
The Service Security Lab: A Model-Driven Platform to
Compose and Explore Service Security in the Cloud

Michael Menzel, Robert Warschofsky, Ivonne Thomas, Christian Willems, Christoph Meinel
Hasso-Plattner-Institute

Prof.-Dr.-Helmert Str. 2-3
14482 Potsdam, Germany

{michael.menzel, robert.warschofsky, ivonne.thomas, christian.willems, meinel}
@hpi.uni-potsdam.de

Abstract

Cloud computing enables the provisioning of dy-
namically scalable resources as a service. Next to cloud
computing, the paradigm of Service-oriented Architec-
tures emerged to facilitate the provisioning of function-
ality as services. While both concepts are complemen-
tary, their combination enables the flexible provisioning
and consumption of independently scalable services.
These approaches come along with new security risks
that require the usage of identity and access manage-
ment solutions and information protection. The require-
ments concerning security mechanisms, protocols and
options are stated in security policies that configure the
interaction between services and clients in a system.

In this paper, we present our cloud-based Ser-
vice Security Lab that supports the on-demand creation
and orchestration of composed applications and ser-
vices. Our cloud platform enables the testing, monitor-
ing and analysis of Web Services regarding different se-
curity configurations, concepts and infrastructure com-
ponents. Since security policies are hard to understand
and even harder to codify, we foster a model-driven ap-
proach to simplify the creation of security configura-
tions. Our model-driven approach enables the defini-
tion of security requirements at the modelling layer and
facilitates a transformation based on security configu-
ration patterns.

1. Introduction

The concept of cloud computing facilitates the idea
of providing dynamically scalable resources as a ser-
vice on the Internet. As a way to structure the resources
provided by cloud computing, a distinction in several
layers can be used [1, 2]. Infrastructure as a Service

(IaaS) is considered as the lowest layer and provides
virtualised computer infrastructure components as a ser-
vice. Above this, Platform as a Service (PaaS) delivers
computing environments tailored to specific needs as a
service. Service access or integration is enabled by the
Components as a Service (CaaS). The upper-most layer,
Software as a Service (SaaS), provides complex soft-
ware functionality.

Next to cloud computing, Service-oriented archi-
tectures are based on the idea of exposing software
functionality as services to be used by independent par-
ties. Their inherent independence of a specific platform
and operating system make them perfectly suitable to
connect service consumers and service providers over
the Internet and provide a technical foundation for cloud
computing as outlined in [2]. Dawoud et al. [1] de-
scribed SOA and cloud computing as complementary
concepts that intersect in the CaaS layer providing e.g.
Web Services. In addition, a platform can be offered at
the PaaS layer to provide custom Web Services. These
services can be used by composed applications (offered
as SaaS) that orchestrate and consume services and data
from different sources. The flexibility concerning the
integration of resources and the independent scalability
of each service are the major benefits of the combina-
tion of both concepts.

However, the combination of SOA and cloud com-
puting facilitating the provision of composed applica-
tion and services that integrate and orchestrate services
from different sources pose new challenges to security.
Since services and applications are exposed to the Inter-
net and are used in a global context, the management of
user identities across organisational borders is a key ele-
ment to perform access control and to prevent unautho-
rised access in a decentralised environment. Open Iden-
tity Management Models support the sharing of identity
information across several trust domains in a controlled

2010 IEEE World Congress on Services

© 2010 IEEE



manner. Clients can request identity information from
the identity management systems and convey this infor-
mation in an interoperable format to a requesting party.

Besides identity provisioning, confidentiality and
integrity of exchanged, stored, and processed informa-
tion must be ensured. Several specifications emerged
to protect information at different layers. For instance,
a secure channel can be used to protect exchanged in-
formation, while signature and encryption mechanisms
applied to a message can also protect stored and pro-
cessed information.

In general, these security requirements are stated in
security policies that configure the secure interaction of
participants in a service-based system. Policies facil-
itate the negotiation of security requirements between
services and service clients to enable interoperability at
runtime. This enables a seamless usage of services in
the cloud to build composed applications.

However, due to the complexity of the involved
specifications, the variety of security mechanisms and
the flexibility of service-based systems, such policies
are hard to understand and even harder to codify. To
overcome these limitations, we foster a model-driven
approach that generates security configurations based
on system design models annotated with security re-
quirements. Our model-driven approach integrates se-
curity intentions in system design models using the in-
tegration schema introduced by SecureUML in [3] and
enables a modeller to state basic requirements on an
easily comprehendible level. However, the transforma-
tion from simple security intentions to complex secu-
rity configurations is a challenging task, since differ-
ent strategies might exist to enforce a security intention.
Since security expert knowledge is required to perform
this transformation, we have specified and formalised a
security pattern system for service-based systems that
provides this knowledge. This pattern system is used
to guide and automate the transformation process from
modelled security intentions to security configurations.

Our model-driven approach constitutes the founda-
tion for our Service Security Lab that facilitates the pro-
vision, consumption, and orchestration of cloud-based
Web Services. These services are integrated in com-
posed applications that can be created by the user and
are instantiated in a virtualised environment. Our cloud
platform facilitates developers and security engineers
to test Web Services with different security configura-
tions and in different security environments. The func-
tioning of security modules can be monitored and anal-
ysed as well as the enforcement and application of secu-
rity mechanisms. Our model-driven approach enables a
simple and comprehensible generation of these security
configurations.

Altogether, we present our Service Security Lab in
this paper that

• enables a user to create Web Service-based com-
posed web applications using a visual modeller.

• enables a user to upload, orchestrate, execute, and
test own services.

• secures a composed application using a pattern-
driven generation of security configurations.

• enables to monitor communication and analyse the
security modules used to enforce security.

This paper is structured as follows. Section 2 intro-
duces basic security concepts to secure services in the
cloud. Our model-driven approach to setup and con-
figure secure systems is explained in the next Section.
Section 4 provides an overview about the architecture
of our Service Security Lab. Building on that, Section
5 outlines the usage steps of our platform to instanti-
ate and execute a secured system. Related work is dis-
cussed in Section 6, while Section 7 concludes this pa-
per and presents future work.

2. Securing Services in the Cloud

This section gives a brief introduction into secu-
rity concepts required to implement security in decen-
tralised systems as SOA and the cloud.

2.1. Identity and Trust Management

Traditionally used identity management solutions
were designed for closed domains. User attributes were
stored in a proprietary data model and exchanged in a
fixed format between the identity management and ap-
plications. While participants within the domain under-
stand this format, this would not apply for those outside
the domain. Open identity management models rely on
interoperable systems to easily express, intuitively se-
lect and securely transport identity information. As no
single identity system is suitable for every identity sce-
nario, an identity metasystem has been specified e.g.
with the OASIS Identity Metasystem Interoperability
specification 1.0 [4]. It abstracts from concrete iden-
tity management technologies and provides the neces-
sary mechanisms to describe, exchange and distribute
identity information across identity management solu-
tions. Usually, three different roles are considered in
the Identity Metasystem as depicted in Fig. 1.

• The Subject represents the user to which the digital
identity is associated.

2010 IEEE World Congress on Services

© 2010 IEEE



Figure 1. Identity Metasystem Participants

• An Identity Provider supplies the digital identity
for the Subject. In order to request identity infor-
mation, an Identity Provider offers a Security To-
ken Service (STS).

• A typical Relying Party is an application which re-
lies on the issued security tokens.

The architecture of the identity metasystem is
based on open standards such as WS-Trust. One of
the main problems inherent to open identity manage-
ment models is the establishment of trust relationships
between independent parties. In order to trust on exter-
nal security tokens, an established trust relationship is a
necessary prerequisite.

2.2. Policy Management

Security requirements expressed in policies comply
to security goals such as confidentiality, integrity, au-
thentication and authorisation. To fulfill these require-
ments, the service consumer may use for instance WS-
Security to protect exchanged information and to con-
vey security tokens that provide identity information.

In general, the standards WS-Policy and WS-
SecurityPolicy are used to express security require-
ments of services in a machine-readable way. WS-
Policy provides a general framework for web service
policies, while WS-SecurityPolicy is an extension with
elements to express security related requirements.

To invoke a service, a service consumer can request
such a policy from the service. The consumer intersects
this policy with its own policy to find a policy alterna-
tive that fits both – service and consumer. Using the se-
lected policy alternative, the consumer can request the
service. The service must reject incoming messages that
do not meet the requirements stated in its policy.

3. Model-driven Creation of Secure Com-
posed Applications

Our cloud-based Service Security Lab facilitates
users to orchestrate, execute and test composed appli-
cations using a visual modeller. To implement the func-
tional and security requirements specified at the mod-

elling layer, our cloud platform has to ensure two as-
pects: The system with all involved services and web
application components must be instantiated in a vir-
tual machine according to the functional requirements
and the services must be configured in compliance with
the modelled security requirements. As illustrated in
Fig. 2, our approach consists of three layers. Functional
and security requirements, expressed at the modelling
layer, are translated to a platform independent model.
This model constitutes the foundation to setup the vir-
tual machine, application server, services and composed
applications that are provided to the user.

Figure 2. Model-driven Security in SOA

In particular, our model-driven approach requires
an automated generation of enforceable security config-
urations based on the modelled security requirements.
The modelling of these requirements, the structure of
the platform-independent model and the transformation
process across these layers are explained in this Sec-
tion. Additional information concerning this model and
our pattern-driven transformation process are provided
in [5] and [6].

3.1. Modeling Secured Systems

System design models such as FMC block dia-
grams or UML models are the foundation to enable
users to model the structure of a system and to state
security requirements in an easy accessible way. The
elements in these modelling languages are annotated
with security intentions that are defined by our security
modelling language SecureSOA [6]. SecureSOA uses
the integration schema defined by SecureUML [3] to
enable the enhancement of system design models with
security-related modelling elements.

2010 IEEE World Congress on Services

© 2010 IEEE



Figure 3. Modelling Security Intentions

A simple example diagram is shown in Fig. 3. A
user leverages a web frontend to access a service. More-
over, a Security Token Service (STS) is deployed that is
trusted by the service and the user. The STS can authen-
ticate the user and issue a security token. These tokens
can be sent along with the request message to access the
service.

In addition to the system structure, Fig. 3 depicts
two security intentions representing security goals that
must be enforced by the security infrastructure. Each
security intention refers to a security profile that lists
security mechanisms that can be used by our platform
to implement security in an instantiated use case. Pro-
files are used to abstract from technical details at the
modelling layer. They are predefined by our platform
but can be adjusted while configuring a use case to meet
the user needs. The profile High for Identity Provision-
ing in Fig. 3 requires the usage of SAML tokens, while
the Low profile would allow Username and Password.

3.2. A Platform-independent Model for Secure
Service-based Systems

As aforementioned, we use a domain-independent
model as an abstraction layer to concrete security con-
figurations. Our model describes basic entities in a
service-based system (e.g. clients and services), the re-
lationships and interactions between these entities, and
the information that is exchanged in the scope of these
interactions.

In addition, a policy meta-model is part of our
domain-independent model and supports the expression
of security requirements concerning communication re-
lated security goals. Our model serves as an abstraction
layer for security policy languages and simplifies the
handling and statement of security requirements.

A policy in our platform-independent policy meta-
model consists of several Policy Alternatives that con-
tains a list of Security Constraints. In general, a Secu-
rity Constraint describes a requirement to fulfill a Se-
curity Goal and contains information describing what
has to be secured and which security mechanisms must
be used. An example is shown in Fig. 4. The User

Authentication Constraint requires that the sender of a
message adds information about his identity to the mes-
sage. Therefore, this constraint references a list of re-
quired claims and an issuer of the identity information.

Figure 4. Policy Model Exmaple

3.3. A Model-driven Transformation

The transformation of a system design model to a
secured running system is performed as follows: infor-
mation specified at the modelling layer is gathered in
our domain-independent model. Finally, the informa-
tion in the model is transformed to configuration files
that are used to instantiate the system.

3.3.1. Pattern-based Transformation of System De-
sign Diagrams. Two types of information have to be
extracted from the modelled system diagrams and must
be transformed to our domain-independent model: In-
formation about the structure of a system (e.g. involved
entities and their relations) and security related aspects.
The transformation of the system structure visualised in
a system diagram to our domain-independent model is
straightforward, since these modelling elements (e.g. a
service modelled in FMC) can be mapped directly.

However, the transformation from abstract security
intentions to security constraints for our policy model is
quite challenging, since a simple mapping is not suffi-
cient. Expert knowledge might be required to determine
an appropriate strategy to secure services and resource,
since multiple solutions might exists to satisfy a security
goal. For example, confidentiality can be implemented
by securing a channel using SSL or by securing parts of
transferred messages using WS-Security. To describe
these strategies and their preconditions in a standardised
way, we foster the usage of security configuration pat-
terns that are based on the idea of design patterns [7].
We have defined a formalised system of security con-
figuration patterns to enable an automated application
of security patterns in the transformation process. Each

2010 IEEE World Congress on Services

© 2010 IEEE



Figure 5. Service Security Lab Architecture

security configuration pattern provides a set of policy
constraints (solution) for a security intention (problem).
In addition, conditions are defined for each pattern that
determine its applicability.

Overall, our security configuration patterns enable
an automated creation of security policy constraints
based on simple security intentions [5].

3.3.2. Generating System Configurations. The final
step in our model-driven approach is the transforma-
tion of security configurations into enforceable WS-
SecurityPolicies. Thereby, the Policy Alternatives are
transformed separately into alternatives of WS-Policy
containing required WS-SecurityPolicy assertions. The
transformation of an alternative is divided into three
phases to generate the binding assertion, the protec-
tion assertions, and the supporting token assertions of
the alternative. These assertions describe requirements
regarding the usage of WS-Security and WS-Trust in
terms of the provision of security tokens and the use of
encryption and signature algorithms and options [8].

4. The Service Security Lab

Our Service Security Lab is a cloud platform that
enables users to assemble and test secure service-based
applications. These composed applications are created
using our model-driven approach described in the previ-
ous section. Fig. 5 gives an overview about the compo-
nents in our architecture. Our platform consists of three
main components that realise the dynamic instantiation
of composed applications, creation and distribution of
security configurations, as well as the monitoring and
analysis of applied security mechanisms.

1. Scenario Management – The scenario manage-
ment component enables users to model the system
structure in a visual designer. Services provided by
a repository (service pool) can be mapped to the
services modelled in the system diagram. In ad-
dition, this component is responsible to setup and
configure a composed application in a virtual ma-
chine in accordance to a model. The management
service creates a copy of a virtual machine image
that provides a basic system with an application
server and a management web service. The vir-
tual machine’s management web service is used to
deploy services and configuration files within the
virtual machine as shown in Fig. 5. The Service
Security Lab provides a fresh and exclusive virtual
machine for each user session. Automatic VM pro-
visioning and rollback after usage is realised us-
ing the Tele-Lab virtual machine management ser-
vices. Tele-Lab [9] is a virtual lab intentionally
developed for providing a hands-on training envi-
ronment for IT security lections, but can dynami-
cally provide virtual machines from preconfigured
images for any purpose.

2. Policy Management – In addition to the sys-
tem structure, the visual designer can be used to
state security intentions to specify security require-
ments. The security management component gen-
erates system configurations based on the mod-
elled security requirements using the transforma-
tion process described in Section 3.3. The pattern
engine shown in Fig. 5 performs the first transfor-
mation step using our security configuration pat-
tern system and resolves a platform-independent

2010 IEEE World Congress on Services

© 2010 IEEE



Figure 6. Process to Configure and Execute a Composed Application

system model and security constraints. In the
second transformation step, concrete system con-
figurations (e.g. WS-SecurityPolicy) are created
by the policy generator component. The created
policies and configuration files are used by the
scenario management component to configure the
composed application.

3. Security Analysis – After executing a use case, a
user can analyse the exchanged messages and in-
spect security modules. This is done by the secu-
rity analysis component and is based on monitor-
ing agents deployed in the virtual machine. These
agents intercept messages and forward these mes-
sages to the message monitor of the security anal-
ysis component. The message visualiser aligns
monitored messages with the modelled entities and
enables users to track the communication and the
behaviour of security modules easily.

5. Demonstration

This section illustrates the process that is per-
formed to setup, instantiate and run a composite appli-
cation using our cloud platform. Moreover, the mod-
elling of scenarios is described in detail, since this is
the foundation to create secure composite applications.

5.1. Usage Steps

Fig. 6 illustrates the overall process and highlights
activities that are performed by the user:

Model your Composed Application – In the first
step, the user can create a composed application
by modelling the structure of the desired system.
Moreover, security related aspects such as secu-
rity intentions and trust relationships can be mod-
elled as well. For this purpose, we integrated the
web-based modelling tool Oryx [10] in our plat-
form and added our security design language Se-
cureSOA (see Section 3.1) as a stencil set for Oryx.
Scenario modelling is illustrated in Section 5.2 us-
ing the example of a web shop scenario.

System Model Verification – The cloud platform ver-
ifies the modelled system to ensure that an exe-

cutable system can be created. Moreover, the mod-
elled security aspects are verified to ensure that se-
curity patterns can be applied to secure the system.
For instance, the security intention user authenti-
cation requires a trust relationship between the ser-
vice and its clients, since these users must be reg-
istered at the service or at an identity provider to
enable the authentication.

Configure your Security Settings – In addition to
the system model, the user can specify security
profiles that are referenced by the security inten-
tions. As introduced in Section 3.1, each profile
describes security mechanisms that can be used to
secure the composite application.

Apply Security Patterns – Security patterns describe
strategies to secure a service (Section 3.3). Our
security configuration patterns resolve a set of se-
curity mechanisms and protocols for each compo-
nent in the system. These requirements are stored
in our platform independent policy model as secu-
rity constraints.

Create Security Configurations – Our platform inde-
pendent model is transformed to concrete security
policy languages (e.g. WS-SecurityPolicy in the
scope of Web Services) that can be deployed and
enforced at the services and frontends used in the
composed application.

Execute the Composed Application – The Tele-Lab
VM management (Fig. 5) provides a virtual ma-
chine for the user. The applications and security
policies created in the previous step are deployed
to the VM by the scenario management compo-
nent. The user can access the scenario using a web
frontend.

Inspect Security Modules and Exchanged Messages
Our platform enables users to gain insight into ser-
vices and the security modules used to enforce se-
curity policies. For each service, the security mod-
ules can be visualised that process and secure re-
quests and responses. The messages that passed
these modules can be inspected as well. Fig. 7
shows the visualisation in our platform that depicts
a chain of security modules and a service request

2010 IEEE World Congress on Services

© 2010 IEEE



that passed this chain. The message security proto-
cols and mechanisms used to secure this message
are analysed and highlighted.

Figure 7. Security Module and Message Visu-
alisation

5.2. Modelling a Scenario

Fig. 8 illustrates the structure of a composite exam-
ple application and its notation using the visual mod-
eller that is integrated into our Service Security Lab.
This scenario defines an online store web application
that uses three external services; a catalogue, a payment
and a shipping service. Note that each modelled entity
indicates its role (Client, Service or STS) using UML
stereotypes. The catalogue service implements an inter-
face to list and query products that are offered by the on-
line store. This modelled entity is mapped to a web ser-
vice listed in the service repository that integrates Ama-
zon web services. The payment service shown in Fig.
8 represents an external service which handles the pay-
ment for the store. In order to do so, the service needs
payment information including a payment amount and
credit card data. Moreover, a shipping service is re-
quired by the front end that initiates the shipping of the
goods using the recipients address.

Users in this scenario have an account at their
trusted bank and at the registration office, who act as
identity providers managing the user’s digital identity
as introduced in Section 2.1. The payment and the ship-
ping service have established a trust relationship with
these identity providers.

In addition, various entities in this use case are an-
notated with security intentions. The intentions data

Figure 8. SecureSOA Web Shop Example

confidentiality and identity provisioning are used to en-
sure the protection of the exchanged messages and to
require the provisioning of identity information.

6. Related Work

Modelling security requirements for secure sys-
tems is an emerging topic. Rodrı́guez et al. [11], Wolter
[12], and Breu et al. [13] proposed enhancements for
process models and UML diagrams to express security
requirements. However, these approaches do not pro-
vide a transformation of communication-related secu-
rity requirements to enforceable security policies such
as WS-SecurityPolicy.

This has been addressed by Jensen and Feja who
described a model-driven generation of Web Service se-
curity policies to enforce data protection [14].

SecureUML [3] introduced by Basin et al. is a se-
curity modelling language to describe role-based access
control and authorisation constraints. To integrate this
language in different types of system design languages,
they proposed an integration schema that is the founda-
tion of the modelling approach used in this paper.

Jürjens presented UMLSec [15] to express and
verify security relevant information within UML-
diagrams. Since all security aspects need to be de-
scribed at the modelling layer, this approach does not
provide a simple notion for security intentions.

Satoh and Yamaguchi introduce an intermediate
model to transform a WS-SecurityPolicy into platform-
specific configuration files [16]. This model repre-
sents the WS-Security message structure and the mean-
ings of signatures and encryption specified in a WS-
SecurityPolicy.

In the recent years, various security patterns have
been defined. Using these security patterns, Delessy de-

2010 IEEE World Congress on Services

© 2010 IEEE



scribed a pattern-driven process for secure SOAs [17].
An automated generation of security policies is not de-
scribed.

7. Conclusion and Future Work

In this paper, we presented our cloud-based Service
Security Lab that enables the creation and on-demand
provisioning of composed applications and Web Ser-
vices orchestrations. This platform is designed as a
virtualised testing environment for service-related secu-
rity concepts and security components. Users can create
composed application using a visual modeller that spec-
ifies the structure of the applications in terms of con-
sumed and orchestrated services (e.g. data providing
services). The user can integrate external services (e.g.
Amazon services), use the cloud platform to provide his
own services (Platform as a Service) or compose prede-
fined services provided by the cloud platform (Compo-
nent as a Service). These composed applications and
services are instantiated and provisioned on-demand in
a virtualised environment for each user. Our platform
enables users to run these applications and to monitor
the security components in the system. A user can spec-
ify security requirements for each service and can anal-
yse how security requirements are enforced.

However, the generation of security configurations
in a distributed system is a complex task, since vari-
ous security mechanisms and options can be chosen.
To simplify the generation of security policies that can
be applied to the orchestrated services, we introduced
a model-driven approach that transforms security inten-
tions to enforceable security policies. This transforma-
tion is based on a set of security configuration patterns
that provide security expert knowledge to configure the
system. Our platform allows users to specify these se-
curity intentions in system models to enable a simple
and easily comprehensible specification of security re-
quirements. While instantiating a composed application
for a user, the services are configured according to the
generated policies using our model-driven approach.

References

[1] W. Dawoud, I. Takouna, and C. Meinel, “Infrastructure
as a Service Security: Challenges and Solutions,” Pro-
ceedings of the 7th IEEE International Conference on
Informatics and Systems, p. 8, March 2010.

[2] M. Jensen, J. Schwenk, N. Gruschka, and L. L. Ia-
cono, “On technical security issues in cloud computing,”
Cloud Computing, IEEE International Conference on,
vol. 0, pp. 109–116, 2009.

[3] D. Basin, J. Doser, and T. Lodderstedt, “Model driven
security: from uml models to access control infrastruc-

tures,” ACM Transactions on Software Engineering and
Methodology, vol. 15, no. 1, pp. 39–91, January 2006.

[4] OASIS, “Identity Metasystem Interoperability
Version 1.0 ,” OASIS Standard, July
2009. [Online]. Available: ”http://docs.oasis-
open.org/imi/identity/v1.0/identity.html”

[5] M. Menzel, R. Warschofsky, and C. Meinel, “A Pattern-
driven Generation of Security Policies for Service-
oriented Architectures,” in IEEE International Confer-
ence on Web Services (ICWS 2010), 2010.

[6] M. Menzel and C. Meinel, “SecureSOA - Modelling
Security Requirements for Service-oriented Architec-
tures,” in IEEE International Conference on Services
Computing (SCC 2010), 2010.

[7] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacob-
sen, I. Fiksdahl-King, and S. Angel, A Pattern Lanuage:
Towns - Buildings - Construction. Oxford University
Press, 1977.

[8] G. Della-Libera, M. Gudgin, and et all, “Web services
security policy language (ws-securitypolicy),” Public
Draft Specification, Juli 2005.

[9] C. Willems and C. Meinel, “Tele-lab it-security: an ar-
chitecture for an online virtual it security lab,” Inter-
national Journal of Online Engineering (iJOE), vol. 4,
2008.

[10] G. Decker, H. Overdick, and M. Weske, “Oryx - an open
modeling platform for the bpm community,” in BPM,
2008, pp. 382–385.

[11] A. Rodrı́guez, E. Fernández-Medina, and M. Piattini,
“A bpmn extension for the modeling of security require-
ments in business processes,” IEICE Transactions, vol.
90-D, no. 4, pp. 745–752, 2007.

[12] C. Wolter and A. Schaad, “Modeling of task-based au-
thorization constraints in bpmn,” in BPM, 2007, pp. 64–
79.

[13] M. Hafner and R. Breu, Security Engineering for
Service-oriented Architectures. Springer, October
2008.

[14] M. Jensen and S. Feja, “A security modeling approach
for web-service-based business processes,” Engineering
of Computer-Based Systems, IEEE International Con-
ference on the, vol. 0, pp. 340–347, 2009.

[15] J. Juerjens, “UMLsec: Extending UML for Secure Sys-
tems Development,” in UML ’02: Proceedings of the
5th International Conference on The Unified Modeling
Language, 2002, pp. 412–425.

[16] F. Satoh and Y. Yamaguchi, “Generic security policy
transformation framework for ws-security,” in IEEE In-
ternational Conference on Web Services (ICWS 2007).
Los Alamitos, CA, USA: IEEE Computer Society, 2007,
pp. 513–520.

[17] N. A. Delessy, “A pattern-driven process for se-
cure service-oriented applications,” Ph.D. dissertation,
Florida Atlantic University, Boca Raton, Florida, May
2008.

2010 IEEE World Congress on Services

© 2010 IEEE




