
	 255

Design thinking in the It 
Industry: Exploring Language 
games on Understanding, 
Implementation and Adoption
tilmann lindberg

hasso Plattner Institute, Potsdam, germany

Ingo rauth

hasso Plattner Institute, Potsdam, germany

eva Köppen

hasso Plattner Institute, Potsdam, germany

christoph meinel

hasso Plattner Institute, Potsdam, germany

abstract
In the course of the evolving discourses on design thinking, efforts have been made to apply 
design thinking to the IT industry with the intention of helping IT development out of too 
technically oriented design processes. Drawing on an explorative field study, we examined 
experiences made with those efforts to understand what it means to put design thinking into 
operation in an IT context. In this paper, we ask how people create meaning about the given 
problem setting in order to come up with empirically substantiated hypotheses on the issues 
involved in understanding, implementing, and adopting design thinking in the IT industry.
 

1. Introduction
1.1	Technical	Bias	in	IT	Design	
IT development processes ask for highly trained professionals who are qualified to deal with 
complex technical issues, as programming languages or software and hardware architecture. 
Competencies in software engineering are not only important for taking part in programming, 
but also in designing the software. As every decision about the design of an IT-system unavoidably 
manifests at the level of architecture or code, expert knowledge and thinking play an important 
role already for early design decisions. Consequently, the educational background of hardware 
and software engineers has strong influence on mind-set building and problem solving. As a 
result, IT development has the tendency to take place within an “exclusive” expert’s world. 

In past and present times, these circumstances lead to the fact that technically and analytically 
trained IT engineers take on the designer’s role as well, although they have not been profession-
ally trained in that field. The word “software design” is, in fact, almost exclusively associated 
with technical issues. This “technical bias” in IT design entails that a design problem’s techni-
cal complexity receives more attention than its social complexity. As a result, IT development 
has been struggling with the situation that functionalities and interfaces shape up as incom-
prehensible, inappropriate or simply unoriginal for the user, while other features considered as 
essential or meaningful from a user’s point of view are not addressed. 

published as:Tilmann Lindberg, Ingo Rauth, Eva Köppen, Christoph Meinel: Design Thinking in the IT Industry – Exploring Language Games on Understanding, 
Implementation and Adoption 
In Proceedings of Design Thinking Research Symposium 8 (Design 2010), Sydney, Australia, October 2010 



	 256

Overcoming this situation, however, has become a key issue for the IT industry. As times in 
which the IT market grew mainly driven by technology push dynamics went by, the challenges 
that IT development faces exceed the established focus of an engineering expert’s world and 
ask for the integration of further perspectives on problem framing and solution finding. Within 
the IT world, this problem has been tackled so far in two different ways. On the one hand, new 
design disciplines such as interaction or user experience design came up taking on specifically 
the role of the “user’s advocate” within development teams (Buxton 2007; Mandel 1997; Vre-
denburg et al. 2002). On the other hand, new software engineering approaches, in particular 
those summarized under the umbrella term “agile development”, put strong emphasis on an 
incremental and iterative development process that is adaptive to user feedback throughout 
(Beck 2003; Pichler 2008).

1.2	Design	Thinking	in	the	IT	Industry?
The present debate on applying design thinking to IT industry also addresses this problem, 
however with a primary focus on broadening thinking patterns in IT development. Design 
thinking is associated with a problem solving style that supports dealing with the socially am-
biguous aspects of a design problem. In contrast to orthodox engineering design paradigms, the 
corresponding problem solving patterns build rather upon heuristics and situational reasoning 
than on analytical and rationalist thinking. Approaching design problems is not regarded as 
a process of definition or final specification as an analytical problem solving process would 
suggest, but of a continuing approximation to viewpoints of exogenous stakeholders (i.e., the 
users, clients, manufacturers, law-makers) that finally decide about a solution’s viability and 
quality (Dorst 2006; Krippendorf 2007). To do so, design thinking relies on concept developing 
by using preliminary and even intuitive knowledge about a design problem, while proofs of 
concepts are adduced by negotiation between different and probably conflicting stakeholder 
perspectives (Beckmann & Barry 2007; Owen 2007). In design thinking, problems are per-
ceived as ‘wicked’ (Rittle 1972), saying that there is no possibility to frame design problems into 
well-structured units before the actual problem solving process starts. The relation between 
problem and solution is not like deriving the latter from the former, as purely analytical ap-
proaches would suggest, but like framing problems and solutions interdependently in frequent 
iterations (Cross 2007; Lawson 2006). Also, the key knowledge in design thinking is not the ex-
pertise of specialists but the knowledge of stakeholders that is supposed to be learned for every 
design process once again. The process behind design thinking thus builds rather on learning 
about problem and solution than on applying already learned knowledge, and therefore sup-
ports all activities of grasping multiple knowledge and multiple perspectives for inspiration 
and learning concepts as well as the creative transformation into new concepts (Brown 2008; 
Lindberg et al. 2010). All together, design thinking embodies tackling those ‘fuzzy’ aspects 
of a design problem, which are in purely engineering-led approaches left aside, and is thus 
suggested as a useful supplement to problem perception and solving in ‘traditional’ IT develop-
ment approaches. 

However, beyond purely conceptual thought on applying design thinking to IT development, 
many questions remain open. How can design thinking be conceptualized and distinguished 
within software engineering on a practical level? How can it be imparted and organizationally 
implemented? How is it understood and adopted to daily work routines? Finding answers to 
those questions still is a challenging endeavor, as there is a lack of both strategic models and 
hands-on experience.
 



	 257

1.3	Exploring	Language	Games	on	Design	Thinking
To set initial research on those questions, we conducted expert interviews mainly with IT de-
velopers that have been trained in design thinking workshops as well as with trainers and ob-
servers of those workshops. The basic insights gained from these interviews showed the topic’s 
complexity quite clearly. Albeit the majority of interviewees regarded design thinking by some 
means as enriching, we discern partly different views on what design thinking is and how it 
can be adopted and implemented. We hypothesize that this variety of perspectives affects not 
only implementation and adoption, but shows also a paradoxical trait of design thinking itself, 
namely that it is neither perceived as an insubstantial ‘buzz word’, nor as a delimited concept. 
Between both extremes, its meaning seems to be strongly subjected to vivid ‘language games’. 

‘Language games’ is a concept developed by the philosopher Ludwig Wittgenstein (1984) that 
explains how one word can carry an infinite series of meanings—depending on the context or 
situation in which a word is used. Wittgenstein puts language in analogy to games, because 
each game represents a certain set of backgrounds, goals and rules. Some are constitutive; 
others are rather implicit and can be modified. Wittgenstein applies this as metaphor to lan-
guage, stating that rather the language games than the words decide whether communications 
work: when people play with the same words but according to different rules, there would be 
a great juxtaposition of language games hindering each other to succeed. Thus we regard it as 
important to identify and distinguish ‘language games’ on design thinking in order to create a 
basic understanding about how to apply design thinking to the IT industry. To do so, we employ 
a systematic approach to qualitative text analysis based on ‘grounded theory’. In what follows, 
we will give a short overview about our research setting and our method of investigation. 

2. research setting and methodology
We conducted 30 expert interviews (Bogner et al. 2005) with three groups of people work-
ing in the IT industry in Germany and the US: first, design thinking experts that educate IT 
engineers in design thinking; second, IT engineers that have been trained in design thinking; 
and third, experts from specialized design disciplines like user experience design that observe 
these efforts. 
All interviewees were involved with design thinking in the form of a particular didactic work-
shop model either as trainer, participant or observer. Those workshops followed an approach 
being popularized by the design agency IDEO as well as the Stanford d.School model (Plattner 
et al. 2009), in which small, multidisciplinary teams (generally without a professional design 
background) tackle a seemingly simple design challenge (for instance: how to improve ticket 
machines for public transport) and are supposed to understand how far the own imagination 
of a viable solution changes after learning about the stakeholder perspectives (in particular 
the users’). To do so, those workshops suggest a prescriptive process model guiding the team 
through a design workflow in which first the team learns about the problem, then synthesizes 
the gained information to a framework of knowledge, using this frameworks as inspiration for 
ideation, and develops, prototypes and refines those ideas iteratively by means of frequent user 
feedbacks. 

We developed interview guidelines with slight variation between the first and the other groups. 
Those guidelines contain three groups of questions: first, questions about the interviewee’s 
and his department’s role in the company; second, questions about his view on design think-
ing; and third, questions about his opinion how to implement and adopt design thinking to IT 
companies. Each interview lasted approximately one hour, was recorded and later on literally 
transcribed. 

We used grounded theory as methodological framework for data analysis (Strauss 1998). 
Grounded theory is an approach developed in social science for empirically substantiated 



	 258

theory generation and is particularly useful when it is required to frame a fuzzy empirical set-
ting. Condensing empirical data in frequent iterations and comparisons in order to develop 
coding schemes is the main driver of theory generation. We pursued an ‘axial coding’ approach, 
as we presupposed ‘language games’ as core category for the data analysis process. We used the 
software MAXQDA to support the data analysis process (Kuckartz 2007). We synthesized our 
coding schemes to three hypotheses, which are depicted below.

3. language games on Design thinking in the It Industry
We looked at three issues in our analysis: first, how is design thinking understood as such; 
second, how is it understood in respect of IT development; and third, how is it discussed within 
the scope of the implementation to organizational structures and the adoption to personal 
working routines. Dealing with these questions, we developed three hypotheses, which will be 
expounded below. 

Hypothesis 1: The understanding of design thinking is more aligned when it comes to describ-
ing its general goals and principles; differences however increase when it comes to describ-
ing design thinking on a more applied level. 

This hypothesis is related to the question of how design thinking is understood as such. We 
found out that there are no contradictory differences of opinion on what design thinking gener-
ally is, albeit the ways how to express this vary. One interviewee stating that design thinking 
is “willingness to ask (…) ‘do I really solve the right problem’; and then to try out what the 
right ways are to solving this problem” [1], stresses another aspect than an interviewee stating 
design thinking is “that the usability of the product and acceptance of the end user determines 
the design of a product”. Another quote combines both messages: “design thinking is a way 
to get out of your narrow view of what your problem is and (…) look broader and take ev-
erything from your environment in a view that kind of helps; (…) solve the problem that you 
need to solve, so most of the time it’s going out and talking to users and talking to customers 
and anybody who is (…) associated with that problem.” Generally spoken, the interviewees 
emphasize either one or both of the following aspects, namely (a) finding the viable solution 
to the fairly understood problem, and (b) both the viable solution and the fairly understood 
problem are delimited by the user’s point of view. Both aspects are deeply complementary, so 
that we do not see any confusion of language games when it comes to a general explanation of 
design thinking.

However, when it comes to applied explanations of design thinking, we discerned two diver-
gent views. On the one hand, design thinking is explained as a methodology with a strong focus 
on a prescriptive process model, supportive tools and an underlying team structure. This can 
be exemplified with one interviewee distinguishing three levels of information about design 
thinking: first, “specific tools and techniques, which are things like how to run a brainstorm-
ing workshop or how to do user interviews or the very specific tangible activities and tools 
that you do”; second, “the group dynamic piece” of (…) teams working on problems (…) and 
how do you get them to (…) come up with new ideas”; and third, “the overarching categories” 
(he uses ‘categories’ instead of ‘phases’ as he wants to avoid the image of sequential process). 
On the other hand, design thinking is seen rather as a mind-set from which people draw their 
actions without relying on instructions from a formalized method. One quote shows this tran-
sition quite clearly: “On the one hand, (…) (design thinking) is a method that I associate mostly 
with the whole process and its phases; and on the other side it is a sort of mindset. (…) And 
I think you don’t have to go through the whole process when you have this attitude (…). You 
just should have the intention in mind and try to live it.” We see in both views fundamentally 
different qualities. The first view regards design thinking as a bundle of methods that can be 
realized by means of organizational arrangement; the second regards it as a way of thinking 
that has to be internalized by means of education. Thus we assume that this causes a juxtaposi-



	 259

tion of language games that can make it difficult to agree on the concrete purpose of design 
thinking in a company: Is it a meta-disciplinary attitude that people should learn, or is it an 
organizational technique that people should stick to?

Hypothesis 2: Design thinking is rather understood as a learning approach contributing to IT 
development than a development approach in itself.

Our second hypothesis is connected with the question of how far the understanding of design 
thinking is related to IT development. This is a central aspect as it entails, whether design 
thinking competes conceptually with existing IT development techniques, or if it is regarded 
as contribution to those techniques. We found quite a clear picture. None of our interviewees 
sees design thinking as a clear-cut alternative to existing software development approaches, 
independent of the approval of agile approaches as SCRUM or sequential approaches such as 
the waterfall model [2]. Instead, the general focus is on the learning aspect of design think-
ing regardless of what development approach is in favor. The following quotes exemplify this: 
“(Design Thinking) is imagining, understanding a problem space, and eventually the search 
for solutions, whereas one let things drift at times, without any restrictions imposed upon 
oneself, but open for all possible kinds of ideas, then however making very quick steps to find 
out what is viable and what is not.” This interviewee, a software developer, emphasizes the 
value of design thinking in fast-track (and thus inexpensive) learning about problem space and 
potential solution paths outside the prearranged restrictions (that IT development altogether 
would entail). Another interviewee points out the difference between design thinking as a 
learning approach and developing itself: “Design Thinking does not guarantee an outcome. 
That is completely in conflict with the idea of working with uncertainty. So, understand that 
forming fast, lean, simple, even with prototypes that are reflective of the end state, you are 
not moving forward to but make you smarter about how the end state should be. That in itself 
is a tool. It is not an alpha release (…). It’s just a thinking tool to understand the problem.” We 
see that design thinking is regarded as a contribution to a certain notion on software develop-
ment in general, namely ‘how to build up a novel and viable design’—whereas the notion ‘how 
to build up a functioning IT system in time and budget”, which every IT development process 
has to tackle as well, does not play any role. This however suggests that the first notion has not 
been effectively addressed in IT engineering as otherwise design thinking would have been 
perceived rather redundant than contributing. As one IT developer stated about design and 
development in general: “There is no specific statement on design in the build process, so that 
the build process doesn’t say anything about design. But it is up to the individuals who dig 
the build process and then apply their design thinking based on their understanding.” This 
statement exemplifies the inherent ‘technical bias’ in IT development (see 1.1). It shows that 
the process of building software is more constituted than the process of designing software, 
so that the question how to build a viable design is likely to be subordinated to how to build a 
functioning system. The knowledge gap that this imbalance creates seems to be the reason why 
design thinking attracts developers.

Hypothesis 3: There are two groups of language games when it comes to implementing or 
adopting design thinking to IT development: the firsts treats design thinking and IT develop-
ment as two separate worlds, and the second as an integrated one. 

Our third hypothesis relates to both questions: how people speak about the organizational 
implementation and how they speak about the personal adoption of design thinking to IT 
development. We found equally two underlying language game patterns, namely that design 
thinking is treated (a) as an external, self-contained matter linked but not integrated to IT 
development, and (b) as an influence to change IT development itself. We call these patterns 
the ‘two-worlds games’ and the ‘one-world games’ respectively. 



	 260

When it comes to implementing, the ‘two-worlds games’ manifests in the idea that design 
thinking is realized in a project prior to the actual development process. Our interviewees de-
scribe this either as a service by an external ‘task force’, and/or as a form of workshop in which 
also some developers contribute substantially so that they can act as “design advocates” in the 
development process later on. However, the crucial transition between both worlds is generally 
a prototype as the outcome of the design thinking process that ought to serve as a starting point 
for the development process—and thus gets “thrown over the fence”, as two interviewees say. 
Against that background, discussions on adopting design thinking lead to controversies on 
how design thinking prototypes can be picked up by the developers later on. One interviewee 
sees different conceptions of prototypes as a hurdle between both worlds. He stresses that de-
sign thinking prototypes eventually embody completed concepts “to which you can get down 
afterwards asking: how can we translate this to a real product?”, whereas prototypes in IT 
development rather initiate a process of conceptualizing: “You build software prototypes be-
cause you have otherwise nothing to look at when you discuss what you actually need—which 
would be extremely difficult. (…) It is easier to define requirements in the software world as 
a delta to something existing.” This discussion shows that there is a danger of misconception 
at the transition between both worlds. Developers are more used to treat prototypes as a form 
of tangible assistance for the development process and not as a non-technical blueprint for the 
final product. Connecting both worlds is regarded as critical as the following statement exem-
plifies: “(…) design thinking people should learn that what they deliver is not enough for that 
what developers need. On the other hand, also developers should learn that sticking post-its 
casually and creatively, filling them with writings and permanently rearranging them is also 
serious and valuable work that provides results that afterwards the developers need.” 

We found many perspectives on how to merge both worlds to a ‘one-world game’. The most 
general of these views treats design thinking as an imperative, or rather as a kind of ‘wake-up 
call’ for developers to alter the way they work. Implementation happens in this sense through 
people who take this up and change their mindsets and problem solving routines. As one of our 
interviewees states: “It is cultural change. The people just have to learn to change their views.” 
This is rather a symbolic approach of implementing, as it is about demonstrating the benefits 
of design thinking-led problem solving and asking people to internalize and to apply it. Yet, 
as one interviewee stated about the workshop experience: “Many were enthusiastic about it. 
Many said: ‘I want to adopt it somehow, I just do not know how,’ or: ‘how can I tell my boss?” 

We were able to identify a strong tendency that, when design thinking is communicated as an 
appeal to developers, they appreciate the general idea but doubt being able to apply it within 
the tight frames of a development organization. Moreover, we found out that there is severe risk 
perception involved. Many had problems aligning the openness and the ‘explorative detours’ in 
design thinking with common performance measurement systems for IT development projects 
that rely on project plans, milestones and punctual shipment: “When you are under time pres-
sure and have to finish your tasks, then you refer to what you are assessed by and what you 
have to fulfil—and those things where everybody would say: ‘yes, that would make sense’, 
they’re skipped anyway.” Against the background of those organizational practices, design 
thinking is perceived as an uncertain method, which may be helpful to come up with innova-
tions, but also entails a high planning (and justification) risk. The willingness to apply design 
thinking in daily work therefore ends when superiors ask for results without backing explicitly 
the use of a design thinking approach. 

We found two views that try to overcome this dilemma. Some suggest to implement design 
thinking in form of an obligatory phase of development processes, others intend to translate 
design thinking to an adaptive toolbox that can be applied by developers depended on what 
kind of problem they are faced with (instead of in which phases they are). The first would treat 
the learning effect of design thinking itself as an objective that has to be achieved; the sec-
ond would make the use of design thinking so flexible that requests of using design thinking 



	 261

methodology could be formulated very specifically. However, within the frame of our study, 
both ways of implementing design thinking were not realized so that we could not gain further 
insights about them. 

Table 1. Language games on implementing and adopting

Implementing adopting

two-worlds games
DT as a foregoing project; 
DT as a service 

‘Picking up what is thrown over 
the fence’

one-world games
DT as a ‘wake-up call’;
DT as a process phase;
DT as an adaptive toolbox

‘DT is appealing, but needs 
backing by the organization’;
‘choosing DT tools when it helps’

In sum, also this discussion confirms the observation that language games diverge as more 
applied people think and speak about design thinking. Table 1 summarizes the variety of views 
on how to implement and adopt design thinking in the IT industry. 

4. conclusion
Drawing on the image of ‘languages games’, we showed that there is no single way how meaning 
is created about design thinking in IT development, but rather an evolving variety of ways. 
This was substantiated in hypotheses 1 & 2 pertaining to the range of understandings of design 
thinking in general and in IT development in particular, as well as in hypothesis 3 as for matters 
of implementing and adopting. We regard an initial incongruity between design thinking and 
IT development as a basic cause for this juxtaposition of language games. Design thinking is not 
a concept that seamlessly infixes as a further development approach to the IT world. Instead, it 
is a self-contained methodological field that can serve as an example to tackle shortcomings of 
established IT development approaches, i.e., the technical bias, by suggesting further attitudes 
towards knowledge and categories of knowledge for IT development. As a result, it remains 
fuzzy what exactly the overlaps between design thinking and IT development are like. Applying 
design thinking to IT development thus presupposes strong translation efforts that set off—as 
shown in our study—the emergence of divergent and partly incongruent language games. We 
regard the resulting juxtaposition of language games both helpful and destructive. It is helpful 
when it stimulates reflection and awareness of the constraints and limitations of established IT 
design approaches. It can be destructive when it comes to implementing and adopting design 
thinking, as there is a danger that parallel meanings weaken the communicability of the con-
cept, and dissolve it in the end within a ‘semantic nirvana’. As implementation and adoption 
request clear-cut concepts, it is not surprising that our interviewees tried to wipe out the fuzzy 
overlaps between both worlds either by separating them into two distinct worlds, or by merg-
ing them into one integrated world. With both ways, our interviewees seek to bring clarity to 
the rules determining the language games on design thinking in IT development. This shows 
quite plainly that promising attempts to implement or adopt design thinking presuppose clear 
images of how design thinking can be thought to IT development. Though the fuzzy overall 
picture of language games, our study allows distinguishing different models on connecting 
design thinking and IT development processes:

• In the split project model, design thinking is handled as a separate process before the 
IT-process phase. Its main purpose is to map out potential directions in terms of user 
needs and to inform the IT development process with an initial “package” that is handed 
over to the subsequent development process.

• In the champion model, an initial design process is likewise used to inform the subse-
quent development process. But instead of “throwing the package over the fence”, one or 
more project members of the development team participate in the design thinking process 



	 262

to be able to act as an communication agent to explain and maintain the gained design 
knowledge throughout the development process.

• In the design to development model, design thinking is a central technique for the 
front-end of the development process itself. The overall process is changing from a design 
thinking to an IT development process when the conceptions of problem und solution are 
specified enough to translate them to development tasks. This implies that there is a strong 
overlap between the personnel in the design thinking and in the development phases. 

• In the toolbox model, design thinking is not regarded as a distinct project or process 
phase, but as a bundle of methods developers can draw on to solve certain design problems 
they could not solve by means of common IT development methods. In this case, design 
thinking is narrowed down to a well-defined box of tools for adaptive support.

However, also this range of models carries some inherent contradictions due to the fact that the 
respective implementation strategies imply different conceptualizations of design thinking it-
self. A design thinking toolbox, for instance, focuses rather on handy and selective techniques, 
while a split project focuses also deliberately on a coherent design thinking process carried 
out by skilled personnel. This observation is supported by our hypothesis 1, stating that design 
thinking is more apparent as a general concept than as an applied one. Implementing design 
thinking seems to be thus strongly connected to a conceptualizing process—and a wide range 
of possible applied design thinking models seems to be an inevitable consequence. To further 
explore and to develop the range of models in greater detail will be an important task for both 
future research and management practice. 

notes
1. German quotes are translated to English by the authors. 

2. Albeit the majority of our interviewees showed preferences for agile development approaches, sequen-
tial approaches are favored when it comes to large-scale IT development projects due to its better planning 
reliability.



	 263

references
Beck, K. 2003, Extreme	Programming—Das	Manifest, Addison-wesley, Munich etc.

Beckmann, S. L. & Barry, M. 2007, ‘Innovation as a Learning Processes. Embedded 
Design Thinking’, Californian	Management	Review, 50(1), pp. 25-56.

Bogner, A., Littig, B. & Menz, w. (eds.) 2005, Das	Experteninterview—Theorie,	
Methode,	Anwendung, vS-verlag für Sozialwissenschaften, wiesbaden.

Brown, T. 2008, ‘Design Thinking’, Harvard	Business	Review, June, pp. 84-92.

Buxton, B. 2007, Sketching	User	Experiences:	Getting	the	Design	Right	
and	the	Right	Design, Morgan Kaufmann, San Francisco, cA.

cross, N. 2007, Designerly	Ways	of	Knowing, Birkhäuser, Basel etc.

Dorst, K. 2006, ‘Design Problems and Design Paradoxes’, Design	Studies, 22(3), pp. 4-17.

Krippendorf, K. 2006, The	Semantic	Turn—a	New	Foundation	
for	Design. Taylor & Francis, Boca raton etc. 

Kuckartz, U. 2007, Einführung	in	die	computergestützte	Analyse	qualitativer	
Daten, vS-verlag für Sozialwissenschaften, wiesbaden.

Lawson, B. 2006, How	Designers	Think—the	Design	Process	Demystified, Architectural Press, oxford.

Lindberg, T., Noweski, c. & Meinel, c. 2010, Evolving Discourses on Design Thinking—how Design 
cognition Inspires Metadisciplinary creative collaboration’, Technoethic	Arts, 8(1), pp. 31-37

Mandel, T. 1997, Elements	of	User	Interface	Design, John wiley & Sons, hoboken etc. 

owen, c. 2006, ‘Design Thinking—Notes on Its Nature And Use’, 
Design	Research	Quarterly, 1:2, December, pp. 16-27. 

Pichler, r. 2008, Agiles	Projektmanagement	erfolgreich	einsetzen, dpunkt.verlag, heidelberg.

Plattner, h., Meinel, c. & weinberg, U. 2009, Design	Thinking, mv-verlag, Munich 2009. 

Strauss, A.L. 1998, Grundlagen	qualitativer	Sozialforschung, wilhelm Fink verlag, Munich.

vredenburg, K., Isensee, S. & righi, c. 2002, User-Centered	Design—An	
Integrated	Approach, Prentice hall, Upper Saddle river.

wittgenstein L. 1984, Tractatus	logico-philosophicus, Suhrkamp, Frankfurt a.M.




