published as: Quasthoff, M.; Sack, H. & Meinel, C.: Can Software Developers Use Linked Data Vocabulary? In Proceedings of International Conference on Semantic Systems 2009
(i-semantics), September 2-4, Graz, Austria, Verlag der TU Graz, Austria, 2009.

Can Software Developers Use Linked Data Vocabulary?

Matthias Quasthoff, Harald Sack, Christoph Meinel
(Hasso-Plattner-Institut, Potsdam, Germany
{matthias.quasthoff, harald.sack, meinel } @hpi.uni-potsdam.de)

Abstract: One of the next research goals in Semantic Web-enabled software engineering is to
naturally use Semantic Web data within arbitrary applications. This will in most cases require
some kind of mapping between object-oriented and graph-based information representations. In
this paper, we investigate how well Semantic Web vocabularies specified in different formats
can be mapped onto object-oriented representations. We examine what a software engineer
would expect from such mappings, and how well existing, widely used vocabularies meet these
expectations.

Keywords: Design Patterns, Linked Data, Object-Orientation, RDF
Categories: D.1.5, D.2.13, M.6, M.8

1 Introduction

Publishing, consuming, and processing RDF data is becoming more common for mo-
dern desktop and Web applications. Web-scale data integration is the dedicated goal
of the Linking Open Data (LOD) initiative providing RDF-based vocabularies with
billions of RDF-triples [Bizer et al. (2008)]. However, compared to developer support
for traditional data structures and storage systems, such as relational databases, devel-
oper support for linked data is still in its infancy. Good support will allow software
developers to process RDF [Manola and Miller (2004)] data within the programming
environment and using the programming language of their choice. E.g., in an object-
oriented (OO) programming language [see Gosling et al. (2005)], RDF resources
should be represented as objects, and RDF schemata should be represented as ready-
to-use packages for the desired programming environment [Quasthoff and Meinel
(2008)]. Because Semantic Web programming interfaces have been designed rather
by knowledge engineers than by traditional software engineers, using Semantic Web
data structures is not straightforward for the software engineer not being an expert in
Semantic Web knowledge engineering. We believe that the missing ease of use is one
of the main reasons why Semantic Web technology entered the field of software
engineering so hesitatingly.

As the main contribution of this paper, we define general requirements to RDF-
to-OO mappings from the point of view of the software engineer, and investigate
which parts of RDF schema [Brickley et al. (2004)] and OWL [Patel-Schneider et al.
(2004)] contribute to such mapping. We also examine a number of RDF and OWL
vocabularies widely used on the World Wide Web (WWW) how they make use of the
features of their schema language helping software engineers to take full benefit, e.g.,
for generic mapping technologies, or for simplified data access. Finally, we lay out
guidelines for the definition of Semantic Web schemata to simplify their usage in
software projects while retaining their full potential.

Johannes
published as: Quasthoff, M.; Sack, H. & Meinel, C.: Can Software Developers Use Linked Data Vocabulary? In Proceedings of International Conference on Semantic Systems 2009 (i-semantics), September 2-4, Graz, Austria, Verlag der TU Graz, Austria, 2009.

The rest of this paper is organized as follows: In Section 2, we discuss related
work on the Web of data and the mapping between data representations. In Section 3,
we discuss expectations and limitations of mappings between RDF and OO and how
such mappings can be obtained. In Section 4, we examine several popular RDF vo-
cabularies on their suitability for automatic mapping. Section 5 concludes the paper.

2 Related work

Linked Data has become one of the most popular topics among the emerging Seman-
tic Web [Berners-Lee (2006)]. By Linked Data we refer to a method of exposing,
sharing, and connecting data via dereferenceable URI on the WWW. The Linking
Open Data community project has picked up this approach to extend the Web of data
by publishing various open data sets being represented as RDF and by defining links
and mappings between vocabularies and data items from different data sources. Thus,
the data available within the LOD has grown to more than 4,5 billion RDF triples and
about 180 million RDF links'. This publicly available interconnected data enables the
development of numerous data mash-up applications. To clear the way for efficient
application development, a straightforward inclusion of these semantic data into the
traditional software engineering process has to be implemented.

To achieve this goal, design patterns for implementation tasks of linked data ap-
plications have to be identified and described. Design patterns are not programming
libraries, but solutions to frequently recurring problems, and have been introduced to
software engineering by [Gamma et al. (1994)]. In previous work we showed that ob-
ject-relational mapping (ORM) [Fowler and Rice (2003)] can be adopted to suite
mapping between RDF and OO data [Quasthoff and Meinel (2008)], which we refer
to as object-triple mapping (OTM). A number of software projects” address the need
of OTM, but do not describe underlying design patterns for retrieving information,
obtaining a mapping between RDF and OO definitions, mapping the data, and chec-
king for policy or license compliance [see Miller et al. (2008), Weitzner et al. (2006)].

3 Requirements to linked data software engineering
3.1 Schema mapping basics

Mixing different types of programming languages (e.g., imperative and declarative
languages) creates programming overhead that should be avoided for various reasons
[Fowler and Rice (2003)]. Rather, OO software developers must be able to process
Web resources as objects native to their programming language. That is, not triples,
URI, and other entities making up RDF data should be primarily visible to software
developers, but classes and objects carrying the triple information as fields and
values. The goal is to support the whole life-cycle of a Web resource from the OO
perspective: resources need to be retrieved or created locally, to be processed with im-
perative statements, and to be published as linked data, or stored locally.

Joint model. The OO equivalent to vocabulary are packages containing classes, whose
fields are equivalent to properties in the vocabulary. Intuitively, one would expect a
one-to-one mapping of RDF classes to OO classes, and RDF properties to OO fields.

1 http://esw.w3.org/topic/SweolG/TaskForces/CommunityProjects/LinkingOpenData#dbpedi
a-lod-cloud, (March 2009)
2 https://sommer.dev.java.net/, http://semanticweb.org/wiki/RDFReactor

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData#dbpedia-lod-cloud
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData#dbpedia-lod-cloud

However, due to the open world assumption, the number of properties an RDF class
has depends on the context, i.e. the vocabularies we are considering. Hence, a single
RDF class can have more than one OO representation. Inheritance relationships bet-
ween RDF classes can be mapped on equivalent OO inheritance relationships. Also,
most OO programming languages do not allow multi-valued fields, but use collection
(or list or array) objects containing an arbitrary number of values to achieve this. De-
pending on the cardinality of the property to map, a developer would expect a field to
contain a collection or just a plain object. And of course, a useful mapping translates
typed literals, e.g., from XML Schema Definition [Thompson et al. (2004)], as accur-
ate as possible onto primitive types of the programming language.

Differing expressivity. While some restrictions on properties such as cardinality, ran-
ge, and domain can be mapped onto class definitions in most OO programming lan-
guages, other features of either sides cannot be trivially mapped. Inverse-functional
properties cannot be enforced on OO classes without explicit validation code. Also,
sub-property relationships do not have a direct OO equivalent. Vice-versa, not all
features of OO programming languages can easily be represented in RDF schemata.
E.g., OO classes frequently feature fields containing string objects, whose content
varies depending on localization settings of the runtime environment. Restricting a
property’s cardinality per language in RDF or OWL is not trivial and involved rules.

Implicitness vs. explicitness. According to RDF Schema, from statements using some
property one can conclude that subject and object belong to the property’s domain and
range. Hence, anything appearing as a property’s domain or range (which are RDF
properties themselves) can be concluded to be an RDF class. In many OO program-
ming languages, classes and fields have to be explicitly defined as classes and fields.
Therefore, an automatic translation from RDF schema to OO cannot happen by syntax
only, but requires at least some kind of inferencing.

3.2 Schema mapping process

In this section we will present three options how software developers can obtain OO
packages for specific vocabularies. The options are influenced by two parameters:

® automatic vs. manual mapping;
® local generation vs. retrieval.

These parameters result in three basic ways to obtain a RDF/OO mapping:

1. Mapping an existing domain model: software developers can manually map
0O classes to RDF within their software projects;

2. software developers can automatically generate OO classes from vocabular-
ies or download such generated mappings from the WWW,

3. software developers can download hand-edited mappings from the WWW.

From a general point of view, an automatic mapping, or retrieval of mapping infor-
mation is preferable over local, manual mapping. Still, either of the three alternative
has benefits and drawbacks being discussed in this section.

Mapping an existing domain model. To enrich an existing application with linked da-
ta, those fields of OO classes that do have an RDF or OWL equivalent can be mapped
locally and manually onto the respective vocabulary. This way, OO data can be ren-
dered to RDF and made available to other applications. Retrieving RDF data from the
WWW and rendering it as OO objects can be difficult, as application-specific initial-

ization data required to instantiate the class might be hard to obtain for a generic map-
ping mechanism. Also, if a retrieved resource belongs to RDF classes mapped to two
disjoint concrete OO classes, for most OO programming environments only one of the
classes can be instantiated, and hence only some of the resource’s properties be re-
flected in OO. This can be circumvented by separating the mapping to abstract inter-
faces and letting the domain model implement the respective interfaces. That way,
domain objects can still be rendered to RDF, but RDF data can now be instantiated to
0O objects implementing the relevant interfaces. The manual effort for the software
developer includes choosing the vocabulary to map to, and mapping existing OO clas-
ses to RDF, after optionally separating this mapping into abstract interfaces. The ben-
efit for software developers is that they can use their coding conventions for the dom-
ain model and only map those parts relevant for the specific application to RDF,
especially if a class is expected to contain properties from different vocabularies.

Generating OO classes. Instead of letting software developers manually generate OO
classes corresponding to vocabulary, the schema definitions can be used to generate
0O class definitions. The source code generator needs conventions for

® converting schema namespace to OO package names, i.e. converting URI to
some programming language-specific path hierarchy;

® converting RDF class and property to OO class and field names, i.e. convert-
ing relative URI to identifiers in the OO programming language, following
some widely accepted convention for, e.g., capitalization;

® storing the actual mapping information, i.e. creating separate mapping meta-
data, or keeping the mapping metadata as source code annotations [see
Gosling et al. (2005)];

® resolving conflicts of class or property names with the programming langua-
ge’s reserved words or conflicting OO class and field definitions.

From the developer’s perspective, there is no fundamental difference between auto-
matically generating such a mapping locally, or retrieving a mapping package from
the WWW. After obtaining the mapping, local domain classes can be modified to im-
plement the abstract interfaces generated or retrieved. Although simplifying the boot-
strapping overhead for the developer compared to manual mapping, automatic map-
ping heavily relies on accurate schema definitions. This includes among others rea-
sonable domain and range specifications for properties, cardinality constraints where
feasible, and good schema documentation using RDFS labels and comments. As will
be shown in the next section, automatic source code generation from existing schema
can sometimes give disappointing results. Hence, a hybrid approach using generated
classed, which will be hand-edited and offered for download along with the schema
definitions will be a good solution.

Publishing manually edited OO definitions. To circumvent the shortcomings of auto-
matically generated OO classes, service providers can fine-tune the generated OO
packages and let software developers download the results as commonly usable pac-
kages. The packages could be provided by the authors of the vocabularies themselves,
or be published in special repositories. This approach would also mitigate some
problems, such as naming incompatibilities between RDF and OO.

4 Evaluation of automatic RDF to OO mapping

We used an extended version of the RDF/OO mapping prototype presented in prev-
ious work [Quasthoff and Meinel (2008)] to process 33 vocabularies. The schema de-
finitions have been downloaded from the WWW and used to generate abstract Java
classes. We investigated vocabulary listed in a schema directory’, and vocabulary we
used in previous work. All in all, these vocabularies contained 1519 classes and 1727
properties. The primary findings concerned compliance to OO coding conventions on
the one hand side, and the correctness of the mapping on the other.

Abbrev. | Namespace #e| #p Abbrev. | Namespace #e | #p
cc http://creativecommons.org/ns# 6| 10 bibtex | http://purl.org/net/nknouf/ns/bibtex# 15| 40
dbpedia | http://dbpedia.org/ontology/ 174|720 cv http://kaste.lv/~captsolo/semweb/resume/cv.rdfs# | 16| 72
dc http://purl.org/dc/terms/ 22| 55 cv-base | http://kaste.lv/~captsolo/semweb/resume/base.rdfs# | 8| 0
dcel http://purl.org/dc/elements/1.1/ 0| 15 eswc http://www.eswc2006.0rg/technologies/ontology 72| 38
demi http://purl.org/dc/dcmitype/ 12| 0 fresnel | http://www.w3.0rg/2004/09/fresnel# 16| 29
doac http://ramonantonio.net/doac/0.1/ 15] 16 geo http://www.w3.0rg/2003/01/geo/wgs84_pos# 2| 4
doap http://usefulinc.com/ns/doap 7| 30 ical http://www.w3.0rg/2002/12/cal/ical# 14| 48
eor http://dublincore.org/2000/03/13/eor# | 4| 3 iswc http://annotation.semanticweb.org/2004/iswc# 33| 35
foaf http://xmlns.com/foaf/0.1/ 12| 54 photo | http://purl.org/net/vocab/2003/11/photo# 1] 10
kaos http://ontology.ihmc.us/ 134| 88 pim http://www.w3.0rg/2000/10/swap/pim/contact# 7| 19
mm http://musicbrainz.org/mm/mm-2.1# | 19| 10 rei http://www.cs.umbc.edu/~lkagall/rei/ontologies/ 65| 57
rddl http://rddl.org/rddl.rdfs# 2| 3 schema_ | http://www.schemaweb.info/schemas/meta/rdf/ 2| 10
rev http://purl.org/stuff/rev# 3] 13 skos http://www.w3.0rg/2004/02/skos/core# 4| 28
sioc http://rdfs.org/sioc/ns# 11] 66 vs http://www.w3.0rg/2003/06/sw-vocab-status/ns# 0| 3
sw http://sw.nokia.com/SWArch-1/ 3] 3 veard | http://www.w3.0rg/2001/vcard-rdf/3.0# 7| 43
swrc http://swrc.ontoware.org/ontology# 54| 74 wot http://xmlns.com/wot/0.1/ 5013
umbel | http://umbel.org/umbel/ac 748| 9

Table 1. Vocabularies investigated in this paper (#c: classes, #p: properties)

Complex mapping logic required. Two vocabularies have been found leaving some
parts of the specification implicit by relying on the semantics of RDF Schema
(Creative Commons, cc) and OWL (Friend of a friend, foaf). The cc vocabulary does
not explicitly declare classes, but describes some resources appearing as range or
domain of RDF properties, and hence being classes. Similarly, for all foaf properties it
is explicitly stated whether it is an OWL datatype or object property. Only for
isTopicOf, which is inverse to an object property, this is left implicit.

A similar finding, yet not related to inferencing, concerns the definition of re-
strictions on properties in OWL. In RDF schema, for each class ¢ to map we can issue
a straight-forward query on properties having ¢ as range. In OWL, we need to query
for Restriction superclasses of ¢ and map the properties following the restriction’s on-
Property predicate. This kind of schema processing makes processing OWL ontolog-
ies harder than RDF schemata, and again proves that average software developers
need support when processing such vocabularies. Even worse, the OWL method of
indicating property range per domain class is incompatible with OO programming
languages like Java. E.g., the K4oS vocabulary cannot be accurately mapped to Java
classes: Groups can have arbitrary members, but ActorGroups and PersonGroups can
only take Actors and Persons as members. Java requires the member field defined in
the OO Group class to have the same type for the ActorGroup and PersonGroup sub-
classes, hence ActorGroup and PersonGroup cannot be accurately translated to OO.

Empty OO classes. By average, 48% of all classes defined in the vocabulary evaluated
never appeared as domain of a property nor did they extend any OWL restriction

3 http://schemaweb.org/

class. Four vocabularies contained only such “empty” classes. E.g., the Description of
a project (doap) vocabulary defines a class Repository, which has several empty sub-
classes for different revision control systems. RDF classes without properties will be
translated to OO classes without any fields. If an OO developer was about to model
such structure, she would probably generate an enumeration datatype for the revision
control system and add a type field to the Repository class taking one of the enumerat-
ion values. For future automatic mapping mechanisms, a heuristic or schema extens-
ion needs to be defined, whether a empty RDF class should be mapped to an OO
class, or to a logical field value indicating class membership, or an enumeration field.

Naming conflicts. As mentioned before, any mechanism generating an RDF/OO map-
ping will have to translate names of RDF classes and properties to OO class and field
names. As the OO names should somehow reflect the relative URI of the RDF or
OWL names, it can happen that two distinct properties will be mapped to distinct
fields carrying the same name. In our evaluation, conflicts arose with the fresnel:label
and rev:comment vs. the respective RDFS properties and with foaf:publication vs.
doac:publication, both having domain foaf:Person. If a generator has access to all vo-
cabularies subject to OO class generation, as would be the case with local mapping or
generation, the technical part of the problem can be solved, e.g. using such rules:

1. prefix the OO name of that conflicting property that has a domain outside its
own vocabulary (e.g., doacPublication on foaf:Person);

2. prefix the OO name of properties conflicting with a superclass’ properties
(e.g., fresnelLabel, revComment to avoid conflicts with the RDFS properties)

But if, as would be the case with pre-produced mappings scattered over the WWW,
different vocabularies would be translated independently of each other, any resource
belonging to two classes from different vocabularies sharing a conflicting property
name could not be instantiated as OO object. These problems could be solved using
dynamically-typed programming languages, which are becoming more popular.

Documentation, correctness, usability. Three of the vocabularies investigated did not
include any comments or labels on the classes and properties they defined. One voca-
bulary had no comments and labels on classes, but only property labels. Two more
did not include any comments, but did include labels, which have mostly been hu-
man-readable versions of the relative class or property URI, and hence did not pro-
vide additional information. By average, 60% of the classes and 43% of the properties
of the vocabularies investigated had comments. Comments are very important for
modern software engineering, as they allow external developers to efficiently use
code from other sources. On the contrary, the doap vocabulary features comments in
English, French, and Spanish. Further investigations how to optimally use this multi-
lingual information within the software development lifecycle will be interesting.
Besides limited developer support through comments or labels, typing errors and
unavailable schemata have been a problem during our evaluation. E.g., the eswc voca-
bulary specifies additional properties for a foaf:Organisation class, whereas foaf only
specifies a foaf:Organization class. Such errors just reduce the usability of the affec-
ted vocabularies. Also, the umbel vocabulary includes an OWL Restriction having
minCardinality’s the parse type not explicitly set to non-negative integer, resulting in
the Jena framework parsing the numeric value as a string and hence, in our class gen-
erator ignoring the cardinality information. Over the course of the evaluation, several
vocabularies could not be retrieved temporarily (dbpedia and umbel on April 2, KAoS

on April 3, 2009). Since vocabulary is central to developing simpler linked data ap-
plications, the schemas should be highly available.

The usability of a vocabulary is reduced if for the sake of generality an RDF
property’s range or cardinality is less restricted than software engineers would wish in
their specific applications. Reading the foaf:name (or any other of the 92% unrestrict-
ed properties found) of an OO object requires to get the collection of foaf:names of
the object, checking if this collection is empty, and if not so, choosing the right name
from this collection. If a specific application is guaranteed to only store one name per
foaf:Person, a direct access to this name is desirable, resulting in reduced recurring
programming. To mock this, our OO class generator currently creates for each proper-
ty both a scalar field and a collection field in the OO class unless the property is re-
stricted otherwise, and the developer can choose which field she preferably reads or
writes. Also, 15 vocabularies did not follow the linked data principles, as they could
not be retrieved using the namespace URI only.

5 Conclusion and outlook

In this paper, we argued for simplified access to linked data for the average software
engineer. Such simplifications include transparent access to RDF and OWL schemata
with the means of widely accepted OO programming languages. We analysed the
expectations to such mapping between RDF/OWL and OO, and discussed general
limitations. We then used an extended version of our RDF/OO mapper presented in
previous work to actually process a number of relevant RDF/OWL schemata from the
Web of data, and investigated certain mapping-related features of these schemata. As
a result of this investigation, we can postulate recommendations from the software
engineering perspective for the development of future schemata:

1. Be explicit. If a resource is an RDF class, say so. Leaving this information
implicit makes processing schemata unnecessarily complex and prevents
software engineers from becoming familiar with linked data.

2. Be accurate. Restrict domain, range, and cardinality of properties, if pos-
sible. Leaving this overly flexible will lead to interpretation among data
sources and hence limit automatic processing.

3. Be concise. If you are about linking data (and not creating a taxonomy), you
don’t need lots of classes that never appear as range or domain of a property.

4. Be cooperative. Many vocabularies exist for various purposes. If you want to
create a property with the same (relative) URI of an existing property, see if
you can use or least link to it. If this is not feasible, give your property a
distinct name.

5. Be perfect. Add comments and (multi-lingual) labels to classes and proper-
ties that help software developers or can be used in some application’s pre-
sentation logic. Avoid typos in URI at any time as they break links from your
vocabulary to others. And make sure you follow linked data principles.

Unfortunately, these recommendations have been violated for a large number of voca-
bularies we found on the WWW. For our current research, we are following three dir-
ections: We will extend our OO class generator and make it and the class mappings a-
vailable as a Web service ready to be included in standard build processes, so softwa-
re developers can actually start using OO representations of RDF and OWL vocabul-
aries. As the second direction of research, we will further improve our mapping me-

chanism, which facilitates runtime access to the actual linked data inside OO soft-
ware. For these two directions of research, we also want to investigate how our ap-
proach can further simplify software development with dynamically-typed languages
and languages that, e.g., use prototypes instead of class definitions. Helping software
developers in complying to service policies and data licenses is our third direction of
research. This will involve identifying those processes in our mapping framework
relevant for policy evaluation and providing software developers with both simple
tools for complying to standardized policies and licenses, and with developer hooks
where they can add customized policy evaluation strategies.

To gain full benefit of RDF, OWL, and linked data, the WWW needs more data,
hence more data sources, and as demand determines supply, more data consumers. By
drastically simplifying the development of applications consuming and publishing
linked data, we hope to contribute to shaping the future Web of data.

References

[Berners-Lee (2006)] T. Berners-Lee: Linked Data. Online available at

I8

[Bizer et al. (2008)] C. Bizer, T. Heath, K. Idehen, T. Berners-Lee: Linked data on the web. In
Proc. of the 17th Int. Conf. on World Wide Web, pp. 1265-1266, ACM, Beijing, 2008.

[Brickley et al. (2004)] D. Brickley, R.V. Guha, B. McBride: RDF Vocabulary Description

[Fowler and Rice (2003)] M. Fowler, D. Rice: Patterns of Enterprise Application Architecture,
Addison-Wesley, Boston, 2003.

[Gamma et al. (1994)] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns.
Elements of Reusable Object-Oriented Sofiware, Addison Wesley, Boston, 1994.

[Gosling et al. (2005)] J. Gosling, B. Joy, G. Steele, G. Bracha: The Java Language
Specification, Third Edition, Prentice Hall, Englewood Clifts, 2005.

[Manola and Miller (2004)] F. Manola, E. Miller: RDF Primer. W3C Recommendation. Online

[Miller et al. (2008)] P. Miller, R. Styles, T. Heath: Open Data Commons, a Licence for Open
Data. In Proceedings of the WWW2008 Workshop on Linked Data on the Web, pp. —, CEUR
Workshop Proceedings, Beijing, 2008.

[Patel-Schneider et al. (2004)] P. F. Patel-Schneider, P. Hayes, I. Horrocks: OWL Web
Ontology LanguageSemantics and Abstract Syntax. Online available at http://www.w3.0rg/TR/

[Quasthoff and Meinel (2008)] M. Quasthoft, C. Meinel: Semantic Web Admission Free —
Obtaining RDF and OWL Data from Application Source Code. In Proc. of the 4th Int. Work-
shop on Semantic Web Enabled Software Engineering, pp. 17-25, Springer, Karlsruhe, 2008.

[Thompson et al. (2004)] H. Thompson, D. Beech, M. Maloney, N. Mendelsohn: XML Schema

Oct. 2004.

[Weitzner et al. (2006)] D. Weitzner, J. Hendler, T. Berners-Lee, D. Connolly: Creating a
policy-aware web: Discretionary,rule-based access for the world wide web.. In Web and
Information Security, pp. 1-31, IRM Press, Hershey, 2006.

	1Introduction
	2Related work
	3Requirements to linked data software engineering
	3.1Schema mapping basics
	3.2Schema mapping process

	4Evaluation of automatic RDF to OO mapping
	5Conclusion and outlook

