
Realistic Simulation of V2X Communication

Scenarios

Tobias Queck∗†, Björn Schünemann∗†, Ilja Radusch† Prof. Christoph Meinel∗

Email: {tobias.queck, meinel}@hpi.uni-potsdam.de, {bjoern.schuenemann, ilja.radusch}@dcaiti.com

∗University of Potsdam †Technische Universität Berlin

Hasso-Plattner Institute OKS / Daimler Center for Automotive IT Innovations

Prof.-Dr.-Helmert-Straße 2-3 Ernst-Reuter-Platz 7

14482 Potsdam, Germany 10587 Berlin, Germany

Abstract—Vehicle-2-X (V2X) Communication provides the
foundation for new applications that enhance both safety and
traffic efficiency. Before V2X applications can be deployed in
practice, their in-depth analysis is necessary. For this end,
detailed and realistic simulations are essential. Depending on
the simulated V2X Communication application, particular sim-
ulators have to be coupled. For this purpose, we have developed
the V2X Simulation Runtime Infrastructure (VSimRTI) offering
the flexibility to combine arbitrary simulators. The VSimRTI is
derived from concepts of the High Level Architecture (HLA).
It synchronizes the simulators and enables the communication
among them. Another feature of our simulation environment
is the emulation of the environment of V2X Communication
applications in real vehicles. As a result, we can integrate real
V2X Communication applications without modifications.

I. INTRODUCTION

Currently, one aim of automotive research has been to

establish vehicular communication, based on wireless short-

ranged networks, to enhance both safety and traffic efficiency.

Therefore, various V2X Communication applications are de-

ployed in vehicles. To evaluate the improvements that can be

achieved by these applications, scenarios are defined and field

tests are carried out. However, the realization of field tests is

rather complex and expensive. So, simulations are essential to

prepare the tests in the real world and reduce their costs.

In [1], Schünemann et al. show that different simulators

have to be combined to provide a simulation environment

for a more realistic simulation of V2X Communication sce-

narios. Based on this requirement, one challenge is to run

simulators synchronously. The clocks of the simulators have

to be synchronized and, moreover, simulation data has to

be exchanged among simulators. Several existing simulator

couplings use particular simulators and do not offer the

opportunity to exchange them. For the simulation of different

V2X Communication applications, this is not satisfying since

requirements vary depending on the different applications.

Another challenge is the realistic execution of V2X applica-

tions in the simulation environment. For an attempt at a solu-

tion, two different approaches exist. First, only the behaviour

of the application can be simulated without the integration of

the programming code of this application. Second, the real

application can be executed by integrating the programming

code and emulating the interfaces of the environment of the

application. In this case, there is no difference from the

point of view of the application if the application runs in a

simulation environment instead of in a real vehicle. Hence, the

second approach is more realistic for the simulation of V2X

applications than the first one.

To master the challenges described above, we developed

the V2X Simulation Runtime Infrastructure (VSimRTI). Our

simulation infrastructure allows the integration of time-discrete

simulators, e.g. for network, traffic, and environment simu-

lation. It couples the simulators and provides the flexibility

to exchange them depending on the specific requirements of

a simulation. For the synchronization of and communication

among all components, the VSimRTI uses concepts of the

IEEE Standard for Modeling and Simulation (M&S) High

Level Architecture (HLA) [2]. Moreover, our simulation envi-

ronment contains an application container that emulates the en-

vironment of V2X applications in real vehicles. Consequently,

real V2X applications can be integrated without adapting them

for our simulation infrastructure.

A. Related Work

Currently, a number of projects has already combined

different kinds of simulators for the simulation of V2X Com-

munication scenarios. An Open Source implementation that

integrates the traffic simulator SUMO [3] and the network

simulator ns-2 is TraNS [4]. It enables the direct interaction

of both simulators. A further project is the Multiple Simulator

Interlinking Environment for C2CC in VANETs (MSIECV)

[5] that integrates the network simulator ns-2, the traffic

simulator VISSIM, and Matlab/Simulink for application level

simulation. In both projects, it is possible to influence the

vehicle behaviour, e.g. to stop or reroute vehicles.

A different approach to creating a simulation environment

is to extend a single simulator with all missing functionality.

The VANET Simulation Environment [6] is an integrated

simulation environment on top of the network simulator

JiST/SWANS [7]. The original random way point model in

SWANS is replaced by a more accurate traffic model.

All these projects do not offer the user the possibility to

exchange simulation components by other suitable simulators.

Conference Paper in the Proceedings of 2008 IEEE Asia-Pacific Services Computing Conference (VON 2008) 
15 Sep 2008, Los Alamitos, CA, USA 



They allow the simulation of application behaviour, but do not

provide the opportunity to integrate applications developed for

real vehicles.

B. Structure of this Paper

This paper is organised as follows: Section II illustrates the

concepts on which our architecture is based. In Section III,

we introduce the components of our VSimRTI. Thereafter, in

Section IV, we explain how a real V2X Communication appli-

cation is evaluated in the VSimRTI. Finally, in Section V, we

describe the simulation of a V2V decentralized environmental

notification application and present the simulation results.

II. SIMULATION CONCEPT

The simulation of V2X Communication scenarios involves

various aspects. In particular, a microscopic traffic simulator

is used to simulate the movements of the vehicles. Moreover,

a network simulator simulates the wireless communication

among the vehicles and an application simulator provides

the environment for simulating a V2X application. Currently,

several accepted solutions exist to simulate either vehicle

traffic, wireless networks, or the behaviour of an application.

But, a key requirement for a realistic V2X Communication

simulation is the coupling of all these simulators and the

interaction among them at runtime of the simulation [1]. In

the following subsections, we motivate our concepts to fulfil

this requirement.

A. Flexibility

To run simulations as realistically as possible, it is necessary

to combine simulators of arbitrary domains with each other.

So, particular simulators are necessary for the simulation of

particular applications. For example, simulators for traffic,

network, application, and environment simulation are required

for a V2X application responding to weather conditions. In

contrast, instead of an environment simulator, a traffic light

scheduler is necessary for the simulation of a green-wave

scenario. Another aspect is that simulators of the same do-

main offer different features for specific scenarios, e.g. traffic

simulators especially developed for either highway scenarios

or inner-city traffic exist.

B. High Level Architecture (HLA)

A standardized approach to combine simulators with each

other is the IEEE Standard for Modeling and Simulation

(M&S) High Level Architecture (HLA) [2]. It consists of rules,

a runtime infrastructure, interface descriptions, and an object

model template. In this standard, the coupling of different

simulators is a federation that satisfies the defined rules. These

rules consist of requirements for participating simulators and

for the overall federation which regulate the object man-

agement and the interaction among simulators. The central

component of each federation is a runtime infrastructure (RTI).

It connects all participating simulators that are encapsulated by

federates and controls the simulation run. The RTI and each

federate implement ambassadors to handle the communication

Federate X
Federate X

Federate x

V2X Simulation Runtime Infrastructure

VSimRTI

Ambassador

R

Federate

Ambassador

R

R

Simulator x

Fig. 1. Communication among VSimRTI and Simulators

between them. The runtime infrastructure provides a set of

services available to the federates. The services manage the

coordination of federation-wide activities; the synchronization

of federates; and the generation, modification, and distribution

of information, objects, and interactions. The Object Model

Template (OMT) defines the way of documenting federations

and federates. The HLA object models are formal definitions

of the data transferred among federates.

C. V2X Simulation RTI

Inspired by the HLA standard, we have developed the V2X

Simulation Runtime Infrastructure (VSimRTI) for the simula-

tion of V2X Communication scenarios. We have implemented

selected parts of the HLA standard and have used its concepts

for our simulation runtime infrastructure. The VSimRTI offers

services which handle synchronization and communication

of the federates, the management of global data, and the

lifecycle management of federates. The communication among

the federates is enabled by the VSimRTI which is accessible

by ambassadors similar to the HLA standard. The types of data

to be exchanged are defined as an extensible set of messages

instead of using the general OMT of HLA. [8]

III. VSIMRTI ARCHITECTURE

To run a simulation, a federation of simulators has to be

created. This federation consists of one federate for each

participating simulator. In the upper part of Figure 1, the inner

structure of a federate is illustrated. It consists of the original

simulator that is connected to its federate ambassador and to

an instance of a VSimRTI ambassador. The federates run on

top of the V2X Simulation Runtime Infrastructure (see lower

part of Figure 1) which offers federation, interaction, time, and

vehicle management. The complete communication among

federates is handled by their ambassadors using messages.

Each federate provides an ambassador offering an interface

that is used by the VSimRTI to control the simulator and to

provide messages from other federates.

A. Federation Management

The federation management is responsible for the admin-

istration of participating federates. This includes deploying,

starting, stopping, and undeploying federates in a distributed

system. Before running a simulation, the federation manage-

ment creates an empty federation. After that, federates join the



federation. Already joined federates can be removed from a

federation, if they are no longer necessary for the simulation.

After a simulation is finished, the federation management frees

used resources.

B. Time Management

The main problem during the execution of a federation

is the synchronization of its federates. Each federate runs a

discrete event simulation where, sequentially, the first event

of an ordered event list is processed. Processing an event

can include sending messages to other federates using the

interaction management that results in new events in other

federates. Consequently, a time management is necessary for

coordinating the simulation and synchronizing participating

federates. It ensures that each federate processes its events

in the correct order. In [8], we describe the time management

of the VSimRTI in more detail.

C. Vehicle Management

The vehicle management is responsible for the storage and

synchronization of vehicle data relevant in several federates.

We decided to store this data inside the VSimRTI because

it is used in most of the V2X related simulators. To avoid

inconsistent data, only one federate is allowed write access at

a time. Any federate is allowed to read data when no federate

has approved write access. If there are concurrent read or write

access claims, the federates are scheduled in a first-come-first-

served manner.

D. Interaction Management

The exchange of data among federates is provided by the

interaction management using messages. The VSimRTI and

its federates are decoupled through a publish-subscribe pattern

provided by the interaction management. A published message

is forwarded to each subscribed federate directly after it has

been published. A message consists of its creation time, an

identifier describing its type, and optional data. Messages

to exchange traffic, network, vehicle, and sensor data are

predefined. These messages are used to define a standardized

communication behaviour.

IV. APPLICATION INTEGRATION

Independent of the simulation runtime infrastructure and

the integrated simulators, the core of a V2X Communication

scenario consists of the vehicles and their running applications.

For the simulation of V2X Communication scenarios, we

categorized vehicles according to their ability to participate

in the communication. We will describe this categorization in

detail in the following subsection. Based on their category,

several simulators are necessary to simulate all properties of

a vehicle.

The main objective of our work is to evaluate applications

that are to be embedded in future vehicles. Consequently, real

V2X Communication applications have to be integrated in the

simulated scenario without modification. Accordingly, every

interface of a component that is available for an application

in a vehicle must also be available during a simulation run.

Hence, VSimRTI provides interfaces that encapsulate all in-

and outgoing data of an application so that this requirement

is fulfilled.

A. Vehicle Categories

We classify vehicles into three different categories. The

first category is the classic vehicle which covers vehicles

without hardware components for vehicular communication.

Accordingly, these vehicles cannot communicate with their

neighbourhood. In contrast to classic vehicles, equipped ve-

hicles contain a wireless network device and lower communi-

cation layers to participate in V2X Communication networks.

These vehicles are able to send, route, and receive V2X

Communication messages. Yet, equipped vehicles have no

applications deployed to handle the received data. The third

category, application-supported vehicles, have an application

layer on top of the lower network layers. This layer allows

to run applications that can communicate with other vehicles

using the communication stack in their host vehicle.

B. Simulation of Vehicles and their Components

For the simulation of a classic vehicle, both its char-

acteristics and its route are specified. Therefore, position,

direction, and speed of a vehicle have to be simulated at

every specific time of the simulation process. Consequently,

a default traffic simulator is adequate to simulate classic

vehicles. In contrast, an equipped vehicle needs an additional

simulation of its network stack. As a consequence, a network

simulator is necessary to simulate the wireless communication.

If V2X Communication applications are to run on a vehicle,

the complexity of the simulation increases significantly. All

potential interactions among applications and the hardware of

the vehicle have to be emulated. To integrate applications im-

plemented for real vehicles, an application interface simulator

is necessary which offers exactly the same interfaces that the

runtime environment of the vehicle provides.

C. Simulation Environment for Applications

In general, an application deployed in a vehicle has no

direct access to vehicle specific components. An application

container or a framework is used creating an abstraction of

common V2X components. As a consequence, we have modi-

fied the corresponding application container to integrate it into

our V2X Simulation Runtime Infrastructure. So, the interfaces

for the communication among applications and underlying

components are implemented by an adapter connected to our

runtime infrastructure (see Figure 2).

D. Application Model

To integrate applications into a time-discrete simulation, an

abstract model of V2X Communication applications is nec-

essary. Applications can have two possible states at runtime:

idle or active. An idle application becomes active either driven

by an external event (incoming message, environment change,

or vehicle data) or by fulfilling a recurring task. While an



Application Container

Application

Sensor

Framework

Vehicle

Control

Driver/Occupants 

Interface

V2X 

Communication

Module

Application Application

V2X Simulation Runtime Infrastructure

R

R

VSimRTI 

Ambassador

Federate

Ambassador

R

Fig. 2. Integration of V2X applications in VSimRTI.

application is active, it requests environment or vehicle data,

or it sends V2X messages to other vehicles or infrastructure

components. After an active period, an application becomes

idle again. The underlying application container is responsible

for switching between the states. Incoming messages, gener-

ated by simulators, are converted into events that trigger an

application state change. Additionally, a timer event is needed

to schedule recurring active applications. When an active

application sends a message or requesting additional sensor

data, its container generates a message to forward the data

to a corresponding simulator. To synchronize an application

container with other federates, the events are scheduled at the

time management service.

V. EVALUATION OF EXAMPLE APPLICATION

Before V2X applications can be deployed in practice, an in-

depth analysis is necessary. For example, the assumed reduced

driving time that can be achieved by a V2X application is one

important factor that has to be investigated. Moreover, the min-

imum necessary coverage of application-supported vehicles in

order to have a measurable benefit is meaningful. To show the

usability of our simulation infrastructure for the evaluation

of V2X applications, we implemented a V2V decentralized

environmental notification application [9]. This application

broadcasts warnings if a slippery road has been detected by the

vehicle. Other vehicles, receiving this warning message, try

to optimize their routes by circumnavigating the dangerous

location. The application runs in an application container

which is registered as a federate (see Figure 2) besides a traffic

simulator, a network simulator, and an environment simulator.

A. Simulators

We use the open source simulator SUMO to simulate the

vehicle traffic. SUMO offers the runtime interface TraCI [10]

to control and influence the vehicle behaviour at runtime of

the simulation. Hence, the corresponding ambassador converts

messages and management commands into a TraCI compatible

format. Moreover, the traffic generated by SUMO is used

as input for the network simulator JiST/SWANS. We have

implemented an extension for JiST/SWANS that allows us

to synchronize the internal scheduler, modify node positions,

and send and receive packages using a socket interface. The

corresponding ambassador connects these extensions with our

simulation infrastructure. The third integrated component is

the environment simulator eWorld1. We use eWorld to import

real road map data from OpenStreetMap2; enhance them with

location-based information, like slippery roads; and export

them as SUMO input files. In addition, we have implemented

an ambassador which is connected to the eWorld EventServer

to request location-based information at runtime of a simula-

tion to emulate the sensors of a vehicle. This concept is used,

in particular, to emulate the detection of e.g. a slippery road

by the responsible sensor of a vehicle. The fourth component

is a simple in-house application container. This container

is a Java implementation based on requirements defined in

the C2C-CC Manifesto [9]. We have implemented an am-

bassador for that and run the modified container with JiST.

All connections to hardware components are replaced with

chronologically ordered calls to the corresponding ambassador.

This ambassador forwards the calls as messages to subscribed

simulators. Additionally, we have implemented a component

allowing a user to define the ratio of classic vehicles, equipped

vehicles, and application-supported vehicles. During runtime,

this component assigns the category of each newly created

vehicle. For application-supported vehicles, an additional ap-

plication container is started and its corresponding ambassador

is registered at the VSimRTI.

B. Simulated Scenario

Our use case aims at avoiding dangerous situations and

reducing traffic congestion with the help of a V2X Communi-

cation application. For our simulation, we use real road map

data of an area around the German motorway interchange

Autobahndreieck Schwanebeck to the north-east of Berlin.

In our scenario, traffic stagnates because of a slippery road

segment on the motorway. Since, a slippery road can result in

accidents, our implemented V2V decentralized environmental

notification application makes sure that vehicles broadcast

warnings when they detect such a slippery road. As a result,

the following vehicles reduce their speed. To avoid congestion,

vehicles still at a greater distance try to reroute and circum-

navigate the dangerous location by leaving the motorway once

they receive the warning.

Before the simulation run, the ratio of the different vehicle

categories is defined. For example, a simulation can have

30% of classic, 40% of equipped, and 30% of application-

supported vehicles. During the simulation, the driving time

of each individual vehicle is measured. After the simulation,

the average driving times of all vehicles, depending on their

categories, are calculated.

C. Results

In this subsection, we present our simulation results for

detecting the minimum necessary coverage of equipped and

1http://eworld.sourceforge.net
2http://www.openstreetmap.org/



400

410

420

430

440

450

460

470

480

5 6 7 8 9 10 11 12 13 14 15

Percentage of application-supported Vehicles

M
e
a
n

 D
ri

v
in

g
 T

im
e
 (

s
e
c
)

Classic and equipped Vehicles

Application-supported Vehicles

Moving Mean of application-supported Vehicles

Linear Trend Line of classic and equipped Vehicles

Fig. 3. Influence of ratio of application-supported vehicles on driving time

application-supported vehicles in order to decrease the driving

time of the application-supported vehicles measurably.

In Figure 3, the relation between average vehicle driving

times and percental coverage of application-supported vehi-

cles is illustrated. The red line shows the driving times of

application-supported vehicles and the blue line illustrates

those of the others. In these simulation runs, all vehicles

were equipped with V2X hardware so that the results are not

influenced by an insufficient number of equipped vehicles. The

results show a marginal driving time decrease of less than

5 seconds if the coverage of application-supported vehicles

is between 5% and 7%. From 8%, the driving time starts to

decrease continuously. With 9% coverage, the average driving

time of application-supported vehicles is decreased by 13

seconds.

Classic (%) Equipped (%) Application- Driving
supported (%) Time (sec)

0 91 9 453.39
... ... ... ...
71 20 9 453.71
81 10 9 454.07
91 0 9 453.62

TABLE I
VARYING THE COVERAGE OF EQUIPPED VEHICLES.

In the following simulation runs, we evaluated the influence

of the ratio between classic and equipped vehicles (cf. Table

I). Here, we used 9% of application supported vehicles. Our

results show that the driving times of application-supported

vehicles change insignificantly when varying the ratio between

classic and equipped vehicles. Hence, no improvement can be

achieved if additional equipped vehicles are present that can

forward V2X communication messages, but have not deployed

the application.

VI. CONCLUSION

In this paper, we presented our V2X Simulation Runtime

Infrastructure VSimRTI. With the VSimRTI, we have created

an infrastructure to couple arbitrary discrete event-based simu-

lators. We solved the synchronisation and interaction problem

of coupled simulators by using concepts of the HLA standard.

The VSimRTI provides the flexibility to exchange simulators

without changing the infrastructure. Furthermore, our infras-

tructure able us to evaluate applications that will be deployed

in future vehicles, i.e. a modification of the real applications

for our simulation architecture is not necessary. Moreover,

we simulated a V2X Communication scenario where the

influence of a V2V decentralized environmental notification

application was evaluated to increase the traffic flow. In this

scenario, we used the traffic simulator SUMO, the network

simulator JiST/SWANS, the environment simulator eWorld,

and a modified in-house application container to integrate the

application.

A. Future Work

Currently, we plan to simulate further scenarios, e.g. traffic

flow improvements that can be achieved by a green-light

advisory application. Moreover, it is planned to optimize

the synchronization of simulators and to integrate further

simulators into our infrastructure. Accordingly, we plan to

integrate the network simulator OMNeT++ and the traffic

simulator VISSIM. In addition, we aim to offer an optimistic

synchronisation mechanism. Therefore, federates have to pro-

vide functions to snapshot and roll-back their internal states.

REFERENCES

[1] B. Schünemann, K. Massow, and I. Radusch, “A novel approach for re-
alistic emulation of vehicle-2-x communication applications,” Vehicular

Technology Conference, 2008. VTC Spring 2008. IEEE, pp. 2709–2713,
May 2008.

[2] Institute of Electrical and Electronics Engineers, IEEE standard for mod-

eling and simulation (M&S) High Level Architecture (HLA)–federate

interface specification. IEEE Standard 1516.1. New York, NY, USA:
IEEE, 2000.

[3] D. Krajzewicz, M. Bonert, and P. Wagner, “The open source traffic
simulation package sumo,” 2006.

[4] M. Piorkowski, M. Raya, A. Lugo, P. Papadimitratos, M. Grossglauser,
and J.-P. Hubaux, “TraNS: Realistic Joint Traffic and Network Simulator
for VANETs,” ACM SIGMOBILE Mobile Computing and Communica-

tions Review.
[5] C. Lochert, M. Caliskan, B. Scheuermann, A. Barthels, A. Cervantes,

and M. Mauve, “Multiple simulator interlinking environment for inter
vehicle communication,” in VANET 2005: Proceedings of the Second

ACM International Workshop on Vehicular Ad Hoc Networks, Cologne,

Germany, September 2005, pp. 87–88.
[6] C. Gorgorin, V. Gradinescu, R. Diaconescu, V. Cristea, and L. Iftode,

“An integrated vehicular and networking simulator for vehicular adhoc
networks,” in 20th European Simulation and Modelling Conference,

Toulouse, 2006.
[7] R. Barr, Z. J. Haas, and R. van Renesse, “Jist: an efficient approach

to simulation using virtual machines: Research articles,” Softw. Pract.

Exper., vol. 35, no. 6, pp. 539–576, 2005.
[8] T. Queck, B. Schünemann, and I. Radusch, “Runtime infrastructure

for simulating vehicle-2-x communication scenarios,” in VANET ’08:

Proceedings of the Fifth ACM International Workshop on Vehicular Ad

Hoc Networks. New York, NY, USA: ACM, September 2008, to appear.
[9] R. Baldessari, B. Bödekker, M. Deegener, A. Festag, W. Franz, C. C.

Kellum, T. Kosch, A. Kovacs, M. Lenardi, C. Menig, T. Peichl,
M. Röckl, D. Seeberger, M. Straberger, H. Stratil, H.-J. Vögel, B. Weyl,
and W. Zhang, “Car-2-car communication consortium - manifesto,”
p. 93, 05 2007.

[10] A. Wegener, M. Piorkowski, M. Raya, H. Hellbrück, S. Fischer, and
J.-P. Hubaux, “TraCI: An Interface for Coupling Road Traffic and Net-
work Simulators,” in 11th Communications and Networking Simulation

Symposium (CNS’08), 2008.




