
Elastic VM for Rapid and Optimum Virtualized
Resources’ Allocation

Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel
Hasso Plattner Institute

Potsdam University
Potsdam, Germany

E-mail: firstname.lastname@hpi.uni-potsdam.de

Abstract—The rapid growth of E-Business and the frequent
changes in sites contents pose the need for rapid and dynamic
scaling of resources. Cloud computing infrastructure, based on
virtualization technologies, enables agile and dynamic scalability
of resources. However, current implementation of the scalability
in the cloud uses the Virtual Machine (coarse-grained) as a
scaling unit which often leads to over-provisioning of resources.
Hence, we propose Elastic VM (fine-grained) scaling architecture.
It implements the scalability into the VM resources level to
optimize resources’ allocation. We support our approach by
analytical analysis and describe in details how Elastic VM
architecture improves the performance and optimize the dynamic
allocation of resources.

I. INTRODUCTION

To maintain a good quality of service (QoS), system
administrators should provision adequate resources to cope
with workload demand fluctuations. Unfortunately, over-
provisioning implies extra cost and decreases the business
profit. On the other hand, under-provisioning degrades the
QoS, irritates the clients, and consequently retreats the E-
Business durability.

Traditionally, hardware provisioning is implemented as
steps done monthly or yearly according to the enterprise’s
policy and the expected workload. As seen in figure 1, in
most cases, hardware upgrade implies over-provisioning (i.e.,
money loss) while new hardware is typically planned to run for
the next months or years. However, at some point of time, the
current hardware will be unable to cope with actual demand
which results in QoS degradation.

The later advance in virtualization technology software, e.g.
Xen [2] and VMware [3], enables cloud computing environ-
ment to deliver agile, scalable, and low cost infrastructures.
However, as seen in figure 1, there is a gap between the actual
demand and the automated resources allocation implemented
by current scalability architectures in the clouds. From the
client side this gap implies additional price. From the provider
side it implies running additional hardware, consuming more
power, and contributing more in CO2 emissions [4].

Our intention in this paper is to reduce the gap between
resources allocation and the actual demand. For this goal, we
analyze the current scalability implementation offered by cloud
infrastructure providers, e.g. Amazon EC2 [5] and GoGrid [6].

Time

Hardware provisioning

Traditional hardware

Actual demand

Cloud computing

under- provisioning
(Bad QoS)

over- provisioning
(Money loss)

Fig. 1: Automated elasticity [1]

The analysis shows the following characteristics: First,
the current scalability implementation uses VM as a scaling
unit (i.e., coarse-grained scaling). Second, it implies running
additional load-balancer VM instances.

In this paper, we propose Elastic VM scaling architecture; it
is a vertical scaling architecture that scales the VM resources
dynamically to cope with workload demand. To enable the
dynamic scalability, the Elastic VM kernel is modified to
accept on-the-fly resources scaling without interrupting the
service or rebooting the system. Moreover, the hypervisor is
extended with interfaces that enable modifying VMs resources
by programming languages.

The rest of this paper is organized as follows: The next
section overviews the common web applications patterns and
scalability architectures. Section III compares the performance
of both Multi-instances and Elastic VM architectures analyti-
cally. Section IV investigates pros and cons of both scalability
architectures’ implementation. Section V discuss the related
work. Finally, section VI concludes the paper and points out
to our immediate future work.

II. SCALABILITY ARCHITECTURES

Typically, web applications consist of three tiers: web tier,
application tier, and database tier. The incoming requests go
through these tiers to get back to the user with the results.
According to application characteristics, each tier may cast an
intensive demand to specific resources making it a bottleneck.
The dependency between the tiers propagates performance5th International DMTF Workshop, SVM 2011, c© 2011 IEEE

degradation of one tier to the whole application. Therefore,
to cope with traffic demand and avoid QoS degradation, the
first step is to predict the bottleneck tier, and then to scale it
dynamically.

A. Multi-instances Scaling Architecture

Current implementation of the scalability by Amazon EC2
and GoGrid is abstracted in figure 2(a). Users’ requests are
directed to a load-balancer which forwards them to available
VM instances (i.e., VM1 to VMn). To maintain a determined
QoS, a controller monitors performance metrics (e.g., CPU
utilization) and scale-out VMs to cope with workload demand
surge or scale-down VMs to reduce the cost.

VMn

Load
balancer

VM

Web
users

Complex
ScalabilityScalable

VM1

Controller

Scalable

VMn

VM1

Web tier App tier DB tier

Load
balancer

(a) Multi-instances Scaling Architecture

Web tier App tier

VM VM

Web
users

ScalableScalable

Controller

DB tier

VM

Scalable

(b) Elastic VM Scaling Architecture

Fig. 2: Multi-tier Systems Scalability Implementation

B. Elastic VM Scaling Architecture

Elastic VM is a VM that supports scaling resources on-the-
fly without interrupting the service or rebooting the system.
To cope with workload demand, as shown in figure 2(b),
a controller monitors tiers performance. If the monitored
performance metric (e.g., CPU utilization) exceed a specified
threshold, the controller scale up the virtual machine resources
(e.g., CPU allocation) to maintain an acceptable system per-
formance.

III. PERFORMANCE ANALYSIS

In this section we will analyze analytically the average
response time of two architectures: 1-Multi-instances archi-
tecture running many instances each with one virtual CPU

(vCPU). 2-Elastic VM which is scaled to run many vCPUs.
The response time is calculated as the sum of the service time
and the waiting time spent by the packet in the queue until
being served. As seen in figure 2(a), each web-server could
be modeled as a single-server queue model (M/M/1), on the
other hand, Elastic VM in figure 2(b) could be modeled as a
single queue with multiple servers (M/M/c).

According to Kendall’s notation, M is a notation for
Markovian (exponential) distribution, which means that both
the inter-arrival time and service time are exponentially dis-
tributed. However, in case of Multi-instances, each queue is
served by one server (i.e., one vCPU), while in case of Elastic
VM, a single queue is served by c servers (i.e., vCPU).
Equations that describe M/M/c model are as the following:
System utilization ρ is calculated by:

ρ =
λ

c ∗ µ
(1)

The probability of having zero requests:

P0 =

[∑c−1

n=0

λn

n!
+

λc

c!(1− λ/c)

]−1

(2)

Expected average queue length:

E(m) = P0
ρc+1

c.c!

1

(1− ρ/c)
2 (3)

Expected average number of requests in the system:

E(n) = E(m) + ρ (4)

Expected average total time in the system:

E(v) = E(n)/λ (5)

Expected average waiting time in the queue:

E(w) = E(v)− 1/µ (6)

An example to compare the average response time of Multi-
instances with Elastic VM:

Firstly, consider a Multi-instances architecture running 4
VMs instances in parallel, each machine is modeled as single
queue served by one server (vCPU). Assuming that each vCPU
has the capacity to serve 100 req/sec and the total traffic rate
to the whole system is 320 req/sec. The incoming traffic is
distributed fairly by the load balancer to be 80 req/sec for each
VM instance. In this case the VM utilization ρ = 80

100 = 80%.
Hence, the average response time = 0.05 and the waiting time
= 0.04 calculated by equations 5 and 6 in consequence where
c=1, λ =80, and µ =100.

Secondly, consider the same traffic directed to Elastic VM
with 4 vCPUs (i.e., c=4), in this case, the system utilization is
calculated as ρ = 320

4∗100 = 80%, while the average response
time = 0.017 and the average waiting time = 0.007 calculated
by equations 5 and 6 in consequence where c=4, λ =320, and
µ =100.

Substituting any value of c > 1 in equations 1 to 6 proves
that a single VM with multiple cores, as in Elastic VM
implementation, performs better than many VMs instances

each with one core running in parallel, as in Multi-instances
architecture, even though there is the same total number of
vCPUs in both systems.

IV. ELASTIC VM VS. MULTI-INSTANCES ARCHITECTURE
IMPLEMENTATION

By analyzing the scaling architectures implementations
characteristics of both Elastic VM and Multi-Instances archi-
tecture, we can summarize pros and cons of each architecture
as follow:

TABLE I: Comparison between Multi-instances and Elastic
VM architecture implementation

Multi-instances architecture Elastic VM architecture
Implies running load-balancer
(i.e., additional consumption of
resources)

No need for running additional
VM instance as a Load-balancer

Limited to specific applications Applicable to any tier
Applies VM as a scaling unit
(coarse-grained scale)1

Fine-grained scaling while it im-
plements scaling into VM re-
sources

Scaling-down can interrupt ses-
sions based web connections

Supports sessions based web con-
nections

Booting time of VMs, to scale-out,
increases the overhead

Eliminates the overhead caused by
booting VMs

Scale-out overhead causes SLO vi-
olation and decreases the through-
put

Scale-up vertically reduces SLO’s
violation and maintains higher
throughput

Both software and hardware load-
balancer can be a single point of
failure

Elastic VM itself could be a single
point of failure 2

It supports business at all scales:
small, medium, and big

Elastic VM is limited to one phys-
ical host, which limits it to small
and medium scale business 3

1 One solution is to have smaller VM instances (e.g.,
Amazon micro-instance). However, this could reduce the prob-
ability of over-provisioning but it does not eliminate it totally.

2 Compared to static machines, Elastic VM’s ability to
scale-up makes it more resistance to failure that could be
caused by overloading. This characteristic makes it a recom-
mended replacement to static load-balancer instances as an
example.

3 If a global policy is enabled to relocate VMs according to
host utilization, it will be possible to move VMs with lower
load into another hosts. This will increase the chance of the
Elastic VM to scale-up dynamically without interrupting the
service.

One of the challenging issues in Elastic VM is that some
applications could be unaware of on-the-fly scaling, especially
memory scaling. Fortunately, many research are directed to
optimizing application parameters according to available re-
sources like [7],[8],[9], and [10]. Such approaches can be
integrated to our architecture to tune applications parameters
for optimum performance after each scaling.

V. RELATED WORK

Towards avoiding bottleneck tiers, Iqbal et al. [11] imple-
mented a prototype using Multi-instances scaling architecture.
The approach considers scaling database layer horizontally, but

did not discuss associated challenges (e.g., data replication and
synchronization) which could affect the approach feasibility
and performance.

Many researchers presented analytical models to describe
different tiers behavior, for example, Bhuvan Urgaonkar [12]
presented multi-tier model based on a network of queues,
while each queue represents a different tier. The scalability
of this model is implemented by dispatching new instances at
each tier except database tier which is not replicable in this
model.

Using regression analysis of CPU utilization and service
time to predict the bottlenecks, Dubey et al. [13] demonstrated
an approach for performance modeling of two-tier applications
(web and database). Even that the approach does not imply dy-
namic scaling, but it helps understanding application behavior
for optimum capacity planning.

Using queuing theory models along with optimization tech-
niques, Jung et al. [14] presented off-line techniques to predict
system behavior and automatically generate optimal system
configurations. The result is a rule set that can be inspected
by human system administrators and used directly with a rule-
based system management engines.

Amazon EC2 Spot Instances [5] is a way to provide VMs
with a lower price. It is developed to serve customers who are
in need for high computing but for none online systems (e.g.,
Video rendering; Scientific research; and Financial modeling
and analysis). In fact, Amazon EC2 Spot Instances is one
of the motivating ideas to our research. Nowadays, Amazon
static Large EC2 instance costs $0.34 per hour, while static
Extra Large EC2 instance costs $0.68 per hour. Implementing
Elastic VM can emerge the following service: Elastic Large
to Extra Large EC2 instance which costs for example $0.40
per hour. The lower case is to have a Large EC2 instance,
and the upper case is to expand it to Extra Large EC2. As
in Amazon EC2 Spot Instances, the idea behind the cost
reduction is the dependency on the free capacity in cloud
provider. Such approach depends on the probability of having
free resources in the same zone, which is not guaranteed.
However, having a global plan to manage the capacity and run
a complementary workload on the same zone, considering the
daylight differences around the world, increases the probability
of having free resources in the same host.

VI. CONCLUSION & FUTURE WORK

In this paper, we propose Elastic VM scalability architec-
ture and compare it with current Multi-instances scalability
architecture. The comparison includes both the analytical
queuing model, and the implementation characteristics of
each architecture. Analytical analysis shows that Elastic VM
implies less response time compared with Multi-instances
architecture. Moreover, implementation analysis shows that
Elastic VM reduces the provisioning overhead and results in
less violation of SLOs. Furthermore, it scales applications,
such as Databases, with lower cost and complexity.

Our immediate future work is to compare both architecture
empirically against different web application patterns and

workload demand. Also, we study optimizing the packing
of Elastic VMs into physical hosts. Moreover, we study the
Elastic VM architecture’s effect on the pricing model in the
cloud.

REFERENCES

[1] “Architecting for the Cloud: Best Practices.” [Online]. Available:
http://media.amazonwebservices.com/AWS Cloud Best Practices.pdf

[2] “Xen hypervisor.” [Online]. Available: http://www.xen.org/
[3] “VMWare.” [Online]. Available: http://www.vmware.com/
[4] P. Johnson and T. Marker, “Data Center Energy Efficiency Report

Product Profile,” 2009.
[5] Amazon, “Amazon Elastic Compute Cloud.” [Online]. Available:

http://aws.amazon.com/ec2/
[6] “GoGrid.” [Online]. Available: http://www.gogrid.com/
[7] Y. D. Chess, J. L. Hellerstein, S. Parekh, and J. P. Bigus, “Managing

Web server performance with AutoTune agents,” IBM Systems Journal,
vol. 42, no. 1, pp. 136–149, Jan. 2003.

[8] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Hellerstein, and S. Parekh,
“Online Response Time Optimization of Apache Web Server,” pp. 461–
478, 2003.

[9] D. Wiese, G. Rabinovitch, M. Reichert, and S. Arenswald, Autonomic
tuning expert, ser. CASCON ’08. New York, New York, USA: ACM
Press, 2008.

[10] D. N. Tran, P. C. Huynh, Y. C. Tay, and A. K. H. Tung, “A new
approach to dynamic self-tuning of database buffers,” ACM Transactions
on Storage, vol. 4, no. 1, pp. 1–25, May 2008.

[11] W. Iqbal, M. N. Dailey, and D. Carrera, “SLA-Driven Dynamic Resource
Management for Multi-tier Web Applications in a Cloud,” in 2010
10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, ser. CCGRID ’10. Washington: IEEE, 2010, pp. 832–837.

[12] G. P. Bhuvan Urgaonkar, “An analytical model for multi-tier internet
services and its applications,” in In Proc. of the ACM SIGMETRICS2005,
2005, pp. 291—-302.

[13] A. Dubey, R. Mehrotra, S. Abdelwahed, and A. Tantawi, “Performance
modeling of distributed multi-tier enterprise systems,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 37, no. 2, p. 9, Oct. 2009.

[14] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu, Gen-
erating Adaptation Policies for Multi-tier Applications in Consolidated
Server Environments. IEEE, Jun. 2008.

