
Realization of an Expandable Search Function for an E-Learning Web Portal

Maria Siebert

Hasso Plattner Institut
Universität Potsdam
Potsdam, Germany

maria.siebert@hpi.uni-potsdam.de

Christoph Meinel

Hasso Plattner Institut
Universität Potsdam
Potsdam, Germany

christoph.meinel@hpi.uni-potsdam.de

Keywords-search, plug-in architecture, Django, tele-teaching
Abstract—When providing a huge amount of content to

users, the search engine is an important part of the platform.
On most web sites it is the most important entry point to the
data archive. That is why it is an interesting research topic.

In this paper we present a solution how it is possible to make
the search function expendable by using plug-ins. We show, why
this is required in our web application, which is constantly
growing through the creation of more searchable meta data.
Therefore we show, how our requirements can be fulfilled and
discuss the accompanying advantages and disadvantages.

I. INTRODUCTION

Most users of the internet use Google or Bing as start

page. It is the easiest possibility to find a web page for a

specific topic. Search pages are also used as short cut to

known web sites. For example it is a common request to

type wikipedia with the searched term, to get the link to

topic at the wikipedia page.

Also when entering bigger web sites like web shops

or video portals many users use the local search engine

to find the desired content. This becomes more important,

when the web page has a big amount of data and therefore

is harder navigable through a normal menu structure. So

when providing a huge amount of content to the users, the

search engine becomes one of the most essential parts of the

platform.

Search functions using semantic web technologies have

been researched for years now [1]. Different approaches

have been tried [2], even in e-lecture context [3][4]. There

are other solutions for search enhancement, which uses user

activity logs[5][6].

Our tele-teaching portal tele-TASK is capable of gaining

structured meta data from a lot of different sources, like

user generated data, log files or even the audio or video

stream. Therefore we need the possibility to combine these

different meta data fragments for search functions and to test

them against each other. That is why we developed a flexible

method for enhancement of the core search functionality,

which is described in this paper.

Classical development strategies are rarely used when

developing web applications. New design principles like

SCRUM and DRY are used instead. The usage of frame-

works increases [8]. This results in short development phases

enabling the developers to create new functions rapidly. But

it also results in a lack of usage of proven design principles

used in classical application development. Using plug-ins for

web applications is mostly uncommon. Most so called plug-

ins should not be called like this. They are rather libraries

than real plug-ins.

This paper will start with a short description of the

underlying web application the tele-TASK portal and the

design and implementation of the used plug-in architecture.

Afterwards we have a look at the possibilities, which comes

with the usage of the Django framework and we propose a

solution for the implementation of our search functionality

using the features of Django.

This paper will also focus on the obstacles we had to

overcome when implementing the core search engine. We

will also show the easy enhancement of the search engine

with the example of adding the search of play lists. At the

end there will be a short discussion on the advantages and

disadvantages of the solution.

A. About the tele-TASK portal

The implemented tele-teaching portal tele-TASK1 pro-

vides a large amount of lectures and videos. The videos,

which are produced using the tele-TASK system [9], [10],

are captured with one audio and two video streams, allowing

separated video streams for the lecturer and the digital

presentation. The capturing system, which is used since

2002, allows to create a huge number of recordings of

lectures without much effort.

The video portal itself is the platform to provide the gen-

erated video content to the whole world, allowing everybody

to view a high percentage of the lectures held at our institute.

Nearly 3000 lectures can be found. To make it easier for

the user to find videos about particular topics, many of the

lectures are split into handy video clips with extra meta data.

All this data establishes a good basis for doing research

with real data and real users.

1http://www.tele-task.de

9th IEEE/ACIS International Conference on Computer and Information Science

978-0-7695-4147-1/10 $26.00 © 2010 IEEE

DOI 10.1109/ICIS.2010.117

361



B. About the architecture of the tele-TASK portal

The most important task of the portal is to provide the

lecture videos. But furthermore it should be a possibility to

gain more meta data. Therefore it is important to be able to

extend the existing functionalities with new ones. This would

result in a big connection overhead between the different

modules. A shortened version of the old structure with its

dependencies can be seen in figure 1. This image shows only

small extract of the whole module architecture. Because of

the high number of connections in the standard approach,

we decided to implement a plug-in architecture.

core

search rating

mytt

playlist

Figure 1. Extract of the structure without using plug-ins

Django itself does not provide any solution for building a

plug-in architecture. This created the requirement to build up

our own architecture. Therefore we implemented a plug-in

architecture based on class inheritance[11]. This architecture

allows to create flexible plug-in interfaces. Using this archi-

tecture a clear and maintainable structure can be developed,

as seen in figure 2.

The underlying idea of the plug-in architecture can be

shortly described as follows: The plug-in interface is de-

scribed as a class. This class provides functions stubs for all

functions which are required for the usage of the plug-in. For

writing a plug-in it is only required to extend this base class.

The plug-in will be detected automatically. Because the base

class provides function stubs, each plug-in needs to override

these functions if it wants to provide special functions.

With those architectural possibilities it was possible to

implement the search functionality, by providing a few base

classes with function stubs for creating parts of the database

request for the search function. The modules, which know

the data, provide the plug-ins by inheriting from these base

classes and implementing the required functions.

II. SEARCHING DATA IN DJANGO

Writing a search request for a Django application is really

easy. Because Django provides ORM for different databases

like MySQL or PostgreSQL, the developer does not need to

write raw SQL commands, which would create a database

dependent application. In the following section there will be

a short description of the Django ORM implementation and

afterwards follows a short introduction to the possibilities of

searching with Django.

A. Object-Relational Mapping (ORM)

Django provides an Object Related Mapping (ORM),

which allows the developer to use function calls for generat-

ing database requests. Because this paper focuses on search,

only requests for fetching data are relevant.

In Django the models are written as classes, where each

class maps to a database table. Each attribute of a class is

stored as a column of this database table (see listing 1).

1 class I18n(models.Model):
2 text = models.TextField()
3 language = models.ForeignKey(Language)
4

5 def __str__(self):
6 return self.text

Listing 1. Database table class for i18n

Inside the Django application these classes are used

for every data related work. Through the inheritance from

models.Model the developer can use the get function to get

each data row and the save function to save data changes.

With the delete function rows can be deleted as well. The

constructor of the class is used to generate new database

table rows. These functions can be overridden to perform

additional actions before or after changing the data.

core   

utils    

search   

rating

mytt    

playlist

Figure 2. New structure of modules with plug-ins

With this construction it is easy to forget about the

database itself and to write a database independent web

application. Django contributes all the magic that is needed.

It even simulates foreign keys for database engines, which

do not provide such technology, like the SQLite database.

362



B. Examples for search queries

Performing search request with Django using the ORM is

really simple. Django provides an entry point for searching

objects of a specific data type by using the ORM class

attribute objects (see listing 2).

1 series = Series.objects.all()
2 for series in series:
3 # Do something with the data

Listing 2. Django search request

The execution of such a query is lazy, which means it

is executed when the data itself is needed the first time. In

the example listing 2 the query is executed in line 2, when

generating the list for the iteration. This fact is important

when enhancing the search queries, because it allows to

create complex query objects.

These complex query objects can be generated by using

the filter or exclude function. The request in listing 3 line 1

searches for all series with an id between 10 and 100.

1 series = Series.objects \
2 .filter(id__lt = 100) \
3 .exclude(id__gt = 10)
4 series = Series.objects \
5 .filter(series__lecture__id__lt = 100)

Listing 3. Django search request using the filter function

These filters can become really complex SQL statements,

when using the automatic joins, provided by Django. For

example it is possible to search all series with lectures with

id less than 100. The lectures are connected to the series

using a many to many relation. So the filter query in line

2 of listing 3 would generate at least two joins to other

database tables.

When chaining filters and excludes, like in listing 3 line

1, the different parts of the where clause are combined using

AND. For complex queries which should check for values in

more than one field, like searching in title and description of

the data object, it is necessary to be able to use OR instead.

Therefore Django provides the Q object. In the listing 4 you

can see a search request for a series, with id < 100 or id

> 200.

1 q1 = Q(id__lt = 100)
2 q2 = Q(id__gt = 200)
3 series = Series.objects.filter(q1 | q2)

Listing 4. Django search request with Q object

When searching data, it is also important to order the

data available in specified columns. For example it is nice

to order the data by creation date. SQL provides the ORDER

BY clause as solution. Django implements this class in the

order by function to enable the developer to use the SQL

functionality. Therefore it is required to pass the name of

the table columns to the function. It is also possible to pass

names of joined table columns, but because there can be

more than one result in a join, the result can be unexpected.

1 series = Series.objects.all() \
2 .order_by(’start_date’)

Listing 5. Django search request with order by

SQL allows to create queries which calculate or count spe-

cial data. Therefore Django provides the annotate function,

which allows the use of the newly generated parameters in

filters or the order by clause. This can be used for ordering

the series by the number of lectures it offers.

1 series = Series.objects.all() \
2 .annotate(number_of_lectures=Count(’

lecture__id’)) \
3 .filter(number_of_lectures__gt=2) \
4 .order_by(number_of_lectures) \

Listing 6. Django request with annotation

Using a combination of these different possibilities easily

produces complex SQL statements. This results in the use of

a large amount of resources and the risk, that the database

server is not capable of answering the requests.

That is why Django also provides the possibility to have

more influence on the query generation using the extra
function. This function allows to manually add new tables

and build own SQL statements. But it also compromises the

clear partition between data class models and the database.

This brings the problem that the generated query is more

database dependent than it would be, when using the more

common Django database ORM functions. When using

some extra functions for more complex queries, we dis-

covered, that even small differences of the database version

result in a big test effort. That is why we decided to try to

surrender the usage of this function in the search context.

III. IMPLEMENTATION OF THE SEARCH ENGINE

For the implementation of the search engine, we wanted to

use the flexible approach of our plug-in architecture. There-

fore every function of the search should be expandable using

plug-ins. In the following sections, there will be a description

of the base plug-in interface and the implementation of

the different search tasks. At the end follows an example

describing how the search is enhanced with play list data.

A. SearchBase class

The base class for the whole search functionality is the

SearchBase class. It is an abstract class which provides some

functionality to generate search queries. Most importantly it

is the template for the generation of search type specific

classes.

This template is used for every search type, e.g. for

searching a series the class SearchSeries is created which

inherits from SearchBase. This class will have the query

Series.objects.filter(isVisible=True) pointing to the database

model of series and performing some extra request to check

if the series should be visible to the user. It also contains a

list of possible order by parameters which can be extended

363



by subclasses. This class can also contain the basic search

filter for searching for title or description.

1 class SearchBase(PluginBase):
2 searchType = ’’
3 searchFieldsForm = ’’
4 query = None
5 plugins = list()
6 orderBy = list()
7

8 def __init__(self, searchFieldsForm):
9 [...]

10

11 [...]
12

13 def generate_q_object(self, fieldtype,
fieldlogic, fieldtext):

14 return None
15

16 def prepare_order_by(self, query, order_by
= None):

17 for plugin in self.plugins:
18 query, order_by = plugin.

prepare_order_by(query, order_by)
19 return query, order_by
20

21 def generate_search_query(self,
userIsIntern=False, order_by = None):

22 [...]
23 return query

Listing 7. Structure of the class SearchBase

B. Filter/Exclude

The most important function for the search is the possi-

bility to reduce the number of search results by using search

terms for different searchable fields. These search fields must

be defined by plug-ins, because it has to be possible to

extend the list of searchable fields, when new searchable

data is available.

Therefore the base class SearchType (see listing 8) is

defined. This class collects the possible types, providing a

name and a display name for each.

1 class SearchType(object):
2 ’’’ Types available for search ’’’
3 name = ’’
4 displayName = ’’
5

6 def __init__(self, name, dName, pos=1000):
7 self.name = name
8 self.displayName = dName
9 self.position = pos

Listing 8. Class SearchType

After defining the search types it is also important to

define, how the field should be searched. As basic search

logics, there can be the following ones:

• contains: If it is selected, it is checked, whether the

field contains the search string

• does not contain: If it is selected, it is checked,

whether the field does not contains the search string

• is: If ii is selected, it is checked, whether the field is

equal with the search string

• is not: If it is selected, it is checked, whether the field

is not equal with the search string

1 class SearchLogic(object):
2 ’’’ Logics available in search ’’’
3 name = ’’
4 displayName = ’’
5

6 def __init__(self, name, dName, isP=True):
7 self.name = name
8 self.displayName = dName
9 self.isPositive = True

Listing 9. Class SearchLogic

The base class for the search logic is defined analog to

the design of the search types (see listing 9).

1 def generate_search_query(self, userIsIntern=
False, order_by = None):

2 query = self.query
3 for form in self.searchFieldsForm.forms:
4 try:
5 [... (prepare data)]
6 # Building Q-Objects for better

chaining of filters
7 if len(fieldtext) > 0:
8 q = None
9 for plugin in self.plugins:

10 q_add = plugin.generate_q_object(
fieldtype, fieldlogic,
fieldtext)

11 if q and q_add:
12 q = q | q_add
13 elif q_add:
14 q = q_add
15 if q:
16 if checkSearchLogicIsPositiv(

fieldlogic):
17 query = query.filter(q)
18 else:
19 query = query.exclude(q)
20 except Exception, e:
21 print "Error while generating search

query", e
22 [...]
23 return query

Listing 10. Function generate search query (Filter query)

With these two plug-in interfaces defined, it is possible

to enhance the basic generate search query function of the

SearchBase class. Therefore every plug-in of the base class,

thus every subclass of this class, is called with the function

generate q object (listing 10 line 10). The specialized func-

tion is able to generate a Q object, which is combined with

other generated Q objects and added as filter or exclude to

the existing query (listing 10 line 16).

C. Order by

Another important function for the user when displaying

the results is the possibility to display them in a specific

364



order. Therefore the Django order by function is used. The

default use case will be the ordering by an existing database

field, like the name or the start date of the series or lecture.

But it should also be possible to use annotations for the

preparation of order by. Therefore the prepare order by
function (see listing 11) is provided, which can be used to

enrich the query with additional data, using Django anno-

tations. This is useful for ordering by number of elements

or an average value, for example when ordering lectures by

their ratings.

24 def generate_search_query(self, userIsIntern=
False, order_by = None):

25 query = self.query
26 [...]
27 if order_by:
28 query, order_by = self.prepare_order_by(

query, order_by)
29 if order_by:
30 query = query.order_by(order_by)
31 return query

Listing 11. Function generate search query (Order by)

With these two possibilities using filter and order by

function for generating a search request, the most common

operations are available. In the following paragraph there

will be a short description, how the SQL search can be

extended using pre and post processing of the data.

D. Other enhancements for the search

On the one hand it is possible, that the normal search

result creation is not finished after executing the SQL query.

It may not be enough to filter all possible results and order

them. Furthermore it is required to check for additional

criteria or add kindred elements to the list of search results.

Therefore the base class can be extended by extra func-

tions, which iterate the result list and add or remove entries

of this list. These functions will create more overhead

while gaining the results, but allow to provide database

independent filters.

On the other hand it can be necessary to process the search

terms before creating the database request. For example it

is possible to find similar terms, which can be searched as

well. Therefore a function can be provided, which scans all

search terms and returns a post-processed list of these words.

E. Example: play lists

Play lists provide the possibility to the users of the tele-

TASK portal to create own compositions of the content in

the portal. For example it can be used to provide a subset

of a course or the combination the same topic lectured in

different courses.

Play lists provide their own data structure using the same

media entries as scenes and lecture. Through this connection

it is possible to find the play lists connected with a specific

lecture or series.

To search for series or lectures, which are part of a play

list with a specific title, it is necessary to extend the search

types with a search type for the play list title. Aside it is

important to create the entry point for the play lists search be

inheriting from the SearchBase class (see listing 12). This

entry point will have the Playlist model class as starting

point for the query.

1 class PlaylistSearch(SearchBase):
2 def __init__(self, searchFieldsForm)
3 super(PlaylistSearch, self).__init__(

searchFieldForm)
4 query=Playlist.objects.all()

Listing 12. Structure of the class PlaylistSearch

With this class it is possible to write the search queries

for all known basic search types, like the title of series as

well as the new search type. Next to this, it is also essential

to extend the base search classes for lectures and series, so

they are capable of searching their content with this new

search type (see listing 13).

1 class SearchSeriesPlaylist(SearchSeries):
2 def generate_q_object(self, fieldtype,

fieldlogic, fieldtext):
3 q = None
4 if fieldtype == "search_playlist_title":
5 if fieldlogic == "search_Contains":
6 q = Q(lecture__media__playlistentry_

_playlistgroup__playlist__name_
_text__icontains = fieldtext)

7 [...]
8 return q

Listing 13. Extension of the search of series with play list title

With these few functions, the search is capable of dis-

playing the search results for play lists next to the existing

results and search for lectures, which are used in the play

lists found with these search criteria.

IV. ADVANTAGES AND DISADVANTAGES

As with every implementation there are some disadvan-

tages and advantages. We made experiences after the imple-

mentation, which could not be foreseen at the beginning.

Disadvantages:

• Development of complex queries: Because of the invis-

ibility of the complexity of the whole search query, a

query can be too complex for the database to process.

This is a big problem, when combining the queries,

because during development the worst combinations

are not tested properly. So an excessive load on the

database server can happen. This can be avoided when

testing each new statement accurately.

• Problems with SQL-optimization: The queries are gen-

erated by the plug-in architecture with some restrictions

on what a developer of a plug-in can do. So there

are less possibilities for doing SQL query optimization,

then there would be using raw SQL statments.

365



This problem comes with the usage of the Django

implementation for generating database queries. So it

would also appear, if the Django ORM is used anyway.

It can be solved by using more plug-ins for managing

sub queries or saving reusable intermediate data.

Advantages:

• Easy embedding of new data: With new types of meta

data being generated through new algorithms, it is easy

to include this data inside the existing search. As seen

in the play list example, it is not much work to enrich

the standard search with new data.

• Module independencies: The search module does not

depend on other more specific modules, like the play

list or annotation module. Therefore it is possible to

have a system without this function. Just by adding

these modules, the new functions will be available for

the users.

• Test possibilities: It is easy to exchange different imple-

mentations for testing. Sometimes it is not clear, which

solution is the best for a specific search task, so it is

possible to implement more than one solution and to

test them against each other. It is also possible to use

different search solutions parallel to each other to do a

direct comparison of the search results.

• Combination of search tasks: Due to the Object Related

Modelling, the different search tasks can be combined

easily for a better search result. For example it is

possible to search for a lecture with a specific title

which is held by a specific person and which is used

in a play list with a given name.

Because the number of possible combinations will

explode with the increasing of search types, this request

is enabled through the automatic plug-in chaining.

Most of the problems we had to overcome are a result

of the usage of the Django ORM and of the complexity

of our data structure. Obviously we had these problems,

because it was easy to produce more complex requests, but

these requests are the results the users need. Therefore the

architecture itself makes it easier to fulfil the wishes for new

enhancements of the search function.

V. SUMMARY AND FUTURE WORKS

The basic search functions are implemented and used by

the users of the portal. Therefore the design works fine. It

is also possible to use the architecture for enhancements as

seen when implementing the search for play lists and other

data like audio data retrieval and annotations.

For the future there should be more data gained, like OCR

data and data from the log files. More important than using

more data is a better usage of the data. So the functions

should be enhanced to use semantic technologies for the

expansion of the search domain to find similar search terms

or connections between different lectures.

It is also important to do more optimization of the search

requests. Therefore it is required, to provide more or better

functions in the search plug-in interface.

In the end, when we are capable of quickly finding

appropriate results, these results should also be used to

find related objects inside the portal, like related lectures

or series. With this function it is possible to give the users

informations about topics they could be interested in.

REFERENCES

[1] R. Guha, R. McCool, and E. Miller, “Semantic search,” in
WWW ’03: Proceedings of the 12th international conference
on World Wide Web. New York, NY, USA: ACM, 2003, pp.
700–709.

[2] J. Waitelonis and H. Sack, “Augmenting Video Search with
Linked Open Data,” in Proc. of Int. Conf. on Semantic Systems
2009, i-Semantics 2009, 2009.

[3] S. Linckels, S. Repp, N. Karam, and C. Meinel, “The virtual
tele-task professor: semantic search in recorded lectures,”
in SIGCSE ’07: Proceedings of the 38th SIGCSE technical
symposium on Computer science education. New York, NY,
USA: ACM, 2007, pp. 50–54.

[4] L. Zhuhadar and O. Nasraoui, “Personalized cluster-based
semantically enriched web search for e-learning,” in ONISW
’08: Proceeding of the 2nd international workshop on On-
tologies and nformation systems for the semantic web. New
York, NY, USA: ACM, 2008, pp. 105–112.

[5] Q. Cui and A. Dekhtyar, “On improving local website search
using web server traffic logs: a preliminary report,” in WIDM
’05: Proceedings of the 7th annual ACM international work-
shop on Web information and data management. New York,
NY, USA: ACM, 2005, pp. 59–66.

[6] J. Zhou, C. Ding, and D. Androutsos, “Improving web site
search using web server logs,” in CASCON ’06: Proceedings
of the 2006 conference of the Center for Advanced Studies on
Collaborative research. New York, NY, USA: ACM, 2006,
p. 22.

[7] R. T. Fielding and R. N. Taylor, “Principled design of the
modern web architecture,” ACM Transactions on Internet
Technology, vol. 2, no. 2, pp. 115–150, 2002. [Online].
Available: http://dx.doi.org/10.1145/514183.514185

[8] M. Jazayeri, “Some trends in web application
development,” in FOSE ’07: 2007 Future of Software
Engineering. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 199–213. [Online]. Available:
http://dx.doi.org/10.1109/FOSE.2007.26

[9] V. Schillings and C. Meinel, “Tele-task – tele-teaching any-
where solution kit,” in Proceedings of ACM SIGUCCS, Prov-
idence, USA, 2002.

[10] K. Wolf, S. Linckels, and C. Meinel, “Teleteaching anywhere
solution kit (tele-task) goes mobile,” in SIGUCCS ’07: Pro-
ceedings of the 35th annual ACM SIGUCCS conference on
User services. New York, NY, USA: ACM, 2007, pp. 366–
371.

[11] M. Siebert, F. Moritz, and C. Meinel, “Establishing an Ex-
pandable Architecture for a tele-Teaching Platform,” in 2010
Ninth IEEE/ACIS International Conference on Computer and
Information Science Article. Yamagata, Japan: IEEE Com-
puter Society, 2010.

366


