
International Conference on Internet Computing 2011

Evaluating an instant messaging protocol for digital
whiteboard applications

Lutz Gericke
Hasso-Plattner-Institut Potsdam

Prof. Dr. Helmert Str. 2-3
14482 Potsdam, Germany

Email: lutz.gericke@hpi.uni-potsdam.de

Christoph Meinel
Hasso-Plattner-Institut Potsdam

Prof. Dr. Helmert Str. 2-3
14482 Potsdam, Germany

Email: meinel@hpi.uni-potsdam.de

Abstract— Many whiteboard applications have been devel-
oped during the recent years. In distributed settings, where
whiteboards have to be synchronized, proprietary protocols
are often used for communication. Using reliable and well-
known open standards can ease integration with existing systems.
After evaluating existing instant messaging protocols, we look at
applying those well-established standards for the problem domain
of distributed whiteboards. The presented system does not only
support synchronous working modes, but also asynchronous, by
consequently capturing and analyzing communication data. The
presented approach goes beyond existing systems in unifying
those two working modes into one system. Evaluation of this
in-situ capturing shows only little influence on the system’s per-
formance and therefore being an approach generally applicable
to other problem domains.

Index Terms— digital whiteboard, XMPP, instant messaging
protocol, performance evaluation

I. INTRODUCTION

Remote collaboration tools are well-established in today’s
companies. They support the communication over distances
using audio/video conferencing, messaging, whiteboards, and
desktop sharing. Often, this collaboration is limited to informa-
tion exchange and communication can only hardly be retraced.
Together with problems such as time shift over different
continents, synchronous working modes are quite limited. Due
to this limitations, regular face-to-face meetings are often the
method of choice for successful collaboration. The result is
less joint work and more reporting and documentation via e-
mails and other documents about the efforts at each location.
As we learned from interviews with employees of global
companies, documentation is time-consuming and frustrating
for all involved parties and often only done because project
management demands it.

Besides these difficulties, e-mails and text documents often
are not suitable to convey ideas and concepts that people have
during their project work. It is very hard to communicate and
understand why people took certain decisions and which were
their most important concerns. Especially with creative work,
which involves a lot of unforeseen ways of working, thinking
about ideas or innovations and visualizations of concepts and
designs, it is very difficult to write down the results of a
meeting. Teams who are applying methods such as Design
Thinking [1] often work with whiteboards, sketches and sticky

notes and only in the end they ”translate“ their work to text
documents or presentations.

A preferred tool for co-located work is the whiteboard.
People standing in front of it can form a common ground of
understanding by sketching their ideas, writing down notes,
brainstorming on problem solutions, or simply working on
shared todo-lists. A major benefit of a traditional whiteboard is
its extremely user-centered design adopting input modes that
are being used for thousands of years. Even children can easily
work with this tool due to the simplicity of the used tools -
pens, eraser and sticky notes. That is supposably one of the
reasons for the large adoption of whiteboards in companies.
On the other hand, whiteboards are still only rarely used in
distributed settings. Some remote collaboration tools such as
Adobe Connect support whiteboard sharing, but people refuse
to use it. On a traditional whiteboard, users have to actively
erase all the content from a board, whereas in known electronic
whiteboard tools, whiteboards are often automatically erased,
when people leave the communication channel. Moreover, the
direct link between whiteboard surface and video conference
is not not given, so that it is impossible to point on certain
sketches on the whiteboard.

This leads to the main question of our research: How can we
support people in their co-located as well as their distributed
work using digital whiteboards? Can we bridge the (time)gap
between continents and support collaboration more efficiently
using digital communication channels?

Many whiteboard applications have been developed during
the recent years. For distributed settings, where whiteboards
have to be synchronized, proprietary protocols are often used
for communication. Our approach uses an open standard for
whiteboard data transmission, in order to benefit from existing
tools as well as being able to easily integrate our system into
existing solutions and reuse the generated data.

In the following, we elaborate on existing tools for white-
board interaction as well as protocols that are being used
in the domain of instant messaging. Our concrete commu-
nication protocol is introduced in order to understand the
system architecture of the implemented system Tele-Board.
Afterwards, we evaluate the appropriateness of an instant
messaging protocol for digital whiteboards and show how the
support for asynchronicity effects the system’s performance.



II. RELATED WORK

Computer supported collaborative work (CSCW) is a field
of research which brought up many different research projects
and products on the market supporting distributed work. A
typical schema to differentiate between those different solu-
tions is the CSCW matrix shown in Fig. 1 (cf. [2], [3], [4]).
The cells of this grid cannot be clearly separated, however
many projects have a strong focus on one of them.

asynchronous!

synchronous!

co-located! distributed!

A! B!

C! D!

same office!

delayed communication!

common situation!

same office!

real-time communication!

considered ideal!

remote offices!

delayed communication!

common practice for  
distributed teams!

remote offices!

real-time communication!

difficult with existing tools!

Fig. 1. Categorization matrix of working modes in CSCW

Older approaches such as ClearBoard [5] or VideoWhite-
board [6] are distributed over short ranges, but do not care
about network communication over large distances. Gestures
and interaction on the board are more in the focus of their
work, so that it is impossible to edit remotely created artifacts.

Designer’s outpost [7] is one of the more recent approaches
in the area, but focusses on image vision methods and inter-
action concepts. A history is also provided, but users have to
explicitly save certain states, which are then stored as images
in the history. Editing of remote content is also not possible.

The general approach of using an instant messaging protocol
for whiteboard interaction purposes is not completely new,
but it still lacks tool support. There is one application called
Coccinella [8], which essentially is an XMPP chat client with
an added drawing surface. The development seams to be dis-
continued since two years and it also lacks any asynchronous
features. The used approach here is a combination of SVG
and XMPP as it is also described in [9] and [10]. There have
been some proposals in order to standardize this protocol, but
since 2006 there is no new progress in this area. XMPP itself
is the most widely used open protocol for instant messaging
applications.

Summing up, the problem domain of whiteboard interaction
is a field of research, which brought up many challenges
relating human computer interaction or image synthesis such
as Thor [11], that is why the network communication infras-
tructure is not in the focus of the work. Often, proprietary
protocols are used for communicating between the multiple
locations. Recording is also done but more on a representation
level (video streams or images) and not on a artifact level (cf.
[7]).

Our approach should benefit from open standards in the field
of internet communication protocols as well as being open for
easy capturing and archiving of recent whiteboard sessions,
which enables fast analyses and effortless pause and resume
behavior including implicit saving of the communication his-
tory.

III. COMMUNICATION PROTOCOL

There is a large variety of input devices and thus highly
different requirements for the communication protocol con-
cerning the connected devices. Generally there is a differenti-
ation between Tele-Board-aware devices being equipped with
a special client software and those coming out of the box that
can participate in the design session with an existing client
software that uses the communication protocol. It should be
possible to write and send sticky notes from every Internet-
enabled device without developing a special client software for
it. When using special capabilities such as drawing, it can be
acceptable to develop an adapted application for that platform.

Every single component has very special needs in terms of
user interface development, data structures, and communica-
tion methods. An important decision was using the Extensible
Messaging and Presence Protocol (XMPP) (defined in RFC
3921, cf. [12]) as a communication protocol in order to support
a variety of input devices and different platforms. There are
several implementations on almost every platform and it is
supported by a many existing instant messaging clients.

XMPP is an open standard and is typically used as a chat
and instant messaging protocol. Over time it has been extended
to support voice, video, and file transfer. XMPP (formerly
known as Jabber) is used in several instant messaging tools
such as Google Talk [13] or Psi [14]. The communication
is build upon a client-server model. Authorization, session
and roster handling is managed by the server. People can
connect with every possible client without transferring any
configuration from client to client except for username and
password.

The Server-Buddy plugin, which is deployed into the Open-
fire1 server, acts as a so-called PacketInterceptor to read
all messages sent between whiteboards in order to archive
them in a database (see figure 2). Special packets such as
a request-message for resuming a session are filtered out,
directly answered and not stored in the whiteboard history.
This procedure makes the collected information usable in the
history component, so that every state of a Panel can easily
be reconstructed.

Technically, all communication is routed over the XMPP
server. In terms of XMPP, the whiteboards chat with each
other. The used method for communication between any two
partners is a multi user chat (MUC), as it is defined in the
XMPP specification. One whiteboard session is reflected in a
MUC room on the server, which is automatically created for
each new session. The body of the messages is extended to

1Openfire is an open source XMPP server software, http://www.
igniterealtime.org/

http://www.igniterealtime.org/
http://www.igniterealtime.org/


teleboard

wbhistory
Openfire 

XMPP Server

ServerBuddy PlugIn
Whiteboard 

Client
R

Whiteboard 
Client

R

Fig. 2. Communication interception between the whiteboard clients

support the needs of the Tele-Board synchronization. XMPP-
Clients producing text-based sticky notes, direct their mes-
sages to this room, the server plugin changes the packet to
form a valid sticky note description.

There is an operation code signaling the type of message
stored in the message body. There are multiple types of
operation codes (opcodes) used:

• WHITEBOARD_SYNC_NEW - an element is newly cre-
ated

• WHITEBOARD_SYNC_CHANGE - an element is changed
• WHITEBOARD_SYNC_DELETE - an element is deleted
• WHITEBOARD_SYNC_ALL - request to send all white-

board content to the communication partner
• WHITEBOARD_SYNC_ALL_ANSWER - answer to a

sync-all request, contains the whiteboard content
• WHITEBOARD_SYNC_PICK - putting an element into

the server-wide clipboard
• WHITEBOARD_GET_CLIPBOARD - request clipboard

content list
• WHITEBOARD_GET_CLIPBOARD_SET - request clip-

board content for specific id
• WHITEBOARD_SET_META - request to store meta-data

on the server
• WHITEBOARD_DELTA - special operation for fast up-

dates on single variables (e.g. position updates during
drag operations)

There are multiple devices with different capabilities con-
cerning the handling of the XMPP messages. Messages using
the mentioned opcodes are sent between the whiteboard clients
to synchronize the whiteboard content. The peripherals will
send the message content to the local whiteboard. From the
Whiteboard Client the content will be synchronized to the
remote whiteboard locations. The WHITEBOARD_SYNC_*-
messages are important for the whiteboard history and will be
handled in the Server-Buddy plugin to build up the historical
data. NEW, CHANGE, DELETE will be directly archived, ALL
and ALL_ANSWER will not appear in the history.

XMPP as a communication language between the clients
turned out to be very appropriate. The development of the
whiteboard clients can rely on a sophisticated infrastructure
e.g. for user handling and message routing. It did not have to
be implemented from scratch, but could be used as an existing
part of the protocol. A synchronous whiteboard session can be
established without any server changes. What will not work
without the server-side plugin, is the archiving of a session

and the restoring of an earlier state of the whiteboard session,
which means the asynchronous features of the system.

The payload of the chat messages exchanged between the
whiteboard clients is an XML-encoded text representation of
a single whiteboard element. The example in Fig. 3 shows a
set of scribbles, having different properties; the XML extract,
shows one single scribble element. There are several attributes
describing the element in order to reproduce it at the remote
location: x and y describe the position, strokecolor the
color of the path, and d represents the path itself in SVG-
notation. SVG was chosen because it is an established standard
and can be directly used for screenshot rendering with only
little string conversions.

<path id="lutz@fb10dtools_654"
strokecolor="0.0,0.0,0.0"
d="M 2286.0 1237.6575 L 2283.0..."
x="119.0" y="354.0"/>

Fig. 3. XML representation of one single Scribble vs. graphical representa-
tion of multiple Scribbles with different colors, paths, and locations

IV. TELE-BOARD - A WHITEBOARD APPLICATION FOR
SYNCHRONOUS AND ASYNCHRONOUS SETTINGS

We developed the whiteboard software suite Tele-Board.
First of all, it supports synchronous working modes. That
is, people having the possibility to collaborate over distances
or locally at the same time. The main idea is to plug the
whiteboards together. XMPP names the notion of bringing
together multiple participants as a group chat or MUC (multi-
user chat). One message is send to the server and from there
distributed to all connected clients.

To realize the specified functionality for asynchronous fea-
tures in a software system we developed three main functional
units:

• interception of message flow
• storage of communication data
• enabling interaction with the history data in an appropri-

ate user interface
The communication should be captured on-the-fly, which

has influenced the selection of the technology insofar as it must
be possible to analyze packets separated from the message
routing. Central roles in the overall system are represented by
the message server and its plugin architecture, the web-based
management system, and the database management system.
The history functionality is a concept that is implemented



as a cross-cutting concern in all parts of the system. It
can not be realized as one single component, because it
enriches the functionality of the other components. A client-
server architecture is used for synchronizing the participating
whiteboards. A central history archive located at the server
is more suitable than e.g. a peer-to-peer model as it is used
in [15], because all statistical data should be kept together in
order to be analyzed conveniently and enable asynchronous
work.

To understand where the communication takes place and
what should be captured, the existing communication infras-
tructure should be briefly outlined: A Workspace Hub is a
computer system running the whiteboard client software and
is located at a digital design space. This computer combines
all physical components at this location. Several input devices
are paired to it. Cameras make it possible to also synchronize a
video stream of the people standing in front of the whiteboards
in order to provide a communication channel supporting eye-
contact and gestures regarding the whiteboard elements (e.g.
pointing on a sticky note). How the multiple Workspace Hubs
work together and how they communicate with the help of the
server is shown in Fig. 4.

base location A base location B

input devices

workspace hub workspace hub

collaboration server

video
collaboration

synchronized 
design panel

input devices

Fig. 4. Overall setup of the communication infrastructure centered around
the workspace hubs that are connected via an XMPP server

Projects and Panels are important concepts in this context.
A Panel p describes the sequence of events en executed
on one whiteboard in temporal order of these events (p =
(e1, e2, e3, ...)). An event is a tuple of attributes describing
which action has happened where, by whom, and when, to
keep the temporal order of the events. Each event has an
action code, which can be NEW , CHANGE or DELETE
to describe the event type. A Project pro is the collection of
multiple Panels (pro = {p1, p2, ...}) in order to configure them
with rights to edit/view/delete.

The architecture outlined so far is reflected in three major
components:

• a web portal for creating, viewing, and changing projects
and panels

• a history browser for exploring earlier states of a white-
board session

• a whiteboard client, for interaction with the system
The current Tele-Board system can be run on every com-

puter equipped with a browser and a Java Runtime Envi-

ronment. Nothing has to be installed on the computer. As a
starting point, the user logs into the web portal using username
and password. When successfully logged in, it is possible to
browse through projects and panels, edit them or create new
panels or projects. Every whiteboard session (panel) has a
history, which is explorable also within the web portal. The
tool used for this history interaction is called history browser.
With the help of this tool, the user is able to scroll through the
timeline of a session. This is possible, because every single
event is stored in the history archive. Thereby, screenshots
of every second in the editing process can be rendered by
the server. When a user finds an interesting state he wants to
continue, he can choose to start from this point by branching
into a new parallel panel or resume the work from the end of
a whiteboard session. Resuming the work means, starting the
whiteboard client directly from the browser via Java Webstart.
The client requests the latest state of a session via XMPP
so that a user can continue working with the most recent
information on the whiteboard.

Having this architecture in mind, the question comes up,
how efficient this selection of protocols is for such an ap-
plication. Extensibility, appropriateness, and performance are
measures to be evaluated in the next section.

V. EVALUATION

Fig. 5. Tele-Board remote setup including video conference, one participant
on the local side, one participant on the remote side

In different user studies (see figure 5) we found out that
performance plays an important role in user interaction. People
are used to an almost-infinite performance experience with
their traditional whiteboards and pens. In earlier project phases
we used JavaFX to prototype a whiteboard client interface,
which lacked performance at some point. A redevelopment
using another UI technology solved that problem.

A more interesting question is, how does the server infras-
tructure behave in high-load scenarios? How does the addition
of a server-wide capturing and analysis plugin influence per-
formance? In the following, we are showing with a series of
controlled measurements, how the addition of asynchronous



features influences performance depending on the workload
situation of the system.

A. General test setup

The test suite used of the following experiments is a small
extension for the whiteboard client. We developed a command
line interface which enables us to set the following parameters:

• whiteboard sessions to join in parallel
• whiteboard client threads concurrently in one session
• number of whiteboard change events per second
The purpose of the command line client is to load the white-

board content from the server and then periodically update
the content on the board. This is done to simulate human
behavior. We chose 1 update per second as an change interval
for all experiments. This is beyond the average workload in
typical human-generated sessions, so that the absolute number
of concurrently connected clients will be higher in real-world
experiments.

The measurements are done directly on the server machine.
This server is a Debian Linux based virtual machine limited to
1 GB of RAM - not a high-end device. The observed variables
are the CPU load of the MySQL and Openfire processes on the
server as well as the transfer rate from and to the server. The
measurements are recorded using Unix/Linux built-in tools and
averaged over a period of 2 minutes each.

As the whiteboard content used for these experiments we
use a blank whiteboard with no drawings on it. Earlier
observations revealed that drawings are causing only a little
portion of the system load. We placed a set of 25 post-its
on the board, each of them with extensive drawings on them.
The clients choose randomly which sticky note to change and
send the change message to the server, which then distributes
it to every other client that update their whiteboard element
information.

The following two scenarios will point out two major
insights. First, it will be shown which limitations are in a
communication model using only one session and connecting
as many clients as possible to it and keep it in sync. This
scenario is presented to reveal boundaries of the network
infrastructure. The second scenario aims more at real-world
usage and evaluates the scalability of the system serving
multiple parallel sessions each with a constant amount of
participants. The idea of both scenarios is to see the influence
of the asynchronous in-situ capturing approach on the overall
performance.

B. Scenario 1 - many clients in one session

Looking at the concrete scenario 1 of multiple clients in one
whiteboard session, it becomes clear that there is potentially
a large number of packets to be examined in order to be
archived. Figure 6 shows how the message distribution is
achieved by the XMPP server. One can see that communi-
cation between clients and server is still the major duty of the
server infrastructure, even though there is a new server-side
plugin being responsible for asynchronous features.

Whiteboard Session

XMPP-Server

local
Whiteboard

Client

remote
Whiteboard

Client

remote
Whiteboard

Client

remote
Whiteboard

Client

History
Archive

Fig. 6. Conceptual model of a group chat session used for distributed
whiteboard interaction

Our evaluation now aims at showing that the server capacity
is not limited by the load of the capturing feature. It is more
important to look at the transfer rate plotted against the number
of clients in one session. In figure 7 right you can see that
there is a bottleneck in the number of clients when reaching a
limit of about 10MB/s. About 40 to 50 clients seems to be the
maximum of concurrent clients in one session. This is due to
a 100MBit connection of the virtual machine server used in
this setup. The predominant number of messages send in our
system (in real-world use cases) are move messages, which
are only a few bytes in size. This is also one of the reasons
that real-world system load would allow more clients than this
experiment.

This high bandwidth requirements are caused by the high
number of active participants in the group chat. Thinking of
presentation scenarios with few persons being active and many
persons only receiving, the numbers would lower dramatically.
An example: We have 50 clients producing 1 update per
second and the server synchronizes each operation to 49 other
clients, we have about 50 ∗ 49 = 2450 packets to send per
second. 10MB/2450 ≈ 4kB results as an average packet
size, which matches the sticky note description size including
a path string for the drawing on it. With the same bandwidth
in a presentation scenario, theoretically about 2500 receiving
clients could be handled with one presenter (1 update/s, 2500
receivers, and packet size of 4k lead to 10MB/s).

Nevertheless, the tendency shown in scenario 1 is clear: The
limiting factor is not the CPU load of the database for storing
the archived communication channel, but it is more the transfer
rate from the server, when change requests are propagated to
the connected whiteboard clients. The hypothesis, the database
operations for enabling asynchronous features really effects the
system, cannot hold true in this experiment. MySQL uses a
significant amount of CPU time, but the exponential growth



0	  

2	  

4	  

6	  

8	  

10	  

12	  

14	  

16	  

18	  

20	  

1	   2	   5	   10	   20	   30	   40	   50	   60	  

CP
U
	  lo
ad

	  fo
r	  
pr
oc
es
se
s	  
on

	  s
er
ve
r	  
(%

)	  

Number	  of	  concurrent	  clients	  in	  one	  session	  

MySQL	   Openfire	  

0	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

8	  

9	  

10	  

1	   2	   5	   10	   20	   30	   40	   50	   60	  

Tr
an

sf
er
	  ra

te
	  (M

B/
s)
	  

Number	  of	  concurrent	  clients	  in	  one	  session	  

Transmit	   Receive	  

Fig. 7. Scenario 1 - many clients in one session; left: Mysql and Openfire
CPU load in relation to the number of clients in one channel, right: the data
transfer rate on the server differentiating transmit and receive direction

in transfer rate from the server is much more effecting system
performance.

C. Scenario 2 - many session with equal load

This scenario is more realistic for the typical workload on
our system. Figure 8 shows that there are multiple sessions
running in parallel and few users are logged into the system.
For this experiment we chose an equal number of 5 partici-
pants in one session. Even for this low number, typical real-
world applications will stay under this value, because they
often use only two locations (which means two whiteboard
clients) at the same time.

XMPP-Server

History
Archive

Whiteboard Session

local
Whiteboard

Client

remote
Whiteboard

Client

Whiteboard Session

local
Whiteboard

Client

remote
Whiteboard

Client

Whiteboard Session

local
Whiteboard

Client

remote
Whiteboard

Client

Fig. 8. Conceptual model of multiple group chat sessions used for distributed
whiteboard interaction

Figure 9 shows an almost linear development of bandwidth
usage and cpu load, the more clients connect. The absolute
values - especially for the bandwidth - stay much lower
depending on the number of clients (number of concurrent
sessions ∗ 5 clients per session) compared to scenario 1. You
can see that the system scales very well for this kind of
workload. One can also see that the database load is also a
fraction of the XMPP server load.

Therefore we can state that the implementation of asyn-
chronous aspects directly on the server does influence all-over

0	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

8	  

9	  

10	  

1	   2	   3	   4	   5	   6	  

CP
U
	  lo
ad

	  fo
r	  
pr
oc
es
se
s	  
on

	  s
er
ve
r	  
(%

)	  

number	  of	  concurrent	  sessions	  	  
(5	  clients	  per	  session)	  

MySQL	   Openfire	  

0	  

0,2	  

0,4	  

0,6	  

0,8	  

1	  

1,2	  

1,4	  

1,6	  

1,8	  

1	   2	   3	   4	   5	   6	  

Tr
an

sf
er
	  ra

te
	  (M

B/
s)
	  

number	  of	  concurrent	  sessions	  	  
(5	  clients	  per	  session)	  

Transmit	   Receive	  

Fig. 9. Scenario 2 - many sessions with equal load; left: MySQL and
Openfire CPU load in relation to the number of concurrent sessions each with
5 participating clients, right: data transfer rate on the server vs. the number
of concurrent sessions

performance only little. It adds a proportionate load on the
system, but the predominant computation time still is used for
message routing to the connected clients. As we have shown
in [16], the simple data storing architecture is very appropriate
for the typical workload on the system: There are many small
write operations and only little longer running read operations.
A long and de-normalized table that is used here, optimally
supports this setting as it also can be seen in the performance
evaluation results.

VI. CONCLUSION AND OUTLOOK

We presented and evaluated the concept and the imple-
mentation of an instant messaging protocol that is used for
distributed digital whiteboards. Many other tools in this sector
focus on one working mode of the CSCW matrix. We try to
pursue the goal to enable all modes of interaction equally, so
that users can work together co-located as well as distributed
and also synchronous as well as asynchronous. The additional
workload to be dealt with by the system has shown to be
sufficiently low.

The method of capturing and storing complete communica-
tion channel traffic in order to rebuild the session afterwards
turned out to be highly beneficial for two reasons: It is an
efficient way to rebuild what has happened, including the
reconstruction of every point in time of the whiteboard history
as well as the ability to branch into new parallel sessions.
The second advantage is that analyses of the communication
scenario - for example for researching on design teams -
are much easier to achieve, because nothing related to the
communication itself has to be recorded actively, but it is
stored implicitly.

Limitations that are shown in the evaluation section are not
distracting the usual usage scenarios with our system. Typical
setups, when people work together in smaller groups of only
a few participants, are well-performing. The assumption of
having a large number of participants in one room is strongly
hypothetical for our kind of usage scenarios. Even in large
presentation scenarios, only few active clients would exist and
a potentially large number of receivers. Typical whiteboard



usage scenarios tend not to involve larger numbers than 5-10
participants.

Future applications based on the archive we develop over
time aim in the direct of better analyzing the gathered
communication data. For example it is unnecessary for a
person who wants to understand what has happened in past
sessions, to watch at every single event. Possible analyses
and visualizations are based on the assumption that there are
states which are more important than others and should be
highlighted. Based on observation and user feedback we have
to come to a common understanding of an important state.

The generalization of this method can be an approach for
other applications as well and is not limited to whiteboard
use. Overall, XMPP as an instant messaging protocol turned
out to be well-suited for synchronizing digital whiteboards
and the archived communication data carries a large potential
for further research. The results of our evaluations play an
important role also for gathering insights on deployment of
the Tele-Board suite into business environments with high
demands on reliability.

ACKNOWLEDGMENT

The authors would like to thank the support of the HPI-
Stanford Design Thinking Research Program. I would espe-
cially like to thank Matthias Quasthoff, Raja Gumienny, and
Markus Dreseler.

REFERENCES

[1] T. Brown, “Design thinking,” Harvard Business Review, June 2008.
[2] R. Johansen, GroupWare: Computer Support for Business Teams Export

GroupWare: Computer Support for Business Teams. The Free Press,
1988.

[3] C. A. Ellis, S. J. Gibbs, and G. Rein, “Groupware: some issues and
experiences,” Communications of the ACM, vol. 34, no. 1, 1991.

[4] T. Rodden, “A survey of CSCW systems,” Interacting with Computers,
vol. 3, no. 3, pp. 319–353, 1991.

[5] H. Ishii and M. Kobayashi, “Clearboard: A seamless medium for shared
drawing and conversation with eye contact,” CHI, 1992.

[6] J. C. Tang and S. Minneman, “VideoWhiteboard: video shadows to
support remote collaboration,” in Proceedings of the SIGCHI conference
on Human factors in computing systems: Reaching through technology.
ACM New York, NY, USA, 1991, pp. 315–322.

[7] K. M. Everitt, S. R. Klemmer, R. Lee, and J. A. Landay, “Two
worlds apart: bridging the gap between physical and virtual media
for distributed design collaboration,” in CHI ’03: Proceedings of the
SIGCHI conference on Human factors in computing systems. New
York, NY, USA: ACM, 2003, pp. 553–560.

[8] Coccinella — instant messaging program with whiteboard -
http://thecoccinella.org/.

[9] M. Bengtsson. Memo: Svg & xmpp -
http://coccinella.sourceforge.net/docs/memosvg xmpp.txt.

[10] Jep-xxxx: An svg based whiteboard format,
http://xmpp.org/extensions/inbox/whiteboard.html.

[11] M. Parparita and S. Rusinkiewicz, “Thor: Efficient whiteboard capture
and indexing,” Princeton University, Tech. Rep., 2004.

[12] (2004) Jabber software foundation network working group - extensible
messaging and presence protocol (xmpp): Instant messaging and pres-
ence.

[13] Google, “Google talk. http://www.google.com/talk/.”
[14] Psi, “The cross-platform jabber/xmpp client for power users. http://psi-

im.org/.”
[15] W. Geyer, J. Vogel, L.-T. Cheng, and M. Muller, “Supporting activity-

centric collaboration through peer-to-peer shared objects,” GROUP, pp.
115 – 124, 2003.

[16] L. Gericke, R. Gumienny, and C. Meinel, “Message Capturing as a
Paradigm for Asynchronous Digital Whiteboard Interaction,” in 6th In-
ternational ICST Conference on Collaborative Computing: Networking,
Applications and Worksharing, 2010.


	Introduction
	Related work
	Communication protocol
	Tele-Board - a whiteboard application for synchronous and asynchronous settings
	Evaluation
	General test setup
	Scenario 1 - many clients in one session
	Scenario 2 - many session with equal load

	Conclusion and Outlook
	References

