
Towards Context-aware Service-oriented Semantic Reputation Framework

Rehab Alnemr

Hasso Plattner Institute
Potsdam University

Germany
rehab.alnemr@hpi.uni-potsdam.de

Maxim Schnjakin

Hasso Plattner Institute
Potsdam University

Germany
maxim.schnjakin@hpi.uni-potsdam.de

Christoph Meinel

Hasso Plattner Institute
Potsdam University

Germany
meinel@hpi.uni-potsdam.de

Abstract—Reputation has been explored in diverse disci-
plines such as artificial intelligence, electronic commerce, peer-
to-peer network, and multi-agent systems. Recently it has been
a vital component for ensuring trust in web services and
service oriented architecture domains. In this paper, we show
details about our context-aware reputation framework. The
framework is based on our semantic representation model for
reputation called Reputation Object (RO) model. We discuss
the advantages and propositions to construct such framework,
its components, and how it is implemented. The importance
of developing and using such generic reputation framework
is highlighted within the emergence of the Semantic Web and
service oriented architecture.

I. INTRODUCTION

Reputation systems are used as a way of establishing trust

between unrelated parties, especially if enforcement methods

like institutional policies are not implemented. They may

help lower the risks of online interactions and increasing the

robustness and efficiency of internet-based applications. A

reputation model describes all of the reputation statements,

events, and processes for a particular context. This context

is the relevant category for a specific reputation. The way

such systems query, collect, and represent reputation varies.

Some systems use stars or scaling bars as the visual format

of reputation, others use numbers and percentages like the

one used to rate an e-markt participant. Online reputation

systems are the biggest and most obvious examples of these

systems. It can be categorized based on the common features

and properties of the web communities such as e-markets,

activity sharing, social and entertainment, news sites, P2P

systems and systems build upon the Semantic Web.[6] In

service-oriented systems, quality attributes and ratings given

by other services or service consumers are used to represent

service reputation.

There are extensive studies about reputation systems that

discuss not only the current commercial ones but also

proposed approaches from academia. For example, studies

done by Jøsang in [13] and Sabater in [24], provide an

exhaustive view of what is out there in the reputation

community. Commercial applications implementing trust

and reputation mechanisms use relatively simpler schemes

than those proposed by research papers. Most of the current

reputation systems are built for a single context and only for

the domain of their creation and also for a specific project or

by a private company using proprietary schemas. Each has

its own method to query, store, aggregate, infer, interpret and

represent reputation information which limits the possibility

of using these reputation information in other domains. In

open environments, trust depends on reputation and how

reputation is represented. In most reputation systems, the

context of a reputation value is not embedded within the

given reputation information. Reputation changes with time

and is used within a context. Context-aware trust is complex

but crucial for deriving meaningful trust. Enabling reputation

portability and linking it to its context eases the management

of reputation data, mitigates risks in open environments, and

enhances the decision making process. This can be possible

by embedding reputation information in its representation,

especially information about the contexts involved in its

creation, which is a feasible goal to achieve using ontologies.

In information systems, ontologies promote and facilitate

interoperability as well as intelligent processing. They are

developed to enhance knowledge reuse by sharing a com-

mon understanding of a domain that can be communicated

between people, and heterogeneous and widely spread ap-

plication systems.

In this paper, we present some of the problems of current

reputation systems, analyze why context-aware systems are

needed, and show how we build a context-aware reputation

framework that is based on our work of a generic reputation

ontology. The framework adapts service oriented architec-

ture (SOA) approaches. SOA focuses on encapsulating dif-

ferent functionality into services to be reused and composed

with other services when needed. Each service represented in

the paper has a functionality that enables context-awareness

in our framework. We also discuss the implementation of

the framework and the reasons for using both semantic web

and SOA technologies.

The paper is organized as follows: section II briefly

discusses reputation systems and definition of relevant ter-

minologies, section II-A and III-A explicate the problems

in current systems and the advantages of context-aware

frameworks. In section III we explain the proposed frame-

work that is based on our reputation object ontology, the

2011 International Joint Conference of IEEE TrustCom-11/IEEE ICESS-11/FCST-11

978-0-7695-4600-1/11 $26.00 © 2011 IEEE

DOI 10.1109/TrustCom.2011.47

362

architecture, and the implementation. We finalize the paper

with conclusion and future work.

II. REPUTATION MODELS, FRAMEWORKS, AND

SYSTEMS

In the literature, reputation is defined as an expectation

about an entity’s behavior based on information about or

observations of its past behavior [2]. In the business world,

Balmer [7] defines two characteristics for corporate reputa-
tion: it evolves through time and is based on what the orga-

nization has done and how it has behaved. Reputation defi-

nition evolves through the introduction of more complicated

models. For example, Paolucci and Conte in [19] introduce

a cognitive theory that clearly distinguishes between two

concepts- image and reputation. The computation algorithm

was defined in [22] as the Repage model. One of the major

efforts that has been done to define a set of terms about

reputation concepts can be seen in the european project

eRep 1. Based on the model described by [19] for multi-

agent systems, the project explains in details the elements

of social evaluations, the process of transmitting them, and

agent decisions regarding reputation. The model distinguishs

between two social artifacts that pertain to the evaluation of

a target: image and reputation. Image is the the output of

the evaluation process of other agents and assumed to be

true by the agent who holds it. Reputation is the voice the

agent is spreading which is not necessarily the truth.

Since there is a vast literature showing reputation systems

from different perspectives (i.e. [15], [13], threats in [1],

mechanisms in [10]), here we will briefly point out sev-

eral definitions to distinguish between some terminologies.

Resnick [20] defines a reputation system as: ”a system
that collects, distributes, and aggregates feedback about
participants’ past behavior”. It must have three properties

to operate: long lived entities with an expectation for future

interactions, ratings that can be captured and distributed, and

past interactions’ ratings used to guide the decision making.

Conte and Paolucci [19] defines reputation-based systems as:

”a spontaneous and implicit norm-based system for social
control”. Jøsang [13] defines reputation architecture as

a network architecture which determines how ratings and

reputation scores are communicated between participants

in a reputation system. He identifies two main types for

the networks: centralized and distributed architectures. Both

architectures have a reputation computation engine, but each

has a different communication protocol (i.e. centralized

protocol for centralized architecture). A reputation com-
putation engine computes the reputation value based on

plenty of factors (according to the model used) such as one’s

own experience, others referrals, a combination of both,

etc. Some of the used algorithms or computation functions

are: summation, average [21], bayesian systems [14][27],

1eRep Project: http://megatron.iiia.csic.es/eRep/?q=node/93

discrete trust models [2][8], belief models [12][28], fuzzy

models [23][26], cognitive as [11], etc.. A reputation model
describes all of the reputation statements (i.e. a source rating

a target), events, and processes for a particular context. They

were developed using different approaches and different

semantics. A reputation context is the relevant category for

a specific reputation. A reputation system should describe

therefore:

• Computation functions/mechanisms i.e. how to calcu-

late reputation?

• Communication model i.e. how to collect and dissem-

inate reputation?

• Participants i.e. who use and/or is affected by reputa-

tion?

• Resources i.e. what is the information used to calculate

reputation?

• Representation model i.e. how to represent, view, or

visualize reputation?

• Storage i.e. where and how reputation is stored?

• Functionalities and applications i.e. what are the bene-

fits of using reputation in the domain of its creation

It should also describe how these components are in-

tegrated into a given system. Here, we distinguish be-

tween: reputation ontology, reputation system, model, or

framework, reputation engine or mechanism, and reputation

architecture. A reputation ontology describes the notion of

reputation and the relations to the concepts that compose it,

while a reputation system, model, or framework describes

the collection, distribution, and aggregation of reputation in-

formation. A reputation computation engine or mechanism is

one of the modules in a reputation system which shows how

reputation value(s) are calculated. A reputation architecture
is a set of protocols that determines how reputation values

are communicated between the participants in a reputation

system.

Another definition that is vital to our work is reputation

context. A reputation context or criterion is defined as a

characteristic, a property, or a measurement by which an

entity is judged or evaluated in a certain context. Sometimes

it is called reputation attribute or quality attribute and in

general also it is called reputation scope which defines the

general category in which a reputation was created e.g. for

e-Market, for web services.

A. Issues in The Current Systems

Most of the existing reputation-based systems lack the

connection between general reputation and the context of

the given reputation. One can trust a physician to treat

him but not to handle his financial transaction. Although

reputation systems are used as the basis of trust in several

online communities, there are some issues that arise in these

systems due to the design and implementation of the current

reputation models. These systems were designed as closed

domains, where each one has its own data entry, enquiry,

363

representation and interaction styles, interpretation, compu-

tation of reputation values, limited information sources, etc..

[4] This results in [5]:

• Excluding the context from the reputation value be-

cause most representation and exchange format has no

embedded information about the context in which repu-

tation was earned. Since context is not usually included

in a reputation query, it is assumed that the implicit

context is the domain of the reputation system (e.g.

rate the seller for this purchase transaction) resulting in

a too general query. In online markets, for instance, a

consumer rates a seller generally for a trading/purchase

transaction, leaving the details to be written in a natural

language review.

• Difficulty in mapping between reputation values due to

difference in perceptions

• Incorrect modeling and variance in calculations and

interpretations because in spite of the wide variety

of computation models, most of them do not reflect

the real cognitive nature of reputation as they do not

represent all the parameters that affect it.

• No portability or interoperability of reputation infor-

mation because it is hard to exchange the knowledge

when the semantics are not considered in the calcu-

lation or the representation of reputation. Reputation

interoperability can solve problems such as the cold
start problem.

These issues explain why it is hard to assess and exchange

reputation especially between e-markets due to the differ-

ence in perception, calculation, and interpretation but most

of all because the given reputation is an overall one that

does not reflect the related contexts in which it is earned.

These contexts can vary from the category it is earned (i.e. a

selling transaction) to the quality aspects of one transaction

(i.e. different quality criteria or attributes). [4]

III. CONTEXT-AWARE REPUTATION FRAMEWORK

In this section we describe our context-aware framework

and its advantages. The framework is generic and can be

integrated in several domains. Some of the services in this

domain will remain the same -i.e. same implementation-

while others will be more specialized to the domain i.e.

specialization to the proposed interfaces. The framework

adapts service oriented architecture (SOA) principles. SOAs

have more open and collaborative environment that enable a

timely manner response to user needs and business demands.

The benefit of employing a service oriented approach in our

framework is that in such collaborative environment knowl-

edge extraction is easier, and each required functionality can

be separated in a loosely coupled service; to be reused and

composed with other services when needed.

The presented framework is based on a data model

that represents reputation as an open, interoperable and

comprehensible format. The reputation object (RO) model

component is described here followed by the rest of the

components explained in the architecture subsection.

A. Why Context-aware Reputation Frameworks

Current reputation frameworks either do not fall into the

category of context-aware systems or have limited capa-

bilities to implement context-awareness. Closed domains,

by definition, do not attempt to semantically identify and

define all the contexts related to their system processes since

these are internal processes used only within the domain. In

section II-A we discussed the problems in current systems.

Here we elaborate on the advantages of developing context-

aware reputation frameworks. They are:

• Relevancy. Most reputation systems are built for single

context and only for the domain of their creation. A

reputation context is the relevant category in which a

specific reputation is earned. A context can be an ob-

jective (measurable) or a subjective one (non-measured

but can have an approximated evaluation). Examples for

reputation contexts are: a person’s reputation in driving,

a factory’s reputation of producing quality goods, a

service’s reputation in its response-time, a post’s rep-

utation as likable to users, or a movies reputation in

its storyline. A general reputation is not a form of

judgment nor expectation for the target’s performance

in a specific topic. For example, one can be an excellent

driver yet a bad runner. Also, one would not hire an

excellent doctor to handle one’s finances. This means

that relevancy enhances the decision making process.

Therefore, associating reputation with its context - and

constructing context-aware reputation framework- is

important for the relevant meaning of such reputation.

• Portability/Interoperability. Abstract or general reputa-

tion that is not connected to its context and is created

for a particular domain, can not be assessed in another

domain. Reputation values created by current systems

simply can not be transmitted or used in another

domain. This is due to the semantic heterogeneity of

reputation models that makes it difficult to compare and

evaluate them. Also, simplistic representation results in

a lack of expressiveness and sparse reputation details,

thus preventing reputation interoperability. Reputation

interoperability is the possibility of transferring reputa-

tion information from one domain to the other and still

can be understandable and comprehensible. Portable

reputation requires awareness of the domain of its

creation i.e. its context. The advantages of a portable

reputation are: collaboration between online markets

that can lead to building a knowledge base about

multiple participants in the market, increased amount

of information about a system participant that leads to

more accurate expectation of his performance, and it

also helps avoiding the cold start problem where, for

example, a participant of one community does not need

364

to start building his reputation from scratch every time

he signs up for a new community.

• Trustability and credibility. Reputation is subjective and

since the human perception of trust varies from trust

levels to the kind of trustworthiness (i.e. trust in a

relationship, trust in an organization, trust in a person,

or trust in credentials), it is critical to expose more

information on the evaluation of the context of a given

reputation to be able to make fair judgment. In other

words, more information can lead to more trust. More-

over, context-aware systems will provide the means to

know how each reputation value is computed, therefore

increasing the possibility of reputation portability.

• Providing customized selection. In domains such as e-

markets, internet of services, or the cloud, the problem

of selecting a certain service provider based on a set of

reputation criterion (that changes for each consumer)

often arises. A context-aware framework can provide

easier and customized way to select a seller according

to what is most suitable to the user’s requirements (i.e.

the user needs faster delivery service and he/she dose

not care about the price).

• Eliminating Legal hassles. Studies [9] on infractions

and law suits against some e-markets because of repu-

tation matters showed that the absence of rating context

was the cause of these law suits. Mostly, the main

reason for these cases is rating ambiguity. Users misre-

port their ratings in a way that influences negatively

the entity being rated and does not correspond to

the rating attributes. To avoid such legal hassle, the

rating must be less vague. Especially given the fact

that laws and regulation vary by jurisdiction, which

creates a challenge for online businesses and providers

of online reputation systems operating internationally.

For example, if the rating means provided is to give

from one to five stars to a service provider, it should

be clear what the consumer is rating. Is it the quality

of the product, the service of the provider, customer

service or something else entirely?

B. Reputation Object Model

Most of the existing work on reputation systems focus on

improving the calculation of reputation values, preventing

malicious actions, and the deployment into the business

world where reputation is mostly represented in a singular

value form. This work [5] focuses on how to represent repu-

tation to reflect its real-world concept (i.e. non-general, con-

text specific, and dynamic). The argument is that in most rep-

utation systems the context of a reputation value is not em-

bedded within the given reputation information. Mostly be-

cause it has the single value format. Since reputation changes

with time and is used within a context and every domain has

its own information sources as well as its own requirements,

the representation -not the calculation- of reputation should

be unified between communities in order to facilitate knowl-

edge exchange. In this ontology reputation is represented as

a new form of reputation value: Reputation Object (RO).
This object holds information on the reputation of an entity

in multiple contexts. The ontology’s components are: a

ReputationObject hasCriteria of one or multiple

instances of class Criterion or QualityAttribute
(for a service, the criterion describing service reputa-

tion is referred to as a quality attribute). The cri-

terion is collected using a CollectingAlgorithm
and hasValue ReputationValue. Each criterion in-

stance has a ReputationValue (which includes the

currentValue, its time stamp, and a simple list of its

previous values called historyList) that in turn has the

range of values defined in PossibleValues. It describes

the data type that the criterion can have or a specific set

of values (literals or resources URI) evaluating this criterion

(e.g. a set of integers {1, 2, 3, 4} describing 4 trust levels or

a set of Strings {′′good′′,′′ bad′′,′′ excellent′′} describing a

user opinion). Each time a criterion is being evaluated (i.e. a

new entry value for this criterion), a new currentValue
is calculated using the ComputationAlgorithm which

is the reputation computation function/engine used with this

criterion such as sum, avg, etc..
Since it is not always easy to identify intuitively

what the highest reputation value is - among the de-

fined possible value set -, the PossibleValues class

has an orderedList that is ordered from the rel-

atively highest reputation value to the lowest (e.g.

{′′excellent′′,′′ good′′,′′ bad′′}). It also has the possi-

bility to define a comparison and ordering function;

OrderFunction to compare between values within each

criterion and to be used by the reasoning engine. A RO is

constructed either offline or during negotiation process. It’s a

generic object that changes according to the domain and the

user preference but in general it holds a profile (functionality,

quality, ratings, etc.) about an entity (service or agent) which

is collected from heterogeneous information sources. The

implementation of the ontology is described in section III-D.

This ontology was used to represent an entity’s reputation in

several domains such as multi-agent based system (in [16],

as the reputation of an agent and a way for decision making),

for usage control in Internet-of-services (IoS) [4], and as an

underlying ontology for a SOA reputation service in [3] that

was later used in [25] for cloud service provider selection.

It was designed mainly to facilitate reputation information

exchange or reputation interoperability in any domain. Using

this ontology, a dynamic ontology alignment is possible be-

tween two entities since reputation information (that helps in

the alignment specially during runtime) are embedded in the

reputation object. However, since the ontology focuses on

representation, it does not address factors like transformation

functions (mapping functions), ergo the separation into a

standalone mapping service (discussed in III-C) which can

365

Reputation
Object

CriterionReputation
Value

hasCriteria 1...*

*

1...*
ha
sR
ep
ut
at
ion
Va
lue
s

CollectingAlgorithm

isC
ollectedB

y 1

*

ComputationAlgorithm

is
Co
m
pu
te
dB
y *

1

hasValue 1 1

*

PossibleValues

is
Pa
rt
O
f

hasR
ange

:is_a

Reputation

Rating

:is_a

An Entity Identifier

hasReputation1

Context

QualityAttribute
*

1

computes

HistoryList

"Time"
isTimeStamped

OrderedValuesList

OrderFunction

orderedBy

OWLList
Algorithm

AggregationAlgorithm

isA
ggregatedB

y

orderO
utputs

hasHistory

hasOrderedList

0...*

:is_a

:is_a

:i
s_
a

CriteriaList

:eq
uiv
ele
ntT
o

me
mb
erI
n

:is_a

:is_a:is_a

0,1
1

Figure 1. Reputation Object Ontology [5]

use mapping functions presented in [18] to enhance the use

of the ontology.

Using reputation objects and taking advantage of the

existing quality processes has the advantages of interopera-

ble reputation and reusability of the embedded information.

It also enforce context-awareness in the system where an

entity’s reputation is not generalized anymore. Each value

in the reputation object can be related to a certain context.

Therefore giving the benefit of easier storage and mainte-

nance that leads to easier - and cleaner- information extrac-

tion process. It also facilitates context matching between

two different platforms. The possibility of sharing reputa-

tion information increases if there are common reputation

contexts- or quality attributes- that can be matched and then

transferred to other domains (rather than transferring a single

value that has no meaning to the destination system).

C. Architecture

The framework is a plug-in architecture to allow easy

adaptation and generic use. For the purpose of reuse, in-

teroperability and generic integration, it is loosely-coupled

from the used identity systems. A system can adapt to the

framework using its chosen identity model without forcing

it to use a specific one. It needs to query the identity system

for the user identity information. The framework is not

dependent on a particular reputation computation function

(or computation algorithm), the computation is done in

a separate reputation computation engine or service. This

allows each system to use its own computation function. The

only needed requirement is either exposing the reputation

engine as a service -to communicate with the rest of the

framework components via messaging and service calls- or

to pass a description file of the reputation engine (i.e. OWL

ontology describing what is the computation function in use

and a URI for the description). Figure 2 shows our general

architecture along with possible communication points. The

architecture is structured around our previously mentioned

reputation object semantic model and it shows how to adapt

to it.

The architecture is based on the principle of separation

of concerns following a service oriented approach. The

service-oriented architecture focuses on encapsulating dif-

ferent functionality into services to be reused and composed

with other services when needed. In our work we focus

on both the functionality and data layers where we provide

generic services implementations or prototypes used in the

integration of this framework with any domain. The presen-

tation layer is dependent on the domain or the system, ergo,

less generic.

1) Information Sources and Data Layer: Describes

sources used to collect reputation information about an

entity. These information are usually domain dependent

because the perception of what constitutes an entity’s repu-

tation differs from one domain to another. For each domain,

there are a number of specific criteria that reputation is

affected by. In our architecture, each system has a set of

these criteria described and stored in the Domain-Specific
Criteria data storage. It can be configured by the system

366

F
u

n
ct

io
n

al
it

y
an

d
 S

er
vi

ce
 L

ay
er

A
p

p
lic

at
io

n
 L

ay
er

D
at

a
L

ay
er

Reasoning
Engine

RO Modeling
and Formatting

Service

User

Ratings

Functions Mapping

Ontologies Mapping

Target

Reputation Information Manager

Computation (Engine)
Service

ID
Management

Service

Web Portal

Interface API

Source

Reputation
Auditing

SOAP

R

Domain-Specific
Criteria

Knowledge-base

RO
Repository

Reputation
OntologyRules Set

R

User
Rights

User Data

Sorting

HTTP

Figure 2. Framework

administrator or reused from a different system in a sim-

ilar domain (e.g. service reputation is dependent on non-

functional properties of the service such as its availability,

response time, quality of service, consumers ratings). The

reputation object modeling service communicates with this

data storage to determine what are the criteria that will

formulate a reputation object for this domain. Examples

of different information sources are feedbacks from service

consumers, direct experiences between software agents, rat-

ings of an entity, service level agreements feedbacks between

services, logs, system analysis, entity’s performance, non-

functional attributes of a service, etc. Each is described as

a context or a criterion by which a reputation is obtained

and evaluated. From observations such as these examples,

a common abstraction form to an information source can

be derived. This abstraction is a requirement to properly

describe an information source- to ensure context awareness

in the framework- and is used to construct the reputation

object. The abstraction form consists of the following:

• Context name.

• Context description.

• The algorithm used to collect this data.

• A function that can be used in aggregating or computing

multiple values of this context (e.g. average, sum, min,

max, etc.). Also known as the reputation function or

the reputation computation algorithm.

• Comparison function for each context (e.g. higher than,

lower than, max of, etc.) that can be used to compare

between two values (i.e. which reputation value is

considered higher or better than the other).

A system administrator or a domain expert decides what

are the criteria that construct the reputation of system

participants and stores it in the Domain-Specific Criteria
repository. A change in this repository affects how a rep-

utation object is constructed (reflected by a read access

by the ROService). The data layer consists of the used

knowledge-base and information used by the identity system.

Our Knowledge-base consists of three components:

(a) the reputation object ontology2 described in section

III-B and stored in an OWL repository,

(b) the user reputation object repository which contains

ontology individuals (instances) i.e. objects that hold

user reputation information, and

(c) the rules set used by the reasoning engine for decision

making and is configured by domain expert to have

direct control over their executing system.

2) Functionality and Service Layer: This layer has

the services that are needed in a context-aware reputation

framework. We have implemented some of these services

(described in III-D). However, we also describe here the

functionalities of the remaining external services (i.e. can

be implemented by others) and integrated in the framework

(which should be easy since the framework design adapts a

SOA approach):

• Reputation Object Modeling Service: exposed using

both SOAP and RESTful endpoints (results in acces-

sibility to all types of clients), and takes as input a

message that defines the operation to be executed, i.e.

2Reputation Object Ontology Vocabulary: http://purl.org/ralnemr/ro#

367

createRO, updateRO, queryRO. For example, when the

operation is updateRO the service takes as input the

entity’s reputation criteria names - String or URIs -

and values (i.e. criteriaList, valuesList), and

returns as output an updated version of an entity’s

reputation object. In this operation, the service first

requests the current version of the RO from the RO

repository and the updated one is later stored in the

same repository (read-write access to the repository).

If the current RO does not have one or more of the

criteria in the passed criteria-list (criteriaList),

the service invokes the ontology mapping service to

match the criteria on the criteriaList with the

ones in the current RO. If there is no match found

(unsuccessful mapping), the RO service simply adds the

new criterion to the ones in the RO. In this case, the RO

service requests from the domain-specific repository
for each new criterion the following information: lists

of value-types, order function, collecting algorithm,

and computation algorithm (semantic description to the

criterion). When the service needs to update a RO, it

passes to the appropriate computation service a triple

of (newValue,oldValue,historyList) which

in return responds with updated criterion reputation

score. The historyList is passed because some

computation functions use the transaction history as a

factor in their computations. In the end, the service

stores the updated version in the reputation object
repository (see algorithm 1).

• Reasoning Engine: which is used by the framework

for reasoning and decision making. In section III-D we

show the reasoning engine we used for our experiments.

• Sorting Service: One of the main goals of our frame-

work is to enable customized service selection. This

means that a consumer should be able to select a

service based on his/her own preferred criterion. The

sorting service takes as input two or more reputation

objects i.e. ROList and a list of criteria that repre-

sents a consumer’s priorities list. The list has sorted

priorities or preferences (sorted reputation criteria) for

the comparison between the objects. For example, the

list has a service consumer’s preferences for service

providers based on their service availability first then

prices, or has a customer’s preferences for sellers based

on their prices first and second by their delivery time.

Since for each criterion an order function is defined,

the comparison operator changes based on the criterion.

The ontology has, for each criterion, its order function

specified.

• Computation Engine/Service: deploying the reputation

function or algorithm that is used to calculate a new

reputation value whenever a new transaction takes

place. The service can be a collection of computation

functions that are used for each reputation criterion or a

Algorithm 1 General Description of the RO Modeling

Service functionality

Require: List of criteria c, list of values v, entity i
1: if operationType←′′ create′′ then
2: create(c, v, i)
3: setRO(ROi) in RO repository

4: else
5: ROi ← getFromRepositry(i) //requests RO from

the RO repository
6: for each criteria cj in criteria list c do
7: if cj is not in ROi //if the criterion is not in the

RO then
8: if mapService(j) ← NULL //unsuccessful

mapping then
9: getCriterionDetails(cj) from Domain-

Specific repository

10: addCriterion(ROi, cj)
11: else
12: j ← mapService(cj)
13: end if
14: end if
15: newV alue←

compFunctionj(oldV al, newV al, historyList)
16: update(ROi, newV alue)
17: end for
18: end if
19: return ROi

composed service that combines several functionalities

(that corresponds to each computation algorithm). For

example, the algorithm that calculates service avail-
ability is different from the one that calculates service
quality. Service composition is - either by hard coding

the composition or by using tools such as BPEL3

or WS-Notification4. In our implementation, we used

computation functions provided by eRep project and

basic functions described in [18].

• Mapping Services: the functions mapping part is where

two reputation computation functions are mapped. They

are also called transformation functions. For exam-

ple, in [18] the authors show a set of transformation

functions between Boolean, Real, Discrete Set and
Probability Distribution representations since they are

the most common ones. They implemented an API

interface of a set of common operations whose inputs

and outputs are elements of the ontology, and must

be implemented for each particular model. The ontol-
ogy mapping service aligns two concepts -reputation

criteria- to determine the correspondences between

3BPEL OASIS Specification:http://www.oasis-open.org/committees/
download.php/23964/wsbpel-v2.0-primer.htm

4WS-Notification OASIS Specification http://docs.oasis-open.org/wsn/
wsn-ws base notification-1.3-spec-os.pdf

368

them or their semantic similarities. In multi-agents sys-

tems, it facilitates the interaction between agents within

different communities by first discovering the semantic

similarities between their related context/criterion, then

it uses a translator to map the ontology between one

agent to the other. The final mapping is wrapped in

a representation that can be understood or interpreted

by each agent. If the resulted common ontology is

used only during run-time (for a specific interaction),

it is a process known as dynamic ontology alignment.
We used this external service implementation to realize

the framework, adapting the core approach of service

oriented architectures (i.e. service reuse).

As discussed earlier the identity system is independent

from the reputation system, and the component is shown in

figure 2 for illustration purposes. The Reputation Auditing
service is not yet implemented -though defined in [4]- and

is discussed in our future research. The information needed

by the aforementioned services is collected and provided by

the reputation information manager service which is system

dependent (usually a set of services that handles knowledge

extraction and knowledge feedback processes). We have

implemented a reputation manager service prototype to pass

the information in our experiments from pre-defined data

sets.

3) Communication Protocols : The framework can be

used for both centralized and decentralized reputation sys-

tems. A reputation authority can be the composition of the

reputation services and the identity system in use. In this

case, for centralized systems, the reputation request is a

query about a specific individual for a specific criterion (or

several criteria), the response from the reputation authority

is the RO of the entity in question. For decentralized system,

it’s more like gossip where agents or representatives for the

participants exchange reputation information. Each has its

own repository of reputation objects of agents they were

previously in contact with and each has its own reputation

computation engine and a list of reputation criteria (albeit

related).

On another level of communication, our framework uses

the principles of service oriented architecture (SOA) 5 to im-

plement each functionality as a service. W3C organization6

defines a web service as:”..a software application identified
by a URI whose interfaces and bindings are capable of
being defined, described and discovered as XML artifacts. A
Web service supports direct interactions with other software
agents using XML based messages exchanged via internet-
based protocols.”. This means that communication between

services can be carried out using SOAP messages or REST

operations. The advantage of adapting a SOA approach is

5OASIS Reference Model for Service Oriented Architecture: http://www.
oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

6World Wide Web Consortium: http://www.w3.org/

access to shared resources, interoperability of data exchange,

services are loosely coupled and can be reused, enabling

service discovery, and service compositions. In our frame-

work, services are exposed using both SOAP messages and

RESTful operations for information exchange.

Querying the knowledge-base for the RO of a user is

defined as reputation queries and is done via the reputation
object modeling service (by specifying in the input message

the operation name queryRO) and passing the query. In

the service implementation, reputation queries are available

through SPARQL 7 endpoints or the encapsulated reasoner

API of OWLModel (explained in III-D).

D. Implementation Details

In order to realize such framework, a technology which

provides common data representation framework as well

as a way to connect concepts with their definitions is

needed. Semantic Web is developed with a main objective

of facilitating data integration, enhancing information usage

by connecting it to its definitions and context. Therefore,

we used semantic technologies to develop our framework.

The reputation object ontology itself was developed in OWL
8 using Protégé-OWL tools 9. We decided to use OWL

because it provides an expressive modeling capabilities that

help describe restrictions and axioms of the model that

should be incorporated in its description such as: how

is the reputation value obtained, can a criterion refer to

another concept (criterion matching) in other platforms, how

to aggregate values of this concept if a new evaluation

value is entered, can a set of criterion be aggregated in

one context, how many reputation objects can an entity

have, can the reputation object be extended, cardinality,

inverse relationships, influencing factors, etc.. In such case,

ontologies are used to provide such level of expressiveness.

Others who may decide to use this formalized ontology

can define their own domain classes by the specialization

of the default classes and add semantic restrictions to best

define their characteristics (e.g. define a WebServiceRO
as a subclass of RO class). We show examples of such

specialization in internet of services domain in [4] and

cloud service provider selection in [25]. For the logic and

functionality layer, we use Java for implementing a library

that can be used and integrated in other systems. The

functionality is also exposed to software agents and web

services through a service interface (i.e. SOAP endpoints).

The output is formally represented as an OWL object (i.e. the

reputation object). Part of the structure of the Java package

is as shown in figure 3. We developed it in such structure to

allow others the addition of their domain logic (i.e. adding

new methods) and also to separate what has to be done from

how it is done.

7SPARQL Query Language: http://www.w3.org/TR/rdf-sparql-query/
8OWL: http://www.w3.org/TR/owl-ref/
9Protege OWL: http://protege.stanford.edu/overview/protege-owl.html

369

Web Service
Implementation

Java Implementation

ReputationPackage

ReputationObjectModel
(methods declarations)

RO
(implemented methods)

ROModel
(Default implementation)

ReputationObject
(extra methods declarations)

implements
de

fa
ul

t
pr

og
ra

m
er

de

fin
ed implements

extends OWLIndvidual extends RDFIndvidual

<<Interface>>

<extends><extends>

<<Interface>>

OWLModel Jena

Knowledge-base

Rep. Ontology
RO Repository

OWL file-based
Directories

SPARQL Endpoint OWLFactory API

Application Server
(Apache Tomcat 7.0)

Prot ég é-OWL
tools

HTTP Server

Web Services
(Apache Axis)

SOAP

RESTful
operations

Figure 3. Technologies used in our framework

Implementation for reading, writing, and processing an

RO along with the selection method (given a consumer

priority list for the sorting service) was developed also in

Java using OWLModel10 library and Jena-API 11 which

facilitates the integration of the model in any system on the

implementation layer. In order to enforce the use of semantic

storage of reputation objects, the only way to create a new

object is through an OWL factory which interacts with the

OWLModel which in return is used to create, modify, and

query the ontological resources i.e. the reputation ontology

repository. The OWLModel API has an encapsulated API

for reasoning and provides access also to Pellet Reasoner.

We used SPARQL for simpler queries over RDF data and

the OWLModel reasoner for more complicated queries on

the OWL ontology repository. This is implemented as part

of the RO modeling service.

Part of our experiments was setup in an agent-based

environment. In these experiments, the rules set is commu-

nicating with a rule-based service (agent) in the Rule Re-

sponder system12 which allows the deployment of distributed

rule inference services running a local rule engine such as

Prova or Drools on an enterprise service bus [17]. The rule

services, which can act as multi-agents, can communicate

with each other using Reaction RuleML13 as a standard rule

interchange format. The separation of the rule engine from

10OWLModel: http://protege-owl.sourceforge.net/javadoc/edu/stanford/
smi/protegex/owl/model/OWLModel.html

11Jena framework: http://jena.sourceforge.net/
12Rule-Responder: http://responder.ruleml.org
13RuleML Initiative: http://ruleml.org/

the ROService is intentional for integration purposes. Some

might want to hard code their reasoning rules and decide not

to use a fully developed middleware like Rule-Responder.

For the implementation of the web services, the used

application server is Apache Tomcat 7.014 and Apache Axis
15(a SOAP-aware servlet) for deploying the services.

Output data: Once a reputation object is being re-

trieved (in case of a query request) or being updated (in

case of a new entry), this object is returned as a response.

If the operation being requested is sorting entities based

on their reputation, a list of ordered ROs is returned as

a response. An example of the OWL file that represents

a RO of a seller in an e-market is shown in listing 1.

In this simplified example, a seller’s reputation is de-

scribed by the evaluation of two criteria: Review and

DeliveryMethod. A seller or a business entity can be

described by the vocabulary GoodRelations 16 which is

an ontology for describing offerings and other aspects of

e-commerce on the Web. The WebPortal specifies that

the criterion DeliveryMethod has the reputation value

standard if only one delivery method is available or has the

value several otherwise. Review is a vocabulary for sharable

reviews and simple ratings 17. The final rating value -defined

by the ontology- can only be a numeric value and expresses

the reviewer’s value judgement on the work.

14Apache Tomcat: http://tomcat.apache.org/index.html
15Apache Axis 2: http://axis.apache.org/axis/
16GoodRelation Vocabulary: http://purl.org/goodrelations/
17RDF Review Vocabulary: http://hyperdata.org/xmlns/rev/hReview

370

Listing 1. Seller’s RO

<gr:Reseller rdf:reference=”http://www.example.org/John#”>
<ro:hasReputation >
<ro:ReputationObject rdf:ID=’’SellerRO1’’>
<ro:hasCriteria>
<ro:Criterion
rdf:resource=’’http://purl.org/goodrelations/v1/

DeliveryMethod’’>
<ro:hasReputationValue>standard</ro:

hasReputationValue>
<ro:collectedBy ro:CollectingAlgorithm=’’#WebPortal

’’/>
</ro:Criterion>
<ro:Criterion>
<review:Review>
<review:rating>8</review:rating>

</review:Review>
</ro:Criterion>
</ro:ReputationObject>
</ro:hasReputation >
</gr:Reseller>

IV. DISCUSSION

In order to examine the current reputation systems and to

discover problems that hinder the development of context-

aware reputation systems, we are conducting several user

studies. The first study focuses on how users perceive rep-

utation and whether that perception is translated in current

representations. The second study was an experiment on the

online rating experience to see how users rate and compare

between their ratings and what do they actually want to

convey. During these study, we come to the conclusion that

there is no such thing as a general reputation. Reputation

is meaningful only in a context and a single value (or

graphical representation) does not communicate what the

users actually mean in their ratings. This led us to propose a

framework that ensures context awarness not only to online

communities but also to software systems in general.

In previous sections, we presented why context-aware

systems are needed and proposed a framework that not

only enables the construction of context-aware reputation

systems but also ensures that it is easy to integrate it with

other systems. Integration is possible via communication

with the presented services, using the presented Java library,

and by adapting our generic ontology for the representation

of reputation information. The implementation conforms to

two principles: the use of semantic technologies (i.e. using

OWL for the reputation object ontology implementation) and

the design of a service oriented architecture (i.e. separating

functionality into services and using SOA technologies for

their implementation). Semantic web technologies facilitate

data integration and enhance information usage by connect-

ing it to its definitions and context. Reputation ontologies

create a common understanding of the notion as well as

facilitate reputation exchange. A SOA design has many

aspects and benefits. It provides a flexible infrastructure

to allow independently developed software components to

communicate in a seamless manner.

V. CONCLUSION AND FUTURE WORK

Reputation is used to establish trust between unrelated

parties in web communities. Reputation systems are build

for single context and only for the domain of their creation.

Context-aware systems enables interoperability, establish

trust through connecting information to its context, and

allow customized service selection. In order to represent

reputation information, ontologies are used to ensure that

knowledge of the context related to this information is

embedded within the representation. Ontologies are essential

to make reputation systems meaningful in general contexts,

and to support exchange of reputation information.

In this paper, we proposed a context-aware reputation sys-

tem that is based on our reputation object ontology and de-

signed to adapt to service oriented approaches. Advantages

to context-aware reputation systems and the components that

are needed to construct these systems were also illustrated

in the paper.

In our future work, we plan to continue enhancing the

framework and the implementation of the reputation auditing

service. Reputation auditing process is an evaluation process

that collects and monitors information regarding reputation

quality then offer solutions and adjustments.

REFERENCES

[1] Reputation-based Systems: a security analysis, 2007.

[2] Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust
in virtual communities. In Proceedings of the 33rd Hawaii
International Conference on System Sciences-Vol. 6. IEEE
Computer Society, 2000.

[3] Rehab Alnemr, Justus Bross, and Christoph Meinel. Con-
structing a context-aware service-oriented reputation model
using attention allocation points. Proceedings of the IEEE
International Conference on Service Computing, 2009.

[4] Rehab Alnemr, Stefan König, T. Eymann, and C. Meinel. En-
abling usage control through reputation objects: A discussion
on e-commerce and the internet of services environments.
In Special issue of Trust and Trust Management, Journal
of Theoretical and Applied Electronic Commerce Research,
2010.

[5] Rehab Alnemr, Adrian Paschke, and Christoph Meinel. En-
abling reputation interoperability through semantic technolo-
gies. In ACM International Conference on Semantic Systems.
ACM, 2010.

[6] Rehab Alnemr, Matthias Quasthoff, and Christoph Meinel.
Taking Trust Management to the Next Level. Handbook of
Research on P2P and Grid Systems for Service-Oriented
Computing: Models, Methodologies and Applications, pp.
796-816, 2009.

[7] John M. T. Balmer and Stephen A. Greyser, editors. Revealing
the corporation. Routledge, London [u.a.], 2003.

371

[8] Marco Carbone, Mogens Nielsen, and Vladimiro Sassone. A
formal model for trust in dynamic networks. In In proc. of
international conference on software engineering and formal
methods, pages 54–63, 2003.

[9] J. Chandler, K. El-Khatib, M. Benyoucef, G. Bochmann, and
C Adams. Legal challenges of online reputation systems. In In
L. K. R. Song, Chapter in Trust in E-Services: Technologies,
Practices and Challenges, pages 84–111. Hershy: Idea Group
Publishing, 2007.

[10] Chrysanthos Dellarocas. Reputation mechanisms. 2005.

[11] Babak Esfandiari and Sanjay Chandrasekharan. On how
agents make friends: Mechanisms for trust acquisition, 2001.

[12] Audun Jøsang. A logic for uncertain probabilities. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., 9:279–311, June
2001.

[13] Audun Jøsang, R. Ismail, and C. Boyd. A survey of trust
and reputation systems for online service provision. Decision
Support Systems, pages 618–644, 2007.

[14] L. Mui, M. Mohtashemi, and A. Halberstadt. A computational
model of trust and reputation for e-businesses. In Proceedings
of the 35th Annual Hawaii International Conference on
System Sciences, HICSS ’02. IEEE Computer Society, 2002.

[15] Lik Mui, Ari Halberstadt, and Mojdeh Mohtashemi. Evaluat-
ing reputation in multi-agents systems. In Trust, Reputation,
and Security: Theories and Practice, Lecture Notes in Com-
puter Science, pages 183–194. Springer, 2003.

[16] Adrian Paschke, Rehab Alnemr, and C. Meinel. The rule
responder distributed reputation management system for the
semantic web. In RuleML-2010 Challenge, Washington DC,
USA. ACM, 2010.

[17] Adrian Paschke, Harold Boley, Alexander Kozlenkov, and
Benjamin Craig. Rule Responder: RuleML-Based Agents for
Distributed Collaboration on the Pragmatic Web. In 2nd ACM
Pragmatic Web Conference 2007. ACM, 2007.

[18] I. Pinyol, J. Sabater-Mir, and G. Cuni. How to talk about
reputation using a common ontology: From definition to
implementation. In Proceedings of the Ninth Workshop on
Trust in Agent Societies, Hawaii, USA, pages 90–101, 2007.

[19] Conte R. and Paolucci M. Reputation in Artificial Societies.
Social Beliefs for Social Order. 2002.

[20] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric
Friedman. Reputation systems. Commun. ACM, pages 45–
48, 2000.

[21] Paul Resnick and Richard Zeckhauser. Trust among strangers
in Internet transactions: Empirical analysis of eBay’s rep-
utation system. In The Economics of the Internet and E-
Commerce, pages 127–157. 2002.

[22] J. Sabater, M. Paolucci, and R. Conte. REPAGE: REPutation
and imAGE among limited autonomous partners. Journal of
Artificial Societies and Social Simulation, 2006.

[23] Jordi Sabater and Carles Sierra. Regret: reputation in gre-
garious societies. In Proceedings of the fifth international
conference on Autonomous agents, AGENTS ’01, pages 194–
195, New York, NY, USA, 2001. ACM.

[24] Jordi Sabater and Carles Sierra. Review on computational
trust and reputation models. Artif. Intell. Rev., 24:33–60,
September 2005.

[25] Maxim Schnjakin, Rehab Alnemr, and C. Meinel. A security
and high-availability layer for cloud storage. In The 2nd
Int. Workshop on Cloud Information System Engineering
(Springer CISE 2010), 2010.

[26] Sandip Sen and Neelima Sajja. Robustness of reputation-
based trust: boolean case. In Proceedings of the first interna-
tional joint conference on Autonomous agents and multiagent
systems, AAMAS ’02, pages 288–293. ACM, 2002.

[27] Andrew Whitby, Audun Jøsang, and Jadwiga Indulska. Filter-
ing out unfair ratings in bayesian reputation systems. 2004.

[28] Bin Yu and Munindar P. Singh. An evidential model of
distributed reputation management. In Proceedings of the
first international joint conference on Autonomous agents
and multiagent systems, AAMAS ’02, pages 294–301, USA,
2002. ACM.

372

