Pi .length)= Object(Pj, Pj .length).
The above definitions reveal the diversities of the usage

activities endowed with the special characteristics in web
environment, such as entrance page, hyperlinks,
backtracking, revisiting and so on. And it is possible for an
individual accessing session to be interpreted with one of
these definitions or the combination of several definitions,
which is far more than object sets and sequences patterns
as discussed in [2]. To mine the concrete and meaningful
usage patterns among groups of visitors, it is necessary to
investigate the activities of single visitors. We use a plain
term “Action” to uniform these 11 different basic functions,
for each of them characterizes the unique activity perfumed
by a visitor on some objects in a session. So an action of a
visitor is embodied with the organization of some objects in
a session.

We now give the definition of individual accessing
behaviour: An individual accessing behaviour is the
combination of several actions performed by a visitor
during his session with the web server.

4. Recovery Algorithms

 An individual accessing behaviour is the combination of
actions extracted from a session, which reveal not only the
required objects during his visiting, but also some of site
structure and concept hierarchies, and also the routing
activities on these structures and hierarchies characterized
with revisiting, back tracking and so on.
 Individual accessing behaviour can be recovered using
several recovery techniques. The choice for proper
recovering method is decided by what kind of access
patterns we want to mine in the following step, and the
recovered individual access behaviour is chara cterized by
some actions illustrated in the former sections. From simple
to complex, we show here some strategies of behaviours
recovery. We illustrate this problem from a real session
reconstructed from our server logs. The objects we
investigate in our study are the web pages, so in the rest of
the paper, when our statement is related with our example,
we replace the term “object” with “page”, and also for
simplicity, every page is titled with its ID.
 This session is listed as following:

s = <0, 292, 300, 304, 350, 326, 512, 510, 513, 512, 515,

513, 292, 319, 350, 517, 286 >
There are 17 page/times requests in this session from its

visitor. 0 and 286 were accessed separately as entrance and
leaving pages . And there are two kinds of pages, one group
includes 300, 304, 326, 510, 319, 517, and 515, which were
accessed only once; and the other includes 292, 350, 513
and 512, which were accessed more than once:

Repeated(s) = {292, 350, 513, 512}.

4.1 Simple behaviours recovery

 This strategy overlooks all the repeated pages in a
session. The behaviour of this visitor can be simply
recovered into the largest set of accessed objects, or the
longest access sequence. We call the largest set of
accessed objects “granular behaviour” and longest access
sequence “linear sequential behaviour”. The former is
defined as ObjectSetL (s) and the latter is SequenceL (s) .

 For the above session, the granular behaviour is
recovered as :

 ObjectSetL (s) = {0, 292, 300, 304, 350, 326, 512, 510,

513, 515, 319, 517, 286}.
We can see that any sub set of ObjectSetL (s) is one of

the sets of accessed objects by this visitor.
To recover the longest accessed sequence, we choose

the first request time as the time for the same repeated
pages in a session. So we remove the 10th, 12th, 13th, and 15th
pages in the above session.

The linear sequential behaviour is recovered as:

SequenceL (s) = <0 – 292 – 300 – 304 – 350 – 326 –
512 – 510 – 513 – 515 – 319 – 517 - 286>.

Any subsequence of the longest accessed sequence is
one of the accessed sequences in this session.

Motivated by other data mining applications, given a
large group of different sets of accessed objects and
accessed sequences by different session, we can mine the
most popular set of accessed objects and the most
accessed sequence.

4.2 Tree structure behaviours recovery

 The tree structure behaviour is characterized by diverged
paths in a session defined in (10). Some paths in a session
can form diverged path because they share the start
accessed object, which means that an object can attract
visitor to different targets. Tree structure behaviours not
only depicted the visiting patterns, but also revealed some
conceptual hierarchy on site semantics.

To recover access tree t from session s , we used a page
set named P to store the unique pages that already exist in
t , and we also used a pointer pr pointing to the last
recovered node in t. The recovery strategy is as:

1) Set t = NULL;
2) Read the first entrance page in s as the tree root r , let pr
pointing to r and insert this page to P ;
3) Read new page from s and judge if the same page exist
in P;
 i) Exist in P ,
 4) Find this already existing node n in t and set pr
point to this node,
 5) Go to step 3.
 ii) Not exist in P,
 4) Insert this new page to P,
 5) Create a new node and insert this new node as a
new child for pr ,
6) Let pr point to this new node,
7) Go to step 3.

 The tree structure behaviours for the above session is
recovered by our strategy as the following figure:

Figure 1: Tree Structure behaviour

 292 300 304 350 326 512 0 510

 319 517

 286

 515

 513

Based on this algorithm, there is some property in the
recovered tree structure behaviours:

Property 1: Given recovered tree structure behaviour, the
nodes that lead to diverged paths are the repeated objects in
this session.

The diverged path in this session is:

DivertPath1(s) = {<292-300-304-350>, <292-319>},
DivertPath2(s) = {<350-326-512><350-517-286>},

DivertPath3(s) = {<512-510-513>, <512-515>}.

Tree structure behaviours can help to mine those access
patterns with tree structure [7] and to mine the large
reference sequences from maxim forward references [6].

4.3 Acyclic Routing behaviours recovery

 “Acyclic routing behaviour” means that in a session,
there exist at least two different pages between which there
were at least two different access paths. This kind of
behaviour is characterized by the parallel paths in a
session. It shows that visitor can access the same target
object from the same start object but via different paths.
With acyclic routing behaviours, we can further query the
shortest path and most popular path between two pages.
We also call this recovered behaviour “semi-lattice
behaviour”.
 The final recovered behaviour is like a lattice structure
defined as l , and we used P to store unique pages in l , and
pr pointing to the last recovered node in l . We used the
following strategy to rebuild the acyclic routing in a
session.

1) Set l = NULL;
2) Read the first entrance page in s as the top node t , led pr
pointing to t and insert this page to P,
3) Read new page from s and judge if the same page exist in
P ;
 i) Exist in P :
 4) Find this same existing node n in l and judge the
relation between n and pr ,
 a) n can be backward tracked from pr
 5) Set pr point to n,
 6) Go to step 3.
 b) n can be forward tracked from pr
 5) Build new edge directed from pr to n, if there is
not directed edge from pr to n.
 6) Set pr point to n,
 7) Go to step 3.
 c) n can not be tracked from pr in a single direction
 5) Build new edge directed from pr to n,
 6) Set pr point to n,
 7) Go to step 3.

 ii) Not exist in P:
 4) Insert this new page to P,
 5) Create a new node and insert this new node as a
new child for pr ,
 6) Let pr point to this new node,
 7) Go to step 3.

 The following figure displays the recovered acyclic
routing behaviour from the above session:

Figure 2: Acyclic routing behaviour

It is clear that if an acyclic routing behaviour can be

recovered from a session, the session must have the
following property:
 Property 2: An acyclic routing behaviour can be recovered from
a session s iff there exist obji, objm, objj, objv, objk, objw
(lengthswkvjmi .1 ≤<<<<<≤) in s, and obj i==

objv ; objj ==objw ; objm <>objk.

The parallel path in this session is:
ParallelPath1(s) = {<292-300-304-350>,

 <292-319-350>},
ParallelPath 2(s) = {<512-515-513>, <512-510-513>}.

4.4 Cyclic routing behaviours recovery

 Within a session, different accessed objects are the
targets chosen by this visitor, and they are linked by the
accessing sequence, which forms a directed graph. If there
is back tracked or revisited objects in a session, a directed
link will be built from the target object to one of its source
object. From the semantic level, we call these two object
can be mutually heuristically evoked. In this meaning, the
individual behaviour can be recovered as cyclic routing
behaviour and such behaviour is characterized by the circle
path hidden in the session. The strategy is similar to but
more complicate than recovering acyclic routing.
 The following figure shows cyclic routing behaviours
recovered from the same example.

Figure 3: Cyclic routing behaviour

 292 300 304 350 326 512 0 510

 319 517

 286

 515

 513

 292 300 304 350 326 512 0 510

 319 517

 286

 515

 513

 The circle path in this session is:
CirclePath1(s) = 292-300-304-350-326-512-510-513-292,

CirclPath2(s) = 512-510-513-512.

5. Experiment Results

 Our experiment data was taken from three web sites:
www.informatik.uni-trier.de (INFO), www.hpi.uni-
potsdam.de (HPI) and www.tele-task.de (TTK). These three
sites are chosen because of their differences: INFO is a well
frame based site, and TTK is a site dedicated to multimedia
lectures and HPI has launched a new version. The time
durations for these logs are one month for INFO and HPI,
and 12 months for TTK because of the small access count.

 INFO HPI TTK

Pages 728 253 52

Sessions 5828 28308 33894
Table 1: Pages and Sessions on INFO, HPI and TTK

The average of the length of session is 3~4. It has been

discussed in the previous parts that for every session a
granular behaviour and linear sequence behaviour can be
recovered, but for tree structure behaviour there must be
repeated objects in a session, and for semi-lattice structure
behaviour, two or more different objects must be repeated.
We compute the number of the sessions with 1 or 2
repeated pages, and also the number of the sessions that
can recover tree and semi-lattice behaviours. We also give
the ratio of these numbers with respect to the session set.
The following table gives the statistic results.

 INFO HPI TTK

Sessions with 1
R-Page (ratio)

701
(~12%)

3998
(~14.1%)

1319
(~3.9%)

Sessions with 2
R-Pages (ratio)

350
(~6%)

2493
(~8.8%)

237
(~0.7%)

Sessions with
T-Behaviour (ratio)

642
(~11%)

3911
(~13.8%)

1085
(~3.2%)

Sessions with
L-Behaviour (ratio)

72
(~1.2%)

402
(~1.4%)

22
(~0.06%)

Table 2: Statistics of Repeated Pages and Recovered Behaviours

 From the table2, we found that tree behaviours and
semi-lattice behaviours exist in some of the sessions, and
their hosts are the most valuable visitors for the sites. And
the visitor behaviour is closely related with site structure
and content. Firstly, the more complex of the web site, the
more complex of the behaviour; secondly, most of the
sessions with repeated pages can recover tree behaviour,

but great drawdown of semi-lattice behaviour from sessions
with 2 or more pages, which is due to the constraints
among objects in a lattice behaviour. And also, HPI has a
much smaller link depth than INFO, so in the lattice
behaviour happens frequently than in INFO.

6. Conclusion

 The bottleneck of enlarging the mining applications in
web usage field is the exploding of web knowledge and the
specialities of web environment, which attract us to deeply
investigate the individual access behaviour.

In this paper, we discuss the individual access behaviour
through the web, and how to recover these behaviours
from web logs. The complexity of web structure and the
variety of visitors, and also the target patterns pursued
decide that access behaviours can not be simplified into
one category, and we define five different categories of
individual access behaviour. Before these behaviours were
given, we also define 11 different basic actions that could
be performed during a session. And individual access
behaviour is the combination of these basic actions. The
experiment results show that our defined actions and
behaviour universally exist in many websites. And they are
the necessary for mining the useful usage patterns with
web characteristics in the following mining steps.

References

[1] Bettina Berendt, Myra Spiliopoulou: Analysis of navigation
behaviour in web sites integrating multiple information systems.
The VLDB Journal, (2000)
[2] J. Srivastava, R. Cooley, M. Deshpande and P. Tan: Web
Usage Mining: Discovery and Application of Usage Patterns from
Web Data, ACM SIGKDD, (2000)
[3] Jian Pei, Jiawei Han and etc.: Mining Access Patterns
Efficiently from Web Logs, PAKDD, (2000)
[4] Jian Pei, Jiawei Han and Wei Wang: Mining Sequential
Patterns with Constraints in Large Databases, ACM CIKM,
(2002)
[5] M. Spiliopoulou, B. Mobasher, B. Berendt and M. Nakagawa:
A Framework for the Evaluation of Session Reconstruction
Heuristics in Web Usage Analysis, INFORMS, (2000)
[6] Ming-Syan Chen, Jong Soo Park and etc.: Data Mining for
Path Traversal Patterns in a Web Environment. Proceedings of the
16th International Conference on Distributed Computing Sy stems
(1996)
[7] Mohammed J. Zaki: Efficiently Mining Frequent Trees in a
Forest. In SIGKDD’02 (2002)
[8] R. Cooley, B. Mobasher and J. Srivastava: Data Preparation
for Mining World Wide Web browsing Patterns, Knowledge and
Information System, (1999)

