
Mapping the Blogosphere —
Towards a Universal and Scalable Blog-Crawler

Philipp Berger, Patrick Hennig
Justus Bross, Christoph Meinel

IT-Systems Engineering

Hasso-Plattner Institute

Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

{philipp.berger, patrick.hennig}@student.hpi.uni-potsdam.de,

{jusuts.bross, christoph.meinel}@hpi.uni-potsdam.de

Abstract—The massive adoption of social media has provided
new ways for individuals to express their opinions online. The
blogosphere, an inherent part of this trend, contains a vast array
of information about a variety of topics. Thus, it is a huge think
tank that creates an enormous and ever-changing archive of
open source intelligence. Modeling and mining this vast pool of
data to extract and describe meaningful knowledge in order to
leverage (content-related) structures and dynamics of emerging
networks within the blogosphere is the higher-level aim of the
research presented here. While the concept of our tailor-mode
feed-crawler was already discussed in two earlier publications
this paper focuses on our approach to extend the earlier feed-
crawler to a more universal and highly scalable blog-crawler.

I. INTRODUCTION

Since the end of the 90s, weblogs have evolved to an

inherent part of the worldwide cyber culture [1]. In the year

2008, the worldwide number of weblogs has increased to more

than 133 million [2]. Compared to around 60 million blogs in

the year 2006, this constitutes the increasing importance of

weblogs in today’s internet society on a global scale [3].

Technically, weblogs are an easy-to-use, web-enabled Con-

tent Management System (CMS), in which dated articles

(”postings”), as well as comments on these postings, are

presented in reverse chronological order [4]. Their potential

fields of application are numerous, beginning with personal

diaries, reaching over to knowledge and activity management

platforms, and finally to enabling content-related and journal-

istic web offerings [5][6].

One single weblog is embedded into a much bigger picture:

a segmented and independent public that dynamically evolves

and functions according to its own rules and with ever-

changing protagonists, a network also known as the blogo-
sphere [7]. A single weblog is embedded into this network

through its trackbacks, the usage of hyperlinks as well as its

so — called blogroll — a blogosphere-internal referencing

system.

This huge think tank creates an enormous and ever changing

archive of open source intelligence [8]. However, the biggest

congeniality of the blogosphere — the absence or indepen-

dence of any centralized control mechanism — is meanwhile

its biggest shortcoming: Modeling and mining the vast pool

of data generated by the blogosphere to extract and represent

meaningful knowledge seemed so far virtually impossible.

II. PROJECT SCOPE

Facing this unique challenge we initiated a project we

already described in other publications with the objective to

map, and ultimately reveal, content-oriented network-related

structures of the blogosphere by employing an intelligent feed
crawler. A crawler, also known as an ant, automatic indexer,

worm, spider or robot, is a program that browses the World

Wide Web (WWW) in an automated, methodical manner [9].

To create relevant results out of this big amount of data it

is necessary to analyze it based on different techniques and

algorithms. For example the knowledge about atmospheric

pictures or trends for a specific topic can be very impor-

tant for a lot of organizations or a special group of people

like politcians. There are three important parts, the crawler

described in detail in this paper, an analysis framework and

a visualization to make the results comfortable to read for

humans. To complete this overall approach we started a project

called Blog-Intelligence. The current implementation of the

project is already working as a prototype for the German

blogosphere1.

To allow processing of the enormous amount of content

in the blogosphere, it is necessary to make that content

offline available for further analysis. This task is prototypical

implemented by the current feed-crawler. This paper discusses

to develop a general and scalable blog-crawler based on the

current prototype.

While the next section focuses on the current crawler

functionality and its corresponding workflows, section four

discusses the new concepts for enhancing the crawler such as

storing the data to an in-memory database, using MapReduce,

extracting posts and calculating an adequate update interval.

Based on these insights, we provide in section six an outlook

as well as recommendations for further research with the

overall objective to further enhance our crawler. Section seven

gives a conclusion, followed by the list of references.

1http://www.blog-intelligence.com

2011 IEEE International Conference on Privacy, Security, Risk, and Trust, and IEEE International Conference on Social Computing

978-0-7695-4578-3/11 $26.00 © 2011 IEEE

DOI

672

III. CURRENT STATE OF THE BLOG INTELLIGENCE

FRAMEWORK

The crawler implementation recognizes posts by crawl-

ing only feeds, rss and atom, from a host identified as

a blog. The identification of a blog works as described

in the following. The webpage is scanned for common

patterns of diverse blog systems. For instance, a pattern

could be a match against the generator tag of a web

page like <meta content=’blogger’ name=’generator’/>.

Afterwards, if a pattern matches, the crawler downloads

the first alternate link rel=”alternate” with the type of

a xml page identified by type=”application/rss+xml” or

type=”application/atom+xml” and takes the referenced feed

as the main feed for a blog which should contain all posts. In

some cases, you run the risk that feeds only contain a subset of

all posts. For instance, the crawler can pick a feed for a specific

category. In addition, it is common that published feeds are

limited to the latest posts.

Consequently, the crawler is limited on crawling a subset

of all available posts. The current crawler implementation is

facing two gaps during the post retrieval. The fact that only

the latest posts can be found in the feed creates both gaps .

Blogs, which offer past and present posts in their feed, are

an exception and usual very small. First, the historical gap

represents the posts not covered because the crawler is unable

to dive deep in the history of a blog. Second, the update-

frequency gap contains posts that are published between two

crawls. As soon as the blogger publishes more posts as the feed

can impound, the old implementation is not able to recognize

these intermediate posts.

The length of the update interval is mainly caused by the

time to read and write to the database. The crawler spends

a lot of time in waiting for queries. In particular, selecting

the next job can take about several minutes. This bottleneck

limits scalability. Although downloading and processing is

highly parallelized, all instances have to wait for the database

connection.

Another point for enhancement is the analyzing part of

the framework. Currently, the analysis consists of several

independent scripts. These scripts work partially on the same

database as the crawler and partially on another database used

by the visualization. Each of the scripts has to be executed

manually, which is very time consuming. In addition, few

analyses (e.g. removing spam blogs) have to be executed

manually, too. The desired enhancement is a more integrated

approach: The analysis works on the same database as the

crawler and the visualization. This could also enable the

visualization to deliver real-time data. Additionally,the Blog
Intelligence framework should handle upcoming requests for

personalized search . To sum up, all these points lead to the

necessity to improve the current crawler implementation.

IV. NEW CONCEPTS

In this section we present concepts for implementing the

suggested improvements for the crawler. First, we discuss a

new implementation basis and storage solution. Afterwards,

we describe a more general approach what the parsing of the

crawler is concerned along with a new scoring concept and

update mechanism.

A. MapReduce

By introducing the concept of MapReduce to our crawler,

we decrease the coupling between the different crawl tasks

and increase the degree of parallelization. The MapReduce
programming model is designed for the processing and gener-

ation of large data sets. Hereby the model dictates partitioning

of the execution code, called job, into a map and a reduce

function. These functions enable the underlying execution

framework to distribute the program execution among multiple

machines. As consequence, MapReduce allows a high degree

of parallelism[10].

In the context of blog crawling, the fetching and parsing of

terabytes per day would be possible given a sufficiently big

cluster.

B. Apache Nutch Framework

An existing MapReduce web crawler implementation is the

open-source web search engine Apache Nutch2. Apache Nutch
provides a transparent alternative to the private global scale

search services [11].

It comes with an easily extensible and scalable crawler

component. Following the MapReduce model, Apache Nutch
defines four different jobs for crawling: generator, fetcher,

parser and updater. The generator job selects the next URLs
to fetch from the database. The fetcher job asynchronously

downloads the selected pages. Afterwards, the parser job
extracts metadata, links and the actual text content. In addition,

the framework offers an extension point to insert new parsing

algorithms. Finally, the updater job inverts links and calculates

scores for parsed web pages. Each job works on a large amount

of pages in parallel. During the crawling process Apache Nutch
stores his data into a distributed file system HDFS 3.

Apache Nutch is a MapReduce application dedicated for

scale-out scenarios. For example, Google uses a cluster of

countless small machines to crawl the web. Nevertheless,

even on scale-up scenarios MapReduce applications perform

as scale-out-in-a-box more effective than pure scale-up ap-

proaches [12]. This enables us to run the crawler on a large

cluster of small machines as well as on a large shared-memory

server. In this context, the HPI offers a testing platform: the

Future SOC Lab4, which provides researchers access to the

latest multi/many-core hardware. This enables us to run our

crawler implementation on a scale-up scenario.

C. Combine Nutch with In-Memory Databases

As previously mentioned, Apache Nutch stores into the

HDFS. HDFS is designed to run on commodity hardware.

Thereby, it does not make any assumption about the underlying

2http://nutch.apache.org/
3(Hadoop Distributed File System) http://hadoop.apache.org/hdfs/
4http://www.hpi.uni-potsdam.de/forschung/future soc lab.html

673

hardware. The current implementation uses a PostgreSQL5

database that is not able to answer the number of queries

of the crawler in acceptable time. Even when running the

implementation on latest hardware, we are not able to notice-

able decrease the query processing time. Although PostgreSQL
makes the data discoverable and easily queryable by offering a

SQL query API, we have to go with another memory solution.

In contrast to PostgreSQL, HDFS is able to handle and process

large data sets using a low-cost cluster. Thus, HDFS stores

only meta data in the main memory. However, given the latest

hardware, HDFS is not able to make full usage of the given

amount of main memory. Additionally, HDFS does not offer

a SQL as easy discoverable query API.
”In business compliance this is about to change as hardware

architecture have dramatically evolved in the last years”[13].

That means that multi-core processors and low cost main

memory can leverage the time consuming tasks extremely

well. Since costs for main memory is very low and access to

files in the main memory is much faster, it makes sense to store

the operational data only in the main memory. ”In-memory is

not a totally new concept, it was introduced in the 1980s”

[13], but was not focused any longer since main memory was

too expensive. Prof. Dr. Hasso Plattner is focusing on this

topic in detail in his book In-Memory Data Management —
An Inflection Point [13] based on enterprise applications SAP
is developing.

Likewise enterprise applications, the blog intelligence
framework has similar analysis aspects. In contrast to a usual

crawler, searching for key words is less important. Instead,

we have to do analysis that is more complex. We also need

to analyze the link structure within the blogosphere. Unlike

usual search engines, we are focusing on a trend analysis.

Thereby, we want to follow discussions about a certain topic

throughout the blogosphere. We need to find out where a

discussion has begun, which posts are referring to this post

and how a discussion evolves. Another important aspect is to

calculate a blog ranking. As described in [14], we want to build

a ranking, which is not only based on the connectivity used

in usual rankings, but also on the importance of the content.

Because of the effective usage of the main memory and the

versatile analysis capabilities, we decided to extend Apache
Nutch to store all collected data in an in-memory database.

Related to that is Apache Gora6, which connects Apache Nutch
to common databases. Therefore, we have to adapt the Apache
Gora connector to run on the SAP in-memory solution HANA7.

D. Adaptive Post Recognition

Besides performance improvements, we want to close the

update gaps of the current implementation described in section

III. As discussed, both gaps result from the limited size of

feeds. Therefore, we developed a concept for an adaptive

algorithm. This algorithm identifies posts on web pages using

patterns that are automatically extracted from the blog’s feed.

5http://www.postgresql.org/
6http://incubator.apache.org/gora/
7http://www.sap.com/platform/in-memory-computing/in-memory-appliance

The crawler first crawls the whole host of a potential blog.

It is quite difficult to define whether all pages of one host

are covered. Here we assume that the crawl ends as soon as

there are no more pages found whose link-path stays inside

the current host.

The crawl returns a set of URLs and corresponding docu-

ments from one host. We define the start-page of one host

as the shortest URL of this host. This is typically the host

itself. Given this page, the crawler searches for an alternate-
xml-link, which defines the feed of the host. If there is no

feed url on the start-page, the host will not be recognized

as a blog. Otherwise, the feed get fetched and parsed. This

gives some blog specific properties like title and author, but

typically also the 10 latest posts of a blog. Among other more

specific attributes the data of the posts consists of various

core attributes like permalink, title, author, published date and

content. These data enables us to find and analyze the specific

web page for each post. It is common, to publish an extra

page for each post, often referenced by the permalink URL.

By identifying the position of the attributes of a post in the

HTML DOM structure, we can generate specific path sets for

each blog.

A path in the DOM tree is the ordered list of all parent

nodes starting from a specific node. The first challenge is to

find the nodes corresponding to the post attributes. Especially

the feed content attribute contains HTML-style tags as well

as the content on the page itself. Therefore, it is necessary

to clean both HTML representations that they contain only

structure-relevant tags. In best case, post attributes contain no

styles and need no cleaning. After the clean up, it is possible

to search for an attribute’s content in the DOM tree.

For example, there are typical two paths of the title
attribute in the HTML page of a post at blogger.com.

The first occurrence is in the title tag and has the path
/HTML/head/title/::text(). The second time the title occurred at

/html/body/div/div/div/div/div/.../div/div/h3/::text(). Here two

problems of this approach reveal. The first problem is the

handling of no exact matches. This occurs in the title tag,

which is a combination of the blog title and the post title.

Here we have to extend the XPath8 notation in such a

way that we give relative positions in text nodes, like start,
middle and end. (eg. text(start)). Second, the node names are

insufficient as URI for a node because they often have similar

structures created by multiple div tags. On second sight, the

uniqueness of the path can be derived by the class, id and style
attributes of the different nodes. Consequently, the full second

path should look like this /html[@class=’v2’]/body[class=
’loading’]/div[class=’content’]/.../h3[class=’post-title entry-
title’]/::text(). By creating paths for each attribute on the page,

we get a very specific pattern for attributes of one post in

its HTML page. Given patterns for all posts, we can reduce

the patterns to a common denominator by removing changing

attributes like id, href or alt.
Because all blog systems are, in an abstract sense, web

8http://www.w3.org/TR/xpath/

674

content management systems (WMS). They give documents

an unified visual appearance to provide coherence of the style

and design. As a result, we can conclude that posts pages in

blogs provide a unified structure and appearance. Therefore,

patterns extracted by the latest sample of posts will map to

the rest of the posts HTML pages. This enables us to extract

meta information from posts, which are no longer linked from

the blog feed, by using the path for each attribute.

E. Blog Coverage

Following our adaptive post recognition approach, the

crawler is first downloading every page of a specific host.

Afterwards, pages are categorized based on the corresponding

post entries from the feed. In contrast, not every page of a

host is a post page or a blog relevant page. For example,

there are embedded shops, user profiles or other static pages.

Therefore we like to narrow the crawl down to just blog

relevant pages. Furthermore, we need to ensure that the crawler

has downloaded enough pages of a blog host. As consequence,

we introduced a customized prioritization for fetching pages.

1) Blog Host Coverage: To ensure the effective coverage

of a blog host, we need to shrink the set of pages to crawl. Our

first approach is to limit the crawl to a certain depth beginning

with the first page identified as blog of a host. Thereby, we

focus on pages that are the easiest reachable for users of a blog.

It is most likely that these pages contain the most important

post pages.

On narrowing-down to breadth-first crawl, the chance of

getting an old post is low. Usually different blog systems

offer a so-called blog archive. This archive contains almost

all posts ever published on the blog sorted by publishing date.

A common implementation is to offer a pageable archive, so

the user can flip through the history. Since we want to analyze

the development of topics over time, we need to handle these

historical posts as well as the recent ones. The easiest approach

is to prioritize URLs, which lead to archive pages, based on

special keywords like ”archive” or ”p”. Unfortunately, this

only applies to known and unmodified blog system versions. In

order to give an universal solution, we want to use an inverted

DUST approach [15].

The idea behind this is to analyze URLs and predict for

example other URLs where archives of posts can be found. A

very important part is to crawl the posts not listed on the first

web page. To achieve this, it is necessary to get URLs, which

look like http://www.spreeblick.com/archive/2. If we knew that

by incrementing the last number we get all old posts of a blog,

we get historical posts faster. This is what can be done by using

the DUST approach [15].

A set of URLs from a host is split into a prefix, a suffix
and the number. Afterwards, these triples are grouped by this

order. If there are more than, for example, three URLs with the

same prefix but different numbers, we assume that it is possible

to get other content by further incrementing until it reaches

an error page. Consequently, it is necessary to increment the

variable number in the URL until the content stops changing.

2) Page Scoring: Facing the enormous number of outgoing

links of a page we need to prioritize which link to crawl first.

The prioritization, also known as scoring, should enable the

crawler to reach relevant pages fast. Relevant pages are in

general pages necessary for the capturing of the blogosphere.

On the one hand, it is important to crawl relevant pages for

parsing like feeds and post pages of a blog. On the other hand,

we need to discover new blogs especially by exploring via the

interconnection between blogs via posts. These requirements

lead us to the following scoring model: All links to feeds

that identified during crawling are rated with the highest

score. Within a feed, outgoing links extracted from permalinks

would possibly lead the crawler to potential posts, so we

rate these with the second highest score. All links from a

web page providing a feed give us the most relevant HTML
links. For example, they could contain blogroll links, post

links, trackbacks and other additional concepts of known blog

systems. Therefore, they get the third highest score to discover

the interconnectedness. Other pages are not that important for

the crawler, because these are HTML pages and their outgoing

links will lead most probably outside the blogosphere. In

addition, we combine this scoring model with breadth-first
crawl approach mentioned in section IV-E1. Therefore, we

increment the score of a page based on the number of hops
from the first web page of the current host.

F. Refreshing Blog Data

By using our adaptive post recognition approach and by

optimizing the coverage of post pages, we get able to close

the gaps described in section IV-D. Nevertheless, doing a crawl

of the blog host and running the adaptive post recognition is

expected to face comparable high retrieval effort. Therefore,

we decided to compute the best retrieval time for a blog

feed. This avoids using the adaptive post recognition for

the retrieval of at least the update-frequency gap. This time

depends on the publish rate of the blog itself. To prevent

parsing HTML pages we need to predict when the feed

overflows. For a given feed we can calculate the visit interval

by min(publish interval)× (number of entries− 1). On

revisiting the feed we can validate our prediction by checking

if we find at least one already crawled post in the newly

retrieved feed. Otherwise, we have to run the adaptive post
recognition approach against the whole blog host to guarantee

full coverage.

G. Resulting Crawling Process

After applying these new concepts to Apache Nutch, we

develop an enhanced version of the original crawling process

described in section IV-B.

We extend the GenerateJob with the logic for the refreshing

process. Thereby, the crawler selects feeds to update next as

described in section IV-F. To extract the blog and post specific

attributes, we update the ParserJob. In addition, we integrate

the blog system detection into the ParserJob. To implement

the post recognition described in section IV-D, we have to add

a new job. This job analyses the pages of a blog to extract the

675

DOM structure and parses the pages to extract the post data.

Finally, we adapt the DBUpdaterJob by adding a blog-specific

scoring mechanism (see section IV-E2).

V. RELATED WORK

Certainly, the idea of crawling the blogosphere is not a

novelty. However, the ultimate objectives and methods be-

hind the different research projects regarding automated and

methodical data collection and mining differ greatly as the

following examples suggest:

While Glance et. al. employ a similar data collection method

in the blogosphere as we do, their subset of data is limited

to 100.000 weblogs and their aim is to develop an automated

trend discovery method for the blogosphere in order to tap into

the collective consciousness of the blogosphere [16]. Song et

al. in turn try to identify opinion leaders in the blogosphere

by employing a special algorithm that ranks blogs not only

according how important they are to other blogs, but also

according to how novel the information is they contribute

[17]. Bansal and Koudas are employing a similar but more

general approach than Song et al. by extracting useful and

actionable insights with their BlogScope-Crawler about the

’public opinion’ of all blogs programmed with the blogging

system blogspot.com [18]. Extracting geographic location in-

formation from weblogs and indexing them to city units is

an approach chosen by Lin and Halavais [19]. Bruns tries to

map interconnections of individual blogs with his IssueCrawler

research tool [20]. His approach comes closest to our own

project’s objective of leveraging (content-related) structures

and dynamics of emerging networks within the blogosphere.

His data set and project scope are however not as extended as

ours, since he focuses on the Australian blogosphere that is

concerned with debating news and politics.

Overall, it is striking that many respectable research projects

regarding knowledge discovery in the blogosphere [21] [22]

hardly make an attempt in explaining where the data - nec-

essary for their ongoing research - comes from and how it

is ultimately obtained. We perceive it as nearsighted to base

research like the ones mentioned before on data of external

services like Technorati, BlogPulse or Spinn3r [23]. We at least

make the effort of setting up our own crawling framework to

ensure and prove that the data employed in our research has the

quantity, structure, format and quality required and necessary

[24].

VI. OUTLOOK

We described several concepts of developing an intelligent

and flexible blog crawler. Currently, we are implementing

the new concepts as described in section IV as an extended

version of the Apache Nutch crawler based on an in-memory

database. Thereby, we soon expect to get in short-term a

representative data set at least for the german blogosphere. The

next steps will be to adapt the existing analysis components to

the new database and explore new analysis approaches through

the in-memory database. In parallel, we are working on new

visualization concepts corresponding to analyze the source of

different discussions about certain topics. Hereby, it should be

possible to track a hot topic from the first post on. As a result,

the spreading through blogs, news and social networks of a

topic get more understandable.

VII. CONCLUSION

To sum up, in this paper we describe the current status of

the feed crawler project and three concepts to improve the

original feed crawler prototype. Firstly, we discuss the move

to a high parallel and scalable crawling using MapReduce
and Apache Nutch. Secondly, we present the usage of an in-

memory database to accelerate the job selection and the blog

analysis. Finally, we introduce the parsing of html pages of a

blog for post attributes using patterns that are automatically

extracted from the blog’s feed.

Generally, we try to investigate in what patterns, and to

which extent blogs are interconnected. We also have great

interest in analyzing the content of single weblogs. Due to

that, we want to face the challenge of long-term mining

the blogosphere on a global scale. The visualization of link

patterns, a thorough social network analysis, and a quantitative

as well as qualitative analysis of bidirectional-linked blogs will

form the following project phase of our overall project 9, which

will build upon the enhanced performance and data collection

techniques described in this paper.

Even though the original implementation performed well

along the milestones defined in the current crawler imple-

mentation, it soon became apparent that those enhancements

discussed in our paper [25] were crucial for the overall perfor-

mance of the crawling framework. We conclude that the new

blog crawler will be universal and run on a performance level

that satisfies the major requirements for long-term and large-

scale data mining in the blogosphere. Due to the enormous

amount of blogs currently around, as well as those thousands

of blogs and posts that add up to this amount of data every

day, a final performance analysis of the crawler will follow in

a couple of month.

9http://www.blog-intelligence.com

676

REFERENCES

[1] S. L. B. S. Herring, S. and E. Wright, “Bridging the gap: A genre
analysis of weblogs,” in Proceedings of the 37th Hawaii International
Conference on System Sciences (HICSS’04), 2004.

[2] T. Smith. (2008, Sep. 2,) Power to the peo-
ple: Social media tracker wave 3. [Online]. Available:
http://www.goviral.com/articles/wave 3 20080403093750.pdf

[3] D. Sifry. (2006) State of the blogosphere. Sifry.com - Sifry’s Alerts.
[Online]. Available: http://www.sifry.com/alerts/archives/000443.html

[4] P. S. C. M. J. Bross, A. Acar, “Spurring design thinking through
educational weblogging,” in Pro. 2009 IEEE International Conference
on Social Computing, IEEE Press, vol. 14, Aug. 29–31, 2009, pp. 903–
908.

[5] H. Kircher, it - Information Technology (49) 1, Oldenbourg Wis-
senschaftsverlag Std., 2007.

[6] M. Ojala, “Blogging for knowledge sharing, management and dissemi-
nation,” in Business Information Review, 2005, pp. 269–276.

[7] D. Whelan, “In a fog about blogs,” in American Demographics, vol. 25,
New York, NY, 2003, pp. 22–23.

[8] J. Schmidt, Weblogs Eine kommunikations-soziologische Studie, UVK
Verlagsgesellschaft mbH Std., 2006.

[9] S. M. C. Leisegang, “Sieben frei verfgbare weblog-systeme liebes
tagebuch...” in Business Information Review, 2008, p. 42.

[10] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, January 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[11] R. Khare and D. Cutting, “Nutch: A flexible and scalable open-source
web search engine,” Tech. Rep., 2004.

[12] M. M. Michael, J. E. Moreira, D. Shiloach, and R. W.
Wisniewski, “Scale-up x scale-out: A case study using
nutch/lucene.” in IPDPS. IEEE, 2007, pp. 1–8. [Online]. Available:
http://www.cecs.uci.edu/ papers/ipdps07/pdfs/SMTPS-201-paper-1.pdf

[13] H. Plattner and A. Zeier, In-Memory Data Management: An Inflection
Point for Enterprise Applications, 1st ed. Springer, 4 2011. [Online].
Available: http://amazon.com/o/ASIN/3642193625/

[14] K. R. C. M. Justus Bro, Matthias Kohnen, Identifying the top dogs of
the blogosphere. Springer LNSN, 2011, vol. Social Network Analysis
and Mining.

[15] Z. Bar-Yossef, I. Keidar, and U. Schonfeld, “Do not crawl in the
dust: different urls with similar text,” in WWW ’07: Proceedings
of the 16th international conference on World Wide Web. New
York, NY, USA: ACM Press, 2007, pp. 111–120. [Online]. Available:
http://dx.doi.org/10.1145/1242572.1242588

[16] N. S. Glance, M. Hurst, and T. Tomokiyo, “BlogPulse: Automated Trend
Discovery for Weblogs,” in WWW 2004 Workshop on the Weblogging
Ecosystem. New York, NY USA: ACM, May 2004. [Online].
Available: http://www.blogpulse.com/papers/www2004glance.pdf

[17] X. Song, Y. Chi, K. Hino, and B. Tseng, “Identifying opinion leaders
in the blogosphere,” in CIKM ’07: Proceedings of the sixteenth ACM
conference on Conference on information and knowledge management.
New York, NY, USA: ACM, 2007, pp. 971–974. [Online]. Available:
http://dx.doi.org/10.1145/1321440.1321588

[18] N. Bansal and N. Koudas, “Searching the blogosphere.” in Proceedings
of the 10th International Workshop on Web and. Databases, WebDB
2007, Beijing, China, 2007.

[19] J. Lin and A. Halavis, “Mapping the Blogosphere in America.” [Online].
Available: http://www.blogpulse.com/papers/www2004linhalavais.pdf

[20] A. Bruns, “Methodologies for mapping the political blogosphere: An
exploration using the issuecrawler research tool,” First Monday,
vol. 12, no. 5, pp. 1109–1110, 2007. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0190962207015885

[21] N. Agarwal, H. Liu, L. Tang, and P. S. Yu, “Identifying the
influential bloggers in a community,” in WSDM ’08: Proceedings of
the international conference on Web search and web data mining.
New York, NY, USA: ACM, 2008, pp. 207–218. [Online]. Available:
http://doi.acm.org/10.1145/1341531.1341559

[22] S. C. Herring, L. A. Scheidt, S. Bonus, and E. Wright, “Bridging
the gap: A genre analysis of weblogs,” in Proceedings of the 37th
Hawaii International Conference on System Sciences (HICSS’04). Los
Alamitos: IEEE Press, 2004.

[23] M. Chau, J. Xu, J. Cao, P. Lam, and B. Shiu,
“A blog mining framework,” It Professional, vol. 11,
no. 1, pp. 36–41, 2009. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4757239

[24] J. Bross, M. Quasthoff, P. Berger, P. Hennig, and C. Meinel,
“Mapping the blogosphere with rss-feeds,” in Proceedings of the
2010 24th IEEE International Conference on Advanced Information
Networking and Applications, ser. AINA ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 453–460. [Online]. Available:
http://dx.doi.org/10.1109/AINA.2010.95

[25] P. B. C. M. Justus Bross, Patrick Hennig, “Rss-crawler enhancement for
blogosphere-mapping,” in International Journal of Advanced Computer
Science and Applications,, ser. IJACSA ’10, 2010.

677

