
WinSEND: Windows SEcure Neighbor Discovery

Hosnieh Rafiee, Ahmad AlSa’deh, Christoph Meinel
Hasso-Plattner-Institut, University of Potsdam

P.O. Box 900460, 14440 Potsdam, Germany

{Hosnieh.Rafiee, Ahmad.Alsadeh, Christoph.Meinel}@hpi.uni-potsdam.de

ABSTRACT

Neighbor Discovery Protocol (NDP) is an essential protocol in

IPv6 suite, but it is known to be vulnerable to critical attacks.

Thus, SEcure Neighbor Discovery (SEND) is proposed to counter

NDP security threats. Unfortunately, operating systems lack the

sophisticated implementations for SEND. There is limited success

with SEND implementation for Linux and BSD, and no

implementation for Windows families. Therefore, the majority of

the users are not secured with SEND. In this paper, we will

introduce an implementation of SEND for Windows families

(WinSEND). WinSEND is a user-space application which

provides the protection for NDP in Windows. It has direct access

to Network Interface Card (NIC) and efficiently handles NDP

messages by using Winpcap. WinSEND works as a service with

easy user interface to set the security parameters for selected NIC.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network

Protocols; D.4.6 [Operating Systems]: Security and Protection;

D.4.9 [Operating Systems]: Systems Programs and Utilities

General Terms

Security, Experimentation

Keywords

SEND implementation, Cryptographically Generated Addresses

(CGA), IPv6 security and protection, Neighbor Discovery

Protocol (NDP)

1. INTRODUCTION
Neighbor Discovery Protocol (RFC 4861 and RFC 4862) does not

have a built-in security mechanism to enable nodes to authenticate

each other. Therefore, NDP is prone to critical attacks [1]. NDP

assumes that all nodes on the link trust each other, but this

assumption cannot be guaranteed. Consequently, a malicious user

can impersonate legitimate nodes by forging NDP messages to

generate intentional serious attacks. Therefore, Internet

Engineering Task Force (IETF) working group, IETF SEND,

proposes the Secure Neighbor Discovery (SEND) [2] as an

extension to NDP. SEND uses RSA key pairs, Cryptographically

Generated Addresses CGA [3], digital signature and X.509

certification to offer significant protection to NDP.

Unfortunately, there is no major operating system (OS) providing

an effective level of support for SEND. The current SEND

implementations for specific OS distributions such as Linux and

FreeBSD are basically experimental codes rather than production

ready software. SEND is not supported yet in Windows

XP/Vista/7 [4]. This means that the majority of hosts are not

secured by SEND, since the Windows family is the most popular

operating system and accounts for more than 80% of usage

compared to other operating systems [5]. This lack of SEND

support leaves IPv6 local networks vulnerable to attacks and

consequently limits IPv6 deployment.

Thus, we decided to implement SEND from scratch and offer it as

a service for Windows families. Our implementation (WinSEND)

is a user-space implementation which is developed in Microsoft

.NET. WinSEND works as service for Windows families with

easy user interface to set security parameters for the proper

Network Interface Card (NIC). To the best of our knowledge,

WinSEND is the first SEND implementation for Windows

families. This paper describes the design and the implementation

of WinSEND.

The paper is structured as follow. An overview of NDP and

possible attacks against it is presented in Section 2. Section 3

shows how SEND can protect NDP. In Section 4, we list the

existing SEND implementations. Section 5 discusses the design

choice of WinSEND implementation. Section 6 shows the

WinSEND implementation. The last section concludes the work.

2. NEIGHBOR DISCOVERY PROTOCOL

2.1 NDP Messages and Functionalities
Neighbor Discovery (ND) for IPv6 [6], and IPv6 StateLess

Address Autoconfiguration (SLAAC) [7], together are referred to

as IPv6 Neighbor Discovery Protocol (NDP). NDP is one of the

main protocols in IPv6 suite. NDP greatly improves the efficiency

and the network management. It is also heavily used for several

critical functionalities, such as discovering other existing nodes

on the same link, determining others’ link layer addresses,

detecting duplicate addresses, finding routers and maintaining

reachability information about paths to active neighbor. Also,

NDP plays a crucial role in mobile IPv6 (MIPv6) networks [8].

NDP functionalities are based on five ICMPv6 messages: Router

solicitation (RS), Router Advertisement (RA), Neighbor

Solicitation (NS), Neighbor Advertisement (NA), and Redirect.

RS is sent by hosts to request for RA. Routers advertise the link

Published as: Hosnieh Rafiee, Ahmad AlSa'deh, Christoph Meinel, WinSEND: Windows SEcure Neighbor Discovery, in Proceedings of the
4th international conference on Security of information and networks - SIN '11, pp. 243-246, ACM Press, , Sydney, Australia, November 14–
19, 2011.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIN’11, November 14–19, 2011, Sydney, Australia.

Copyright 2011 ACM 978-1-4503-1020-8/11/11...$10.00.

local prefixes and other options by RA. RA is sent periodically or

as a response to RS. NS is sent by IPv6 hosts to find neighbors on

the link or to verify the reachability of nodes. NA is sent by IPv6

host as a response to NS or to propagate the link layer address.

Redirect is sent by routers to inform hosts about the preferred

first-hop destination.

2.2 NDP Security and Privacy Implications
NDP offers only selected basic protective mechanisms to ensure

that packets come from nodes that directly connect to a local link.

However, this protection shield is not enough to protect IPv6

local networks. If NDP is not secure, it is vulnerable to a set of

attacks. IPv6 Neighbor Discovery (ND) Trust Models and threats

[1], describes these attacks. The attacker can carry out several

attacks based on address resolution, redirect, Duplicate Address

Detection (DAD), Router Advertisement (RA), and address

configuration. Besides, the SLAAC leads to privacy problems.

Since generating the interface identifier from the MAC address,

(which remains constant over time), this makes it possible to track

a node over the Internet. Also, SLAAC make it easy to correlate

the traffic patterns and the activities to the certain user [9].

3. SECURE NEIGHBOR DISCOVERY
SEcure Neighbor Discovery (SEND) [2] offers three additional

features to NDP: Address ownership proof, message protection

and router authorization mechanism. To achieve these

enhancements, SEND comes with four new options: CGA, RSA

Signature, Timestamp, and Nonce.

 CGA Option: carries the associated parameters to enable the

receiver to validate the proper binding between the public key

(used to verify the signature) and the Cryptographically

Generated Address (CGA). Also, CGA depends on a security

parameter (Sec) which is chosen by the user to determine the

desired security level against brute force attack. Sec value is not

carried by CGA option. It is encoded in the IP address bits.

 RSA Signature Option: this option authenticates the identity of

the sender. The sender sign messages with the private key which

is related to the public key has been used in CGA’s generation

algorithm. This signature prevents an attacker from spoofing

CGA addresses.

 Nonce Options: is used to protect messages from replay attacks,

and to ensure that an advertisement is a fresh response to a

solicitation sent earlier by the node.

 Timestamp Option: is used to ensure replay protection against

unsolicited advertisements, such as periodic RA and Redirect

messages.

SEND uses an Authorization Delegation Discovery (ADD)

process to validate and authorize IPv6 routers to act as default

gateways, and specifies the IPv6 prefixes that a router is

authorized to announce on the link. ADD relies on an electronic

certificate issued by a trusted third party. Before any node can

accept a router as its default router, the node must be configured

with a trust anchor(s) that can certify the router via certificate

paths. So, the node requests the “router” to provide its X.509

certificate path to a Trust Anchor (TA) which is preconfigured on

the node. The “router” should not be trusted if it fails to provide

the path to TA.

Two new ICMPv6 discovery messages are offered for identifying

the router authorization process: the Certificate Path Solicitation

(CPS), and the Certificate Path Advertisement (CPA). A CPS

message is sent by hosts during the ADD process to request a

certification path between a router and one of the host’s trust

anchors. The CPA message is sent in reply to the CPS message

and contains the router certificate.

4. SEND IMPLEMENTATIONS
There are some experimental implementations for SEND which

are done for Linux and *BSD. Some of these implementations are

done in user-space and others are done at the kernel. NTT

DoCoMo USA Labs [10] implemented the first open source user-

space implementation of SEND. Their implementation (send-0.2)

works on FreeBSD. However, DoCoMo USA Labs is no longer

maintaining SEND project and source code is no longer available

for downloading in the web site and the support has been

canceled. NDprotector [11] is another user-space implementation

of CGA and SEND for Linux based on Scapy6 and it is limited to

Linux platform due to its dependency on iproute2, ip6table, and

netfilter queue. Easy-SEND [12] is a further Linux user-space

implementation of SEND developed in Java. Easy-SEND is an

open source projects which is developed for educational purpose.

Other implementations try to integrate the SEND with the NDP

code at the kernel. In Native SeND kernel API for *BSD (send-

0.3) implementation [13], a new kernel module (send.ko) is

implemented to act as a gateway between the network stack and

the user-space interface. Huawei and BUPT (Beijing University of

Post and Telecommunications) introduced an implementation for

SEND [14] within the Linux kernel IPv6 module. This work is a

research prototype under development, which still lacks the

interoperability testing. Bugs that could even cause the kernel to

crash are expected.

From our literature review, we did not find any SEND

implementation for Windows families. Therefore, we decided to

implement SEND for Windows. More details about the design

and architecture of this implementation (WinSEND) appear in the

following sections.

5. WinSEND DESIGN

5.1 WinSEND architecture
For WinSEND implementation, Winsock or Winpcap can be used

to transfer data between Network Interface Card (NIC) to the

upper layers and vice versa. Winsock API is implemented in

Windows to allow the access to network services, especially

TCP/IP. It is designed and implemented based on BSD sockets

with some new functionality that enables API to support windows

standard programming models. Winpcap project started about 10

years ago as a need to run network as an analyzing and tcpdump

tool on Windows machines, which later became known as libpcap

and tcpdump ported on Microsoft OS [15].

WinSEND uses Winpcap library which has direct access to the

raw sockets. Winpcap offers the possibility for an application to

receive/send network traffic before processing it by the OS. Thus,

by using Winpcap, the network traffic can bypasses the OS and

give an application the direct access to link layer. Moreover,

Winpcap has the following advantages over Winsock API:

 SIO_RCVALL [16] control code (in Winsock), enables a socket

to receive all raw packets. However, WinSEND is just

interested in ICMPv6 messages that are related to NDP

messages and left the normal TCP/IP stack to handle the other

traffic. Thus, all other traffics that are not related to NDP should

be filtered out. In Winsock, this filtering is done in user-space

and it takes a large amount of CPU power, and the kernel buffer

will be out of space and force to drop packets [17]. So one

solution is to bypass Winsock and enable the application to

interact to either the Transport Data Interface (TDI) layer or to

Network Driver Interface Specification (NDIS) [18].

 Overall performance of Winpcap in capturing and transmitting

data is better than Winsock. Winpcap is located below tcp.sys in

NDIS that can bypass windows protocol stack. To speed up data

processing in Winsock, some of network services, such as

firewall and network list services can be disabled. However, the

memory usage and response time is still higher than Winpcap.

Also, some of critical windows updates that are based on those

services will fail. [19]

Figure 1 shows the Architecture of WinSEND and the involving

libraries in sending and receiving traffic. Winpcap is a main

external API in WinSEND application. It is subdivided into three

components: a packet capture device driver, a low level dynamic

library which is called Netgroup Packet Filter (NPF), and a high

level static library. When traffic arrives to a network adapter, the

network adapter invokes the “Network Trap” which copies packet

to NPF. Then, NPF applies user defined filter, i.e. icmpv6, and

sends the captured packets to user-space. Wpcap.dll compiles user

defined filters. Also, Wpcap.dll contains some user mode

functions that enable user application to receive and send packets.

To limit the packets lost’, due to processing time by application,

NPF buffers the incoming packets. Packet.dll provides common

interfaces to packet capture device driver among different versions

of “win32”. Therefore, the user code can run independently of

“win32” API version.

5.2 WinSEND Components
WinSEND is subdivided into three main components: WinSEND

user interface, WinSEND service and WinSEND main classes.

Figure 2 shows these components.

 WinSEND User Interface offers the possibility for the user to

generate CGA address and save SEND parameters which is

required for WinSEND service. The user can set the desired

security parameter “Sec” and determine which interface will be

secured by WinSEND.

 WinSEND Service is the main part of this application. It does

the functionalities of SEND in Windows. For instance, it

implements CGA generation and verification and signature

generation and verification. It also offers the other SEND

options.

 WinSEND Main Classes (class library), contain shared classes

that are called by both WinSEND user interface and WinSEND

Service.

WinSEND parameters are stored in XML file format. This XML

file contains SEND options such as the “subnet prefix”, “Sec”

value and key pairs (public/private keys). The reason for storing

CGA parameters is to avoid CGA generation delays and to skip

the CGA generation process while a node is connected to the

same network. However, the address is not valid forever. It

changes once the node joins a new subnet. For generating new

CGA addresses, WinSEND reruns all CGA generation processes

automatically. When the WinSEND service runs on a node for the

first time, it calls “KeyGeneration”, a function that generates

key pairs in user-defined key size automatically. By default, the

WinSEND uses RSA public key with 1024-bit length.

6. WinSEND IMPLEMENTATION AND

TESTING
WinSEND integrates the security options to NDP messages. It

generates CGA address for the node and verifies the received

CGA addresses. For generating CGA, a security level “Sec” value

should be specified through the WinSEND user interface. "Sec”

value determines how it is difficult to break CGA by the brute-

force attack. “Sec” value also affects the CGA generation time. A

higher “Sec” value means longer time to generate CGA.

WinSEND implementation is tested in several experiments. One

of these experiments is described below. The experiment is done

in a test-bed which contains one router and two clients: A and B.

Both A and B run WinSEND application. As soon as B is

connected to the network, WinSEND service generates a CGA

local link address and assigns it for the network adapter. Then it

creates a Router Solicitation (RS) packet and sends it on the link.

Once it receives the Router Advertisement (RA) message from the

User

Space

Kernel

Space

Network

.net framework

WinSEND App.

 Packet.dll

...

User code

Calls to

winpcap

Wpcap.dll

User buffer

User code

Monitoring

Wpcap.dll Wpcap.dll

Network

Trap

NIC driver (NDIS 3.0 or higher)

Incoming

Packets

Kernel buffer n

Filter n
...

ICMP filter

Statistical

engine

Filter n+1
Other Protocol

Stack

Receive

Send

Outgoing

Packets

User buffer

Filter 1

Kernel buffer

User code

Calls to

winpcap

Wpcap.dll

User buffer

Kernel buffer

Netgroup
Packet
Filter
(NPF)

Figure 1. WinSEND architecture for sending and receiving

packets via Winpcap library

Windows

Registry
WinSEND

parameters

Winpcap

Wpcap.dll

Packet.dll

...

RegistryModification();

XMLModification();

KeyGeneration();

CGA_Generation();

CGA_Verification();

Signature_Verification();

Signature_generation();

CreatePacket();

SendPacket();

SetIP();

...

RegistryModification();

XMLModification();

WinSendServiceRestart();

ResetParameters();

...

WinSEND

Main Classes

WinSEND Service

User Interface

Figure 2. WinSEND main components and its relationships

router, WinSEND extract RA message to retrieve the needed data,

such as “subnet prefix” to generate CGA global address and

secure the response message with WinSEND.

Once the node generates its IPv6 address in a secure way by

WinSEND, SEND options are attached to all Neighbor Discovery

Protocol (NDP) messages. Figure 3 shows Wireshark screenshot of

Neighbor Solicitation (NS) packet. All SEND options: CGA,

timestamp, Nonce, and RSA signature are attached to the sent packet.

The receiver node should verify the CGA and the signature for the

incoming packets. When client “A” receives NS message from client

B, it verifies CGA. If the verification process successes, it accepts the

traffic from “B”. In addition to CGA verification, the receiver node

needs to verify the signature which is carried by RSA Signature

Option. If the signature verification fails, the node discards the packet

silently and considers that it comes from a malicious node. In case the

network has non-CGA nodes, the WinSEND can be configured to

discard all packets sent by non-CGA nodes silently to avoid any

possibility to generate Denial of service (DoS) attacks. Therefore, it is

recommended to force all nodes to use CGA, otherwise it is not easy to

distinguish between real and fake addresses.

7. CONCLUSION AND FUTURE WORK
Neighbor Discovery Protocol (NDP) is one of the most novel

features in IPv6. In non-trusted environments, NDP is vulnerable to

several attacks. The Secure Neighbor Discovery (SEND) protocol

was proposed to counter most of the threats against NDP. However,

SEND is not widely implemented. There are some SEND

implementations in Linux and BSD, but no implantation for

Windows. We implement WinSEND for Windows family, the most

popular operating systems. WinSEND is developed in Microsoft

.NET. It can be installed and integrated to Windows as a service to

provide the functionalities of SEND. It has an easy user interface to

enable the user to set the desired security parameters. WinSEND

uses Winpcap API to have a direct access to raw sockets and bypass

normal TCP/IP stack. To avoid the delay due to CGA generation

algorithm, WinSEND stores CGA parameters in an XML file. These

parameters are update when the node joins to a new subnet.

In this paper we put the basic principles for designing the

implementation of SEND for Windows operating systems. As future

work, we will continue the work to optimize the code. Currently,

WinSEND is implemented to do the brute-force search to satisfy

Hash2 condition [3] in CGA algorithm sequentially. In sequential

computation, one instruction is executed per unit of time and

WinSEND application uses only one CPU core of the computing

device. If computing device has more than one core, the WinSEND

is not able to use all the CPU capacity. However, the CGA is

computationally heavy and it can take long time especially for high

“Sec” value. In some cases, it is better to invest all the CPU capacity

to finish the CGA computation as fast as possible. Consequently, we

are working to offer WinSEND with parallel computational mode.

8. REFERENCES
[1] Nikander, P., Kempf, J., and Nordmark E., “IPv6 Neighbor

Discovery (ND) Trust Models and Threats”, RFC 3756, May

2004.

[2] Arkko, J., Kempf, J., Zill, B., and Nikander, P., “SEcure

Neighbor Discovery (SEND)”, RFC 3971, March 2005.

[3] Aura, T., “Cryptographically Generated Addresses (CGA)”,

RFC 3972, March 2005. Updated by RFCs 4581, 4982.

[4] Microsoft TechNet, IPv6 Security Considerations and

Recommendations, http://technet.microsoft.com/en-

us/library/bb726956, 2011.

[5] OS Platform Statistics,

http://www.w3schools.com/browsers/browsers_os.asp, 2011.

[6] Narten, T., Nordmark, E., Simpson, W., and Soliman, H.,

“Neighbor Discovery for IP version 6 (IPv6)”, RFC 4861,

September 2007.

[7] Thomson, S., Narten, T., and Jinmei, C., “IPv6 Stateless

Address Autoconfiguration”, RFC 4862, September 2007.

[8] Koodli, R., Ed., "Mobile IPv6 Fast Handovers", RFC 5568,

July 2009.

[9] Narten, T., Draves, R., and Krishnan, S., “Privacy

Extensions for Stateless Address Autoconfiguration in IPv6”,

RFC 4941, September 2007.

[10] DoCoMo USA labs, http://www.docomolabs-

usa.com/lab_opensource.html

[11] NDprotector, http://amnesiak.org/NDprotector/

[12] Chiu, S. and Gamess, E., “Easy-SEND: A Didactic

Implementation of the Secure Neighbor Discovery Protocol

for IPv6”, Proceedings of the World Congress on

Engineering and Computer Science, volume 1, 2009.

[13] Kukec, A. and Zeeb, B.A., “Native SeND kernel API for* BSD”,

2010.

http://people.freebsd.org/~anchie/SeND_AsiaBSDCon_2010.pdf

[14] ipv6-send-cga, http://code.google.com/p/ipv6-send-cga/

[15] Winpcap documentation, http://www.winpcap.org

[16] SIO_RCVALL Control Code, Build date: 21. 07. 2011,

http://msdn.microsoft.com/enus/library/ee309610

[17] Windows Filtering Platform, http://msdn.microsoft.com/en-

us/windows/hardware/gg463267.aspx

[18] Transport Driver Interface (TDI), 2011,

http://msdn.microsoft.com/en-us/library/ms819740.aspx

[19] Smith, M., and Loguinov, D., “Enabling high-performance

internet-wide measurements on windows”. In PAM’10: Proc.

of Passive and Active Measurement Conference, pages 121–

130, Zurich, Switzerland, 2010.

Figure 3. Wireshark screenshot of NS packet

http://technet.microsoft.com/en-us/library/bb726956
http://technet.microsoft.com/en-us/library/bb726956
http://www.w3schools.com/browsers/browsers_os.asp
http://www.docomolabs-usa.com/lab_opensource.html
http://www.docomolabs-usa.com/lab_opensource.html
http://amnesiak.org/NDprotector/
http://people.freebsd.org/~anchie/SeND_AsiaBSDCon_2010.pdf
http://code.google.com/p/ipv6-send-cga/
http://www.winpcap.org/
http://msdn.microsoft.com/enus/library/ee309610
http://msdn.microsoft.com/en-us/windows/hardware/gg463267.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463267.aspx
http://msdn.microsoft.com/en-us/library/ms819740.aspx

