
CS-CGA: Compact and more Secure CGA

Ahmad AlSa’deh, Feng Cheng, Christoph Meinel

Hasso-Plattner-Institut, University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam, Germany

{Ahmad.Alsadeh, Feng.Cheng, Christoph.Meinel}@hpi.uni-potsdam.de

Abstract— Cryptographically Generated Address (CGA) is one of

the most novel security features introduced in IPv6 suite. CGA is

designed to prevent addresses theft without relying on trust

authority or additional security infrastructures. However, CGA

is relatively computationally intensive, and bandwidth

consuming. Besides, it has some security limitations. This paper

defines a Compact and more Secure CGA (CS-CGA) version. We

adopt Elliptic Curve Cryptograph (ECC) keys in CGA instead of

standardized RSA keys in order to minimize the size of CGA

parameters and reduce CGA generation time. To enhance the

security of CGA against the global time-memory trade-off attack,

the subnet prefix is included in Hash2 calculations of CGA

generation algorithm. For the signature and the key calculations,

SHA-256 is used instead of SHA-1, which is known to have

security flaws.

Keywords- Neighbor Discovery Protocol (NDP);

Cryptographically Generated Addresses (CGAs); SEcure Neighbor

Discovery Protocol (SEND); IPv6 security; IPv6 addressing

I. INTRODUCTION

Cryptographically Generated Address (CGA) [1] is a
technique that offers authentication to IPv6 addresses without
the need to a third party or additional security infrastructure.
CGAs are IPv6 addresses, where the interface identifiers (IIDs)
are generated by one-way hashing of the node’s public key and
other auxiliary parameters. Thus, the IPv6 address of a node is
bound to its public key. This binding can be verified by re-
computing the hash value and comparing it with the interface
identifier of the sender IPv6 address.

CGA is an essential part of SEcure Neighbor Discovery
(SEND) [2]. SEND is designed to protect Neighbor Discovery
(ND) [3], and StateLess Address Auto-Configuration (SLAAC)
[4]. CGA is also proposed as one of the techniques to
overcome the security threats in Binding Update in MIPv6 [5],
because using other approaches, such as IPSec depends on
existing security infrastructure, which is not easy to deploy.

Although CGA is a promising security technique for IPv6,
it has some limitations and disadvantages. The main
disadvantage of using CGA is the computational cost. Besides,
CGA is not a complete security solution; it still has some
threats. As shown by Bos et al. [6], CGAs are exposed to
global time-memory trade-off attacks. These limitations may
prevent the use of CGAs, and leave IPv6 networks vulnerable
to many attacks, such as spoofing and Denial of Service (DoS)
attacks [9]. Therefore, it is important to mitigate these

limitations by enhancing CGAs security and improve its
performance before the wide deployment of IPv6.

To enhance CGAs security against the global time-memory
trade-off, a more secure version, called CGA++ [6] is
proposed. Unfortunately, CGA++ comes with additional cost
and it requires longer time than the generation of CGAs for the
same security parameters.

In [7], Cheneaua et al. propose an improved method for
generating CGAs by using Elliptic Curve Cryptograph (ECC)
keys instead of standardized RSA keys. ECC has a shorter key
for the same security level as RSA, which leads to smaller
packet sizes. Accordingly, the usage of ECC in CGAs can be
more suitable especially in resource-limited devices.

In this paper we present a modified CGA implementation
that incorporates ECC and CGA++. While CGA++ enhances
CGAs security, ECC reduces the size of CGA parameters
considerably and accelerates the CGA++ address generation
step. We call this modified CGA version as Compact and more
Secure CGAs (CS-CGAs). CS-CGAs can be preferred over the
standard CGAs in certain scenarios, because it is more secure
and provide a privacy protection without scarifying of the
performance.

The rest of the paper is organized as follows. Section 2
reviews CGAs, its advantages, limitations, and the possible
approaches for improvements. Section 3 describes our adoption
of ECC to CGA++ and its integration into SEND. The
performance of CGA and CS-CGA implementations are
studied in section 4. We conclude the work in section 5.

II. CRYPTOGRAPHICALLY GENERATED ADDRESS (CGA)

This section gives an overview about CGA parameters and
algorithm and then discusses the strengths and the advantages
of CGAs. The third part of this section introduces the
limitations of CGAs and the possible approaches to enhance its
security, improve its performance, and provide better privacy
protection.

A. CGAs parameter and algorithm

In IPv6, CGAs are known as self-certifying addresses. Any
node can generate its own CGA locally and sign messages
using its private key. The public key is attached to the signed
messages. Thus, the address and the public key are needed for
verifying the signature. Therefore, the receiver does not need to
have further communication with the sender for completing the
authentication verification process.

Published as: Ahmad AlSa'deh, Feng Cheng, Christoph Meinel, CS-CGA: Compact and more Secure CGA, in Proceedings of the 17th IEEE
International Conference on Networks (ICON'11), IEEE Press, Singapore, December 14-16, 2011.

For using CGAs, the sender and the receiver share the CGA
parameter data structure [1]. The “Modifier” field is a 128-bit
integer, which is randomly generated to strengthen the
robustness of hashed values and to enhance the privacy of the
generated addresses. The “Subnet Prefix” field is a 64-bit
subnet prefix of the IPv6 address. The “Collision Count” is an
8-bit collision counter used for Duplicate Address Detection
(DAD) to ensure the uniqueness of the generated address,
initially set to zero. The “Public Key” and the “Extension”
fields have variable length.

CGAs require another parameter, which is called security
Sec value. The Sec value lies between 0 and 7 and is designed
to increase the CGAs security level against brute-force attacks.
The Sec parameter is defined in hash extension technique [8],
which increases the effective hash length beyond the 64-bit. It
is encoded in the three leftmost bits of the interface identifier.

Figure 1 is a schematic diagram showing a representation of
CGA addresses generation processes. An address owner
computes two hash values (Hash1 and Hash2) using the public
key and other parameters. The CGA generation algorithm
should fulfill two conditions [1]:

1. The leftmost 64-bit of Hash1 equals the interface
identifier. The Sec, “u” and “g” bits are ignored in the
comparison. The 7th bit from the left in the 64 bit IID
is the Universal/Local bit or “u” bit. It is set to “1” to
mean that the IID is globally unique. The 8th bit from
the left is the Individual/Group or “g” bit, which is set
to “1” for multicast addresses.

2. The 16× Sec leftmost bits of Hash2 are equal to zero.
For example, if Sec = 1, the 16 leftmost of Hash2 are
zeros.

The verification of the address ownership procedure takes
two inputs: CGA address and CGA parameters. The receiver
validate the binding between a public key and CGA address by
re-computing the Hash1 value based on the received CGA
parameters, and comparing it with the IID of the sender. The
receiver knows that the message was sent by the owner of the
source address by verifying the signature using the sender
public key.

B. Strength and advantages of CGAs

Authentication by using CGAs can avoid many of the
attacks in IPv6 networks. CGAs can prevent address theft of
other nodes. When a node generates its address in a secure
way, it is hard for a malicious node to claim the ownership of
the new address. CGAs also can prevent DoS attacks, which
are usually realized based on spoofing of others address, such
as Duplicate Address Detection DoS Attack [9].

To impersonate another node’s address, an attacker needs to
find a public/private key pair, whose truncated Hash1 value
matches IID of impersonate node. The number of operations
required to impersonate a specific node by using brute-force
attack cost, on average, 2

59+16×Sec
 hash function evaluations.

The attacker needs to generate a valid modifier, whose cost
2

16×Sec
 hash computation and needs to try 2

59
 different interface

identifiers. On the other hand, the address owner is expected to
try, on average, 2

16×Sec
iterations to find the right Modifier value

that satisfies Hash2 condition. Therefore, Sec value is a scale
value parameter that governs the strength of CGAs.

CGAs can obscure the node IID to protect the privacy and
achieve anonymity. In a CGA algorithm, the Modifier value
should be chosen randomly by using random number generator
to avoid unpredictable or/and unlinkable values [1]. So, each
time CGA is calculated, a new IID is obtained. Different
Modifier values lead to different CGAs even for the same
public key. To avoid unique and fixed address, the node is
recommended to change its address over time. It is also
recommended to generate a new public key for a new network
address to avoid the possibility of identifying node by its public
key. Even it is still not easy to track based on the known public
key, because attacker usually tracks node based on its IP
address by using tracking tools, such as ping or traceroute.

RFC 4941 [10], Privacy Extensions for Stateless Address
Autoconfiguration in IPv6, generates a random number for IID
and changes it over the time to protect the privacy. However, it
does not provide protection against IP address spoofing attacks.
Therefore, CGAs are promising for preventing attacks and
protecting the privacy. But using CGAs is trade-off between
security and privacy protection in one side, and the
performance on the other side.

C. Cost of CGA generation

Unfortunately, CGAs are computationally heavy and are
not a complete security approach. These limitations may
prevent its usage in real scenarios. For example, mobile devices
have several constraints and requirements that may not be
benefit from CGAs security features for different reasons. First,
mobile nodes are resource-limited (battery, memory, processor,
and bandwidth). Second, mobile nodes need to change their
subnet frequently. Consequently it needs to generate a new
address, which means it needs a new CGA computation. Third,
the time is critical to realize handover operations within a few
hundreds of milliseconds to ensure adequate Quality of Service
(QoS).

There are several parameters and factors that impact CGAs
generation time and security, such as Sec value, Modifier, hash
function, and public key cryptosystem. These factors and their
effects on security, delay, and packet size are studied, and then
the possible improvements to a faster and more secure CGA
implementation are discussed.

SHA-1

Hash2

(112 bits)
16*Sec=0?

Increment

Modifier

No

Final

Modifier

(128 bits)

Subnet

Prefix

(64 bits)

Colision

Count

(8 bits)

Public Key

RSA

(variable)

SHA-1

 Hash1

Subnet Prefix Interface ID u g

Yes

CGA

64 bits

S e c

64 bits

leftmost 64 bits

16*Sec leftmost Hash2

bits must be zero

0

CGA

parameters

· Generate/ Obtain an RSA key pairs

· Pick random Modifier

· Select Sec value

· Set Colision Count to 0

U=g=1

Modifier

(128 bits)

0

(64 bits)

0

(8 bits)

Public Key

RSA

(variable)

0 1 2 ... 6 7

(59 bits are in used)

Figure 1. Schematic of CGA address generation

1) Sec value and Modifier
The Sec value is the core factor that has great impact on

both security level and CGA generation time. The increase in
Sec value leads to significant delay in the CGA generation
algorithm. Theoretically, the cost of generating a CGA
increases by 2

16
 for each Sec value.

RFC 3972 makes two recommendations to minimize the
delay introduced by using Sec value. First, the heavy part of
CGA generation algorithm (steps 1-3) [1] can be done in
advance, offline, or delegated to more powerful machine. But
in case of delegating the computation to powerful machine, the
question is how to distribute the calculated parameters to other
nodes in a secure way. Moreover, this approach returns back to
centralized model, whereas CGAs were originally proposed to
avoid relying on a third party. Furthermore, once this powerful
machine is compromised, all the other nodes will be
compromised as well.

The second approach is to use small Sec value. The node
should use the Sec based on its computational capacity. Sec
values higher than “1” are not recommended as they require a
lot of processing power and too much time. The use of small
Sec, “0” or “1”, is more suitable at this time. Cheneau et al.
carried out an experiment on Nokia N800 and they conclude
that only Sec = 0 is feasible for mobile devices when using
1024-bit RSA keys [7]. However, the CGA verification does
not depend on Sec value and it is relatively fast. Only two hash
calculations are required.

Another interesting idea to avoid long CGA computational
time is to use a stopping time condition for the brute-force
search address generation [11]. For Sec value greater than “0”,
there is no guarantee to terminate after certain number of
iterations. Large Sec value may cause unacceptable delays in
CGA generation. Therefore, time threshold can be used as an
input in the CGA generation. If the threshold has been
exceeded, the CGA generation algorithm terminates. Then, the
most secure hash value can be determined by selecting the hash
value that has the greatest number of zero bits in Hash2
rounded down to the nearest integer multiple of Sec.

2) Public key Cryptosystem
The selection of the public key cryptosystem is vital. It

determines the processing delays, computational costs and size
of NDP message associated with the cryptosystems. The key
pair generation time is substantially prolonged by increasing
key size. Therefore, the total CGA generation time is highly
influenced by the size of the key. Moreover, due to the SHA-1
intervals, the hashing time increases when the input length
exceeds a multiple of 512 bits. Hence, smaller public key
reduces the length of Hash1 and Hash2 input. Because, CGA
generation algorithm calculates many SHA-1operations to find
the valid modifier, it greatly benefits from shorter keys to
reduce the size of CGA parameter.

The Elliptic Curve Cryptograph (ECC) public key
cryptosystem is proposed to be used in CGA instead of a
standardized RSA key [7]. ECC has a shorter key for the same
security level as RSA, which leads to smaller packet sizes
compared to using of RSA. Also, the signing with the Elliptic
Curve Digital Signature Algorithm Cryptograph (ECDSA) is
faster than using the RSA equivalent. However, ECDSA needs

longer time for the signature verifications. To support
alternative public key cryptosystems, two internet drafts are
published. The first [12] describes how to use ECC with CGA
in SEND. The second [13] describes a mechanism to enable
SEND to select between different signature algorithms to use
with CGAs.

3) Hash function
Another factor that has impact on CGAs performance in

more than one way is the hash function. Standard CGAs use
SHA-1 (160 bit hash). But SHA-1 is vulnerable to collision-
free attacks [18]. Therefore, RFC 4982 [14] analyzes the
implications of attacks against the hash function, and they
update the CGAs specifications to support multiple hash
algorithms. However, RFC 4982 makes no recommendation
for hash function. RFC 6273 [15] analyzes possible threats to
the hash algorithms which are used in SEND. The authors
conclude that the attacks on the hash functions do not constitute
any practical threat to both RSA Signature Option and the
X.509 certificates, but the attacks against the hash algorithms
on CGAs compromise security in SEND. To reduce the time of
CGAs generation, Lee and Mun in [16] use MD5 hash instead
of SHA-1 in their modified CGA implementation. Since MD5
is simpler and has a shorter processing time. However, MD5
should not be used in CGAs, because it vulnerable to collision
free attacks [17].

D. CGA limitations and vulnerabilities

Bos et al. [6] have investigated the attack model of CGA,
and they found that CGAs can be vulnerable to global time-
memory trade-off and garbage attacks. Accordingly, they
propose more secure version of CGAs called CGA++. In this
version, the “Subnet Prefix” is included in the calculation of
Hash2, and all the “Modifier”, “Collision Count” and “Subnet
Prefix” values are signed by the private-key corresponding to
the public key used. Therefore, CGA++ ensures the ownership
of the corresponding private key even without using SEND
RSA signature option. The time-memory trade-off attack
cannot be applied globally, because the node generates new
address when it is moved to a new network and signing ND
messages provide a protection against garbage attacks [6] when
CGAs are deployed alone and not in SEND.

However, CGA++ needs more computations than CGAs for
the same Sec value. This complexity is due to two reasons.
First, the subnet prefix is included in Hash2 calculations.
Second, the digital signature is included in Hash1 calculation.
In case of using CGA++ within SEND, signing CGA
parameters twice is redundant and lead to the high cost.
Therefore, signing the message once is sufficient.

Still, there are some other limitations in CGAs. CGAs
mechanism can prevent the theft of another node’s address, but
CGAs cannot provide assurance about the identity of the real
node and it is not sufficient to guarantee that the CGA address
is used by the appropriate node. Since CGAs are not certified,
an attacker can create a new valid address from its own public
key and start a communication. For more security requirement,
a certificate authority is required to validate the keys. However,
the address owner can use the corresponding private key to
assert its ownership and to sign SEND messages sent from the

address. An attacker can impersonate other node address from
a valid public key, but cannot sign messages. So, the effect of
the attack is limited. Moreover, CGAs do not provide any sort
of protection against address scanning or any information about
the node’s privileges on the network. Also, the CGAs are
dynamically-generated, so it cannot be used for securing static
IPv6 addresses.

III. COMPACT AND MORE SECURE CGA (CS-CGA)

As seen in the previous section, some work has been done
to optimize CGAs. Most studies focus on improvement CGAs
generation time. The work in [6] focuses on enhancing CGAs
security with penalty on the performance. In this paper, we take
into account the security, performance and the privacy to obtain
an enhanced version of CGAs.

A. CS-CGA Design

Our Compact and More Secure CGA (CS-CGA)
implementation comes with some modifications to the standard
CGA implementation. First, the subnet prefix is included in
Hash2 calculation. Second, ECC is used instead of RSA
cryptosystem. Third, CGA parameter is signed and the
signature is included in Hash1 calculation. Also, a new flag,
CS-CGA flag, is defined to allow the use of mixed CGA and
CS-CGA. Figure 2 shows the schematic diagram of CS-CGA
generation process.

1) Including the subnet prefix in Hash2 calcalation
The prefix is included in Hash2 calculations, as done in

CGA++. Including the subnet prefix in Hash2 calculation has
the following advantages. First, it enhances the security of
CGAs against time-memory trade-off attack. The attacker
needs to generate separated database for each subnet. Second,
the mobile node privacy is protected, because it has to generate
new CS-CGA address for each different subnet.

2) Using ECC Cryptosystem
Because CGAs require to include the public key and other

parameters with the message and to affix its signature with
every signaling packet that it generates, which means that more
than 1K bytes is added to each packet. CGA Option carries
CGA parameters to enable the receiver to validate the proper
binding between the public key and the CGA address.
Therefore, minimizing the size CGA parameters in NDP
messages is important to reduce the bandwidth consumption.

CS-CGA uses ECC cryptosystem for generating the keys
and signing the messages. Using ECC improves CGA
generation time and reduces the size of the packet. The CS-
CGA uses ECDSA to sign NDP messages. SEND’s RSA
Signature Option carries ECDSA signature when CS-CGA in
used.

3) Using SHA-256
Standard CGA uses SHA-1, which is known to have

security flaws [18]. ECDSA signature is based on P-256 curve
and SHA-256. Therefore, we decided to use SHA-256 in CS-
CGA implementation.

4) Set “Reserved field to “1”

In CGA specifications, the “u” and “g” bits are set to “1” to
indicate that node uses CGA address. To distinguish between
CGAs and CS-CGAs, the “Reserved” field in CGA Option [2]
is used. We set the “Reserved” value to “1” to label CS-CGA.
Currently, this field is reserved for future use, and using this
field makes no change to the standard CGAs.

B. CS-CGA Implementation

As a proof of concept, we chose to modify the existing
implementation of CGA and SEND, NDprotector0.5 [19],
because it already supports ECC. NDprotector is a user-space
Linux platform implementation that has no direct access to
kernel space. Figure 3 shows the principle functionality of
NDprotector. It is divided into initialization and runtime stages.
During the initialization, the CGAs addresses are set up and the
firewall rules are defined in ip6tables. These rules route all
NDP messages to specific netfilter queues. NDprotector’s
runtime component takes the NDP messages out of those
queues and secures the outgoing NDP messages, or verifies
incoming ones. Afterwards, the NDP messages are either
forwarded or dropped, if CGA addresses verification failed.

In NDprotector, the CGA Option is added in the address
constructor method, Address.py, in the initialization phase of
NDprotector (see Figure 3). The “CS-CGA flag” set to “1” if
the calling Address.py instance represents an CS-CGA.
Figure 4 shows a capture of CS-CGA NS message.

To implement CS-CGA address generation and
verification, we added optional parameters to CGA address
generation and verification functions in scapy6send package.
If the “CS-CGA flag” is set in the incoming NDP messages, the
CGA address verification function is called from
NFQueues.py with the appropriate parameters. The CGA

generation function is called from Address.py, depending on

whether the Address.py instance is representing an CS-CGA
address or not.

NDprotector already supports ECC for CGA and no
modifications for CS-CGA are necessary. We just made the
ECC support more convenient, by adding the possibility to
generate an ECC public/private key pair during the
instantiation of an CS-CGA Address.py object. From a

SHA-

256

Hash2

(112 bits)
16*Sec=0?

Increment

Modifier

No

Sign(Modifier, Subnet Prefix,

Colision Count)

Public Key

ECC

(variable)

SHA-

256

 Hash1

Yes

leftmost 64 bits

16*Sec leftmost Hash2

bits must be zero

0

· Generate/ Obtain an ECC key pairs

· Pick random Modifier

· Select Sec value

· Set Colision Count to 0

Modifier

(128 bits)

0

(8 bits)

Public Key

ECC

(variable)

CGA

parameters

Subnet

Prefix

(64 bits)

Subnet Prefix Interface ID u g

CGA

64 bits

S E C

64 bits

U=g=1

0 1 2 ... 6 7

(59 bits are in used)

Figure 2. Schematic of CS-CGA address generation

security point of view, it is not recommended to have the keys
stored somewhere before the application starts.

IV. PERFORMANCE EVALUATION

This section gives a performance comparison between the
standard CGAs and CS-CGAs. The performance analysis is
done based on two factors. The first one is the size of NDP
messages. Second, the address verification and generation
times are compared, when using different cryptosystems
algorithms.

The implementation is conducted in a virtual environment,
which consists of two Ubuntu 10.10 virtual machines which
run the modified NDprotector version. One machine runs the
Wireshark to capture the NDP traffic and to determine the size
of Neighbor Advertisement (NA) and Neighbor Solicitation
(NS) messages.

A. NA and NS Message Size Lengths

NA and NS message sizes highly depend on cryptosystem.
We compare the NS and NA message sizes by using different
cryptosystems. The comparison is done between CGA with
RSA key (3072-bit) and the CS-CGA (P-256 curve), because
both have an equivalent security level [7]. Table 1 shows the
results. One observation is that the CGA option and the RSA
Signature option constitute the major part of the ICMPv6
messages. Furthermore, ECC greatly reduces the key length.
As a result, the use of ECC is advancement in terms of the
message sizes for CGAs.

B. CGAs/CS-CGAs Address Generation and Verification

Times

We compare the generation and verification time of CGAs
with CS-CGAs when using different cryptosystems. The key
pair generation time is not included in the comparison, because
the node can generate the key pairs in advance to avoid
additional delay.

To take the time measurements, a Python script is created.

The times are determined with Python’s timeit module 3,
which switches the garbage collection off during the
benchmarks. Furthermore, a fine adjustment is done to the ECC
public/private key pair class, to avoid generating BER
encoding on the fly, during the Hash1 and Hash2 calculation.

CGA/CS-CGA addresses generations times are accelerated
significantly through ECC. Table 2 shows CGA/CS-CGA
addresses generation and verification times in case of using
different cryptosystems. The comparison is made between RSA
key with size 3072 bit s and ECC with P-256 curve by using
two hash functions, SHA-1 and SHA-256. The generation
times for CS-CGA addresses are shorter, because ECC has
shorter key size that accelerates the hash calculations. The
verification times of CS-CGA addresses are slower than
verification times of CGA because CS-CGA include the subnet
prefix in the Hash2 calculation, and verifying ECDSA is
longer than verifying RSA.

TABLE 1 NS/NA MESSAGES SIZE FOR CGA /CS-CGA

Security level (Sec = 1)

 CGA CS-CGA

Cryptosystems RSA (3072) ECC (P-256)

ND message type NS NA NS NA

ICMPv6 message length
(bytes)

928 936 288 280

CGA option length (bytes) 456 120

RSA signature option
length (bytes)

408 96

R

Libnetfilter_queue

scapy6send

NDprotector

R

Address

setup

Secure outgiong/

Accepting incoming

 NDP messages

Network Adaptor

R

Rule

setup

ip6tables

Input Chain Output Chain IPv6 Stack

NFQUEUE NDP

messages

Incoming
packets

Outgoing

packets

netfilter

NFQUEUE NDP

messages

R

A
c

c
e

p
te

d
 in

c
o

m
in

g
/

S
e

c
u

re
d

 o
u

tg
o

in
g

N
D

P
 m

e
s

s
a

g
e

s

Filtering.py

ParseOpt.py

Config.py

Address.pyR

Sendd.conf

Filtering.py

Core.py R

openSSL

R

NeighCache.py NFQueues.py

R

R
Run_queues()

R
NeighborCacheStart()

Initialization

Runtime

User Space

Linux Networking

NDprotector

Figure 3. NDprotector architecture

Figure 4. CS-CGA flag

TABLE 2 CGA/CS-CGA ADDRESSES GENERATION AND VERIFICATION

TIMES

Security level (Sec = 1)

Number of samples (1000 sample)

Algorithm cryptosystems
Hash

Function

Address
generation
time (sec)

Address
verification
time (msec)

CGA RSA (3072)

SHA-1

2.183 0.695

CS-CGA ECC (P-256) 1.960 0.723

CGA RSA (3072)

SHA-256

2.637 0.702

CS-CGA ECC (P-256) 2.046 0.735

C. CGAs/CS-CGAs security analysis

Including the routing prefix in Hash1 and Hash2 calculation
increases the cost of pre-computation attacks by making some
brute-force attacks against global scope addresses more
expensive. The attacker needs to do an exhaustive search for
hash collision or creation of large pre-computed databases of
interface identifiers from an attacker’s own public key(s) used
to find matches for many addresses. The attacker should do this
brute-force search for each address prefix separately. However,
it is not easy to impersonate a random node in a network
because it requires a large storage to carry out this attack. If an
attacker wants to impersonate an address of a random node in a
network of size 2

16
, this requires 2

33−16
= 2

17
gigabytes = 128

terabyte of storage.

V. CONCLUSION AND FUTURE WORK

The proposed, CS-CGA, is an enhanced version of CGA
that has more resistance against the time-memory trade-off
attack, besides preventing address theft and DoS attacks.
Moreover, it assures the anonymity and protects the privacy,
because the node needs to generate new CGA once it moves to
a new subnet.

Even with using ECC, CGA is still computationally heavy
and need to be improved. To avoid unexpectable delay in CGA
generation, using a time termination condition can be a
practical approach to make CGA feasible. More investigation
about the recommend time threshold based on different device
specification is needed. For example, based on the CPU speed,
the algorithm recommends a proper value for Sec, or set time
termination condition. Definitely, the termination condition
also depends on the application requirement, e.g. MIPv6 needs
to finish the address generation within hundreds of
milliseconds. A possible way to speed up the CGA generation
can be achieved by using Optimistic DAD [20] with CGA.
Optimistic DAD approach is a method to minimize address
configuration delays that make an address available for use
before completing DAD. The DAD in CGA generation
algorithm can be one reason for delay, while the probability of
collision is too low. Another way to improve the CGA
performance could be by optimizing the parameter

transmission in each message, for example, to avoid the
retransmission of parameters that already known by the
receiver. Finally, reducing and eliminating the threats and the
attacks against IPv6 network by enhancing the CGA security
and make it simple, lightweight, and deployable authentication
mechanism is very important. Otherwise, IPv6 network will be
left vulnerable to IP spoofing related attacks.

REFERENCES

[1] T. Aura, “Cryptographically Generated Addresses (CGA),” RFC 3972,
Internet Engineering Task Force, Mar. 2005, updated by RFCs 4581,
4982.

[2] J. Arkko, J. Kempf, B. Zill, and P. Nikander, “SEecure Neighbor
Discovery (SEND),” RFC 3971, Internet Engineering Task Force, Mar.
2005.

[3] T. Narten, E. Nordmark, W. Simpson, and H. Soliman,”Neighbor
Discovery for IP version 6 (IPv6)”, RFC 4861, September 2007.

[4] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address
Autoconfiguration”, RFC 4862, September 2007.

[5] T. Aura, M. Roe, “Designing the Mobile IPv6 Security Protocol”,
Annals of telecommunications, special issue on Network and
information systems security, volume 61 number 3-4, March-April 2006.

[6] J. W. Bos, O. Özen, and J.-P. Hubaux, “Analysis and optimization of
cryptographically generated addresses,” in Proceedings of the 12th
International Conference on Information Security, ser. ISC ’09. Berlin,
Heidelberg: Springer-Verlag, pp. 17–32,2009.

[7] T. Cheneau, A. Boudguiga and M. Laurent, “Significantly Improved
Performances of the Cryptographically Generated Addresses Thanks to
ECC and GPGPU”. Computers & Security 29, pp.419-431. 2010.

[8] T. Aura, "Cryptographically Generated Addresses (CGA)", 6th
Information Security Conference (ISC'03), Bristol, UK, October 2003.

[9] P. Nikander, J. Kempf, and E. Nordmark, “IPv6 Neighbor Discovery
(ND) Trust Models and Threats,” RFC 3756 (Informational), Internet
Engineering Task Force, May 2004.

[10] T. Narten, R. Draves and S. Krishnan, "Privacy Extensions for Stateless
Address Autoconfiguration in IPv6", RFC 4941, September 2007.

[11] T. Aura and M. Roe. Strengthening Short Hash Values.
http://research.microsoft.com/en-us/um/people/tuomaura/misc/aura-roe-
submission.pdf.

[12] T. Cheneau, M. Laurent, S. Shen, and M. Vanderveen, “ECC public key
and signature support in Cryptographically Generated Addresses (CGA)
and in the Secure Neighbor Discovery (SEND),” November 2009, http:
//tools.ietf.org/html/draft-cheneau-csi-ecc-sig-agility-02.

[13] T. Cheneau, M. Laurent, S. Shen and M. Vanderveen, “Signature
Algorithm Agility in the Secure Neighbor Discovery (SEND) Protocol.
June 16, 2010. http://tools.ietf.org/html/draft-cheneau-csi-send-sig-
agility-02.

[14] M. Bagnulo and J. Arkko, “Support for Multiple Hash Algorithms in
Cryptographically Generated Addresses (CGA)”, RFC 4982, July 2007.

[15] A. Kukec, S.Krishnan, and S. Jiang, “SEND Hash Threat Analysis”,
RFC 6273, June 2011.

[16] M. Bagnulo and J. Arkko, “Support for Multiple Hash Algorithms in
Cryptographically Generated Addresses (CGA)”, RFC 4982, July 2007.

[17] M. Stevens, Fast Collision Attack on MD5, Cryptology ePrint Archive,
Report 2006/104, eprint.iacr.org/ 2006/104.

[18] X. Wang , L. Yin, and H. Yu, "Finding Collisions in the Full SHA-1.
CRYPTO 2005: 17-36", 2005.

[19] NDprotector: an implementation of CGA & SEND for GNU/Linux
based on Scapy6, 30.06.2010, http://amnesiak.org/NDprotector/

[20] N. Moore, “Optimistic Duplicate Address Detection (DAD) for IPv6”,
RFC 4429, April 2006. http://tools.ietf.org/html/rfc4429

