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Abstract—Power management is one of the biggest chal-
lenges facing current datacenters. As processors consume
the dominant amount of power in computer systems, power
management of multicore processors is extremely significant.
An efficient power model that accurately predict the power
consumption of a processor is required to develop effective
power management techniques. However, this challenge rises
with using virtualization and increasing number of cores in the
processors.

In this paper, we analyze power consumption of a multicore
processor; we develop three statistical CPU-Power models
based on the number of active cores and average running
frequency using a multiple liner regression. Our models are
built upon a virtualized server. The models are validated
statistically and experimentally. Statistically, our models cover
97% of system variations. Furthermore, we test our models
with different workloads and three benchmarks. The results
show that our models achieve better performance compared
to the recently proposed model for power management in
virtualized environments. Our models provide highly accurate
predictions for un-sampled combinations of frequency and
cores; 95% of the predicted values have less than 7% error.
Thus, we can integrate these models into power management
mechanisms for a dynamic configuration of a virtual machine
in terms of the number of its virtual-CPUs and the frequency
of physical cores to achieve both performance and power
constrains.

Keywords-power; management; virtualization; modeling;
multicore;

I. INTRODUCTION

Datacenter power consumption has become a significant

concern with the rapid emergence of cloud services such as

Amazon EC2. For example, Hamilton [1] has reported that

Amazon’s datacenters are facing a highly increased power

demand where the servers consume 59% of the total power

supply. Furthermore, the U.S. Environmental Protection

Agency (EPA) reported that the energy consumption of the

datacenters located on U.S. consumed 61 billion kilowatt-

hours in 2006 which costs $4.5 billion [2]. Thus, there

have been many proposed approaches for datacenters power

management [3][4]. Current datacenters consist of a number

of servers leveraging multicore processors. According to

Moore’s law, industry could double the number of cores in a

single processor every 18 months. Unfortunately, They also

doubled the power density of the processor. The processor

is the component that consumes the most dynamic power

of a computer system [5][2]. Nevertheless, an idle sever

consumes over 50% of its peak power [6] which means

that a server with low utilization is very power-inefficient.

Hence, virtualization technology has been rapidly employed

in datacenters to increase servers’ utilization by enabling

applications consolidation onto a fewer number of physical

servers and turning off unused servers to save power. There

are several proposed approaches for power management.

Mostly, these approaches consider the CPU frequency and

CPU utilization to build power models. For instance, Ur-

gaonkar et al. [7] and Gandhi et al. [8] have adopted

non-liner quadric models of power consumption for power

management in virtualized environments. The relationship

between power consumption of multicore processor and

frequency cannot be covered with one fitting curve, as we

will see in Section II. Importantly, setting frequency of a

multicore processor as a unit without considering the real

active frequency and number of cores will lead to serious

errors.

Moreover, Fan et al. [10] have included CPU utilization

in their proposed power model. However, using utilization

to build a power model for a multicore processor could

be inaccurate, because the power consumed by a multicore

processor with one active core with 100% utilization is more

than the power consumed by two active cores each of them

50% utilized for the same workload. We found this result

by conducting an experiment using a virtual machine (VM)

with a multithreaded application. This VM ran with 1 virtual

CPU and had 100% utilization and only ran on one physical

core. In this scenario, the power consumed by the physical

CPU was 26 watts. On the other hand, when the VM ran

with 2 virtual CPUs and had the same total CPU utilization

100%, in this scenario, the physical CPU just consumed 17

watts, and each core was 50% utilized. Importantly, both of

the configurations gave the same performance. Indeed, the

latter could be better due to exploiting the multithreading.

Thus, we conclude that using only CPU frequency or CPU
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utilization as an input for power modeling can be inefficient,

in particular, for power estimation of multicore processors.

Evolving virtualized environments enables consolidation

of multithreaded High Performance Computing (HPC) ap-

plications; these applications can efficiently utilize multicore

processors. However, to implement power-aware resource

management techniques for such environments an accurate

power estimation model is required. Hence, the purpose of

this work is to build CPU-Power consumption models that

accurately estimate the power consumption of virtualized

servers with multicore processor. These models can be used

by power-aware resource management techniques to achieve

better power savings. Our work is distinct from others

as follows. This paper presents CPU-Power consumption

models taking into account number of the actual active cores

N and average running clock frequency F at each sample.

It analyzes and evaluates the performance of our proposed

models statistically and experimentally. The statistical anal-

ysis using the regression R2 indicates that our models can

cover more than 97% of system variations. Experimentally,

our proposed models achieve better performance compared

to the model adopted by [7][8]. We evaluate models using

three different applications with different characteristics (i.e.,

CPU-intensive, Memory-intensive, and IO-intensive). The

results show that 95% of the predicted values have less than

7% error. Furthermore, the maximum prediction error is less

than 4% error for Memory-intensive and IO-intensive appli-

cations. As future work, we will use these models to build

a dynamic optimizer that optimizes the number of cores

and their frequency settings and dynamically configures a

VM to cope with a workload and meet power consumption

constrain

The rest of this paper is organized as follows. The follow-

ing section presents a development of CPU-power model.

Section III presents a statistical analysis evaluation of the

power models. Section IV shows experimental performance

and results. The related work is presented in Section V.

Finally, our conclusions and future work are presented in

Section VI.

II. CPU-POWER MODEL DEVELOPMENT

Several works have used linear models to represent the

power consumption of a system or just a processor. These

models are based on CPU utilization or other concerned

resources such as memory. Current processors have multiple

cores, which can operate at different frequency levels at

runtime using DVFS. Hence, in this section we discuss the

relationship between the CPU-Power consumption and CPU-

frequency from one side, and the CPU-Power consumption

and number of active cores from the other side. However,

first we present experimental setup and measurement tools.

A. Experimental setup and measurement

The evaluation experiments were performed on Fujitsu

PRIMERGY RX300 S5 server, which has a CPU-Power

measurement capability. It has a processor of Intel(R)

Xeon(R) CPU E5540 with 4-cores. The frequency ranges

from 1.59GHz to 2.53GHz. Each core enables 2-logical

cores. The server is equipped with 12GB physical memory.

The experiments were run on a virtualized server using Xen-

4.1 hypervisor.

To build our models, we used a CPU-intensive benchmark

EP Embarrassing Parallel, which is one of NAS Parallel

Benchmarks (NPB) [11]. It is a multithreaded benchmark,

which runs a number of threads corresponding to the number

of virtual CPU of a virtual machine. To evaluate our models,

we used CG and BT benchmarks of NPB suite. BT bench-

mark and CG benchmark are IO-intensive and Memory-

intensive, respectively. More detail about the characteristics

of NPB benchmarks is found in [12].

Xenpm tool [13] was used to measure average running

frequency and number of active cores. Fig. 1 summarizes

the system overview. Importantly, Fig. 1 depicts an output

of xenpm showing two cores running on two different

frequencies. Furthermore, it illustrates the change of average

frequency, performance states (P0-P8), and sleeping states

(C0-C3). Thus, using xenpm to measure the real active

frequency provides more accuracy to our models. Finally,

we used the CPU-Power measurement capability of our

server to measure the power consumption of the CPU. In

our experiments, the percentile average was considered to

get accurate power readings.

Virtualized 
Server
(Xen)

Multiple 
Linear 

Regression

Measured CPU-Power

Number of active cores

Average Frequency

Generated
CPU-Power 

Model

VM-1

VM-2

V
M

-3

Predict CPU-Power 
for non-measured 

Configurations

Start sampling, waiting for CTRL-C or SIGINT or SIGALARM signal ...
^CElapsed time (ms): 6956

CPU0:   Residency(ms)           Avg Res(ms)
C0    319     ( 4.59%)        0.35
C1    18      ( 0.27%)        0.44
C2    6619    (95.14%)        7.71

P0    206     (71.48%)
P1    0       ( 0.00%)
P2    0       ( 0.00%)
P3    0       ( 0.00%)
P4    0       ( 0.00%)
P5    0       ( 0.00%)
P6    0       ( 0.00%)
P7    0       ( 0.00%)
P8    82      (28.52%)
Avg freq      2477440 KHz

CPU1:   Residency(ms)           Avg Res(ms)
C0    36      ( 0.53%)        0.11
C1    63      ( 0.92%)        1.18
C2    6856    (98.56%)        23.32

P0    0       ( 0.00%)
P1    0       ( 0.00%)
P2    0       ( 0.00%)
P3    0       ( 0.00%)
P4    0       ( 0.00%)
P5    0       ( 0.00%)
P6    0       ( 0.00%)
P7    0       ( 0.00%)
P8    32      (100.00%)
Avg freq      1921280 KHz

Figure 1: Overview of the system.
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B. CPU-Power and frequency relationship

CPU-Power consumption is composed of dynamic and

static power. The dynamic power is proportional to the cube

of frequency F [14]. The dynamic power is the impor-

tant factor for reducing power consumption using DVFS

technique, which results in slowdown the performance. To

obtain the relationship between CPU-Power consumption

and frequency, we ran EP-NPB CPU-intensive benchmark

on a virtual machine at different CPU frequencies. We

measured the power consumption only for the CPU. Thus,

we obtained the curves in Fig. 2. Then, by applying a linear

regression model, we found that the best relationship could

be fitted in polynomial linear with regression R2 = 0.99. We

generalized it as a quadric model in (1) which resembles the

proposed model by [7][8] to estimate the power consumption

of a server. θ and Pmin are constants that should be chosen

to achieve an accurate prediction.

P(F ) = Pmin + θ(F − Fmin)
2 (1)

Although Fig. 2 shows perfect fitting for each curve of

a number of cores, the total system variations cannot be

covered with considering only the frequency. Hence, we

need different values of θ and Pmin at each number of active

cores. For example, to estimate CPU-Power at frequency

1.72 GHz when 8 active cores using (1) the best values for

θ and Pmin are 37 watts and 37 Watt/GHz2 respectively.

The estimated power is 37.6. It is approximately equal to the

measured value 38 watts. Nevertheless, The values of θ and

Pmin should be adapted again to predict the power when just

4 cores are active. Accordingly, we study the relationship

between the power consumption and number of active cores

in next section.

C. CPU-Power and number of active cores relationship

To estimate the power consumption of multicore proces-

sors, we found that it is important to study the relationship

between CPU-Power and number of active cores. To this

end, we obtained the curves in Fig. 3. The curves have a

linear trend line. The relationship is well approximated by a

linear model with regression R2 = 0.95, which means that

the power consumption and number of active cores have

a strong linear association and can be represented by (2).

N is the number of active cores, and Pmin is the power

consumed by one core running at frequency F. α is the

slope of the power-to-active cores curve at frequency F.

Importantly, each curve has two different slopes. The first

one is when the number of active cores is less than 4 cores;

the other one is when the number of active cores is more

than 4 cores. Moreover, the first slope is greater than the

second one. The main reason of this case was that we had

a processor with 4 physical cores. Each physical core has

two logic cores, and the power consumed by a logical core

is less than the power consumed by a physical core.

Figure 2: CPU-Power consumption relationship with fre-

quency.

Figure 3: CPU-Power consumption relationship with number

of active cores.

P(N) = Pmin + α.N (2)

D. CPU-Power estimation models

From previous sections, we found a strong relationship

between CPU-Power consumption and both frequency and

number of active cores. In this section, we refer to the model

adopted by [7][8] as Model-0. Model-0 is represented by

(3); it does not include the number of active cores. Our

first model is denoted by Model-1. Model-1 presented in

(4) is a multiple linear regression with the intercept constant

C. Furthermore, Model-0 consists of two components: the

frequency and the number of cores. These two components

mainly contribute to multicore processor’s power. Equation

5 represents Model-2. Model-2 is similar to Model-1, but

its intercept constant C is zero. Finally, we removed the

first degree term of frequency of Model-2; we obtained

Model-3 represented by (6). However, we will study the

predication accuracy of these models showing the worst and

the best cases for each model. These models were built using

training samples of the frequency and the number of cores

combinations; some other combinations (i.e., un-sampled
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Table I: The determined values of CPU-Power models coefficients and statistics.

Model θ2-range θ2 θ1-range θ1 α-range α C-range C Std. Err. R2

0. (3) -29.98 - 42.6 6.31 -152.8 - 138.25 -7.27 0 0 -118.86 - 168.24 24.68 7.95 0.291
1. (4) -0.14 - 12.77 6.31 -33.17 - 18.63 -7.27 3.12 - 3.48 3.3 -15.77 - 35.36 9.79 1.41 0.978
2. (5) 3.08 - 4.63 3.8 0.88 - 4.37 2.63 3.13 - 3.49 3.31 0 0 1.40 0.998
3. (6) 4.78 - 5.20 4.99 0 0 3.26 - 3.60 3.43 0 0 1.53 0.998

data ) were used to validate our models. Furthermore, we

used only a CPU-intensive EP benchmark in training stage.

P(F,N) = θ2.F
2 + θ1.F + C (3)

P(F,N) = θ2.F
2 + θ1.F + α.N + C (4)

P(F,N) = θ2.F
2 + θ1.F + α.N (5)

P(F,N) = θ2.F
2 + α.N (6)

III. STATISTICAL ANALYSIS

This section discusses some statistical analysis of our

CPU-Power estimation models focusing on Model-1 to show

its efficiency to predict the power consumption of a proces-

sor. We used plots to check models linearity and normality

assumptions [9].

First, we tested the models linearity using a plot of

residuals versus predicted values. Fig.4-(a) represents a

residuals plot of Model-0. This plot shows a certain pattern

indicating that the model makes systematic errors whenever

the number of cores varies from 1 to 8. In Fig.4-(a), if

we consider the first left vertical residuals points which

represent residuals of frequency 1.6GHz, we find that the

residuals values increase negatively when few of cores are

active (e.g., the residual value is -11 when one core is

active). On the other hand, the residuals values increase

positively when the number of active cores is more than

4 cores. The reason was the over-estimation of CPU-Power

with enabled logical cores. Moreover, the predicted power

is limited by frequency. Thus, it gives the short range [29,

43]. Consequently, it might yield to significant errors when

used for predicting un-sampled data that were not used in

training stage. Furthermore, the residual rang [-15, 15] of

Model-0 is wider than the residual Model-1’s range [-3, 3],

which means that our models are more accurate compared

to Model-0. Additionally, our models are not limited by

frequency that make them scalable with the number of cores

in the processor. Fig.4-(b) is residuals of Model-1. The

points are symmetrically distributed around a horizontal line.

This proves that our model satisfies the linearity assumption

of the liner regression [9]. From this test, we conclude that

our models can predict beyond the range of the sample data

without errors.

Second, we tested the models against normality using a

normal probability plot of the residuals. Fig. 5-a and 5-b

show similar plots of predicted and sample percentile points.

These points are very close to the diagonal line which means

that the residuals of models are normally distributed.

Table I summarizes the determined values of CPU-Power

models coefficients and statistics. This table shows the

ranges of the models coefficient. Model-2 shows a small

range for its coefficients. To illustrate, θ2-range (i.e., [2.1,

5.10]) is very small compared to Model-0’s θ2-range (i.e.,

[-33.54, 42.9] ). However, Model-2 and Model-3 are regres-

sions with zero constant. Furthermore, the regression statis-

tics in Table I show that the regression R2 of our models

is higher than R2 of the Model-0. For instance, Model-2

and Model-3 have regression R2=0.99 which means that

these two models can explain 99% of the power variations.

The power variations were determined by variations in the

independent variables (i.e., frequency and active cores).

In contrast, Model-0, which only considers frequency, has

regression R2=0.259. Model-0 explained only 25% of power

variations using frequency.
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Figure 4: Predicted power and residual plot.
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Figure 5: Normal probability plot.

423423423422



0

50

100

150

200

250

300

350

400

450

500

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

20
5

21
0

21
5

22
0

22
5

23
0

23
5

24
0

24
5

25
0

25
5

26
0

26
5

27
0

27
5

28
0

28
5

29
0

29
5

30
0

30
5

31
0

31
5

32
0

32
5

33
0

33
5

C
P

U
-P

ow
er

 (W
at

t)

Time (sec.)

Estimated Power of Model-0 Estimated Power of Model-1 Estimated Power of Model-2 Estimated Power of Model-3 Measured Power WorkLoad

w
or

kl
oa

d 
(M

O
P

s)

F= 2.4GhZ
N=6-7 cores

F= 1.6-1.8GhZ
N=1-3 cores

F= 1.6-1.7GhZ
N=1-3 cores

Figure 6: Trace of measured consumed CPU-Power and predicted CPU-Power for the four models.

IV. PERFORMANCE EVALUATION

As we discussed models performance statistically earlier,

in this section, we show and compare the performance of

the models experimentally. To achieve this, we conducted

three experiments using three different benchmarks of NPB

benchmark namely: EP, CG, and BT. These benchmarks rep-

resent CPU-Intensive, Memory-Intensive, and IO-Intensive

applications respectively. CG and BT benchmarks were not

used in training stage.

A. CPU-intensive applications
To evaluate our models against CPU-Intensive applica-

tions, we used EP benchmark to generate a workload which

was changed with time. As shown in Fig. 6, we started with

a low workload which increased with time until it reached

its maximum approximately at time 205 sec. Then, it started

to decrease after time 250 sec. During the experiment, we

measured the CPU-Power consumption every 5 seconds.

Then, we computed the estimated power using the four

different models. Obviously, the curve shows that Model-0

has a big difference between its estimation and the measured

power when low-workload and few of cores are actives (i.e.,

1-3 active cores). However, it shows a good performance in

high-workload when all the cores are active. This case is

similar to estimation power consumption of a processor as

a unit regardless of the active cores number.
As our models include the number of active cores and

the average frequency, they accurately estimated the power

in both areas of workload (i.e., low-workload and high-

workload). Furthermore, although Model-2 and Model-3

statistically (i.e., regression R2) are better than Model-1,

the experiment demonstrated that Model-1 with constant C

achieved better performance than the other models. Finally,

slight percentage of error could be observed in our models

due to considering a logical core as a physical core. How-

ever, as we illustrated in section II-B, the power consumed

by a logical core is less than the power consumed by a

physical core.
Now, we discuss the prediction accuracy by computing

the percentage of error using the following formula.

PoE = |(Estimiated−Measured)/Measured| ∗ 100%
Furthermore, we obtained the Empirical Cumulative Distri-

bution Function of Percentage of Error CDF(PoE). Fig.7

depicts a plot of CDF(PoE) for each model. The x-axis

represents the Percentage of Error (PoE), and y-axis shows

the percentage of data points (i.e., predicted power values)

that achieve error less than each value of x. For instance,

90% of the predicted values using Model-0 has less than

40%, and this error might increase to 50%. On the other

hand, our models show that 90% of values were predicted

with less than 9% error. Although R2 value of Model-1

is less than R2 value of Model-2 and Model-3, Model-1

demonstrated the best results where 95% of the predicted

values had an error less than 7%. Generally, the prediction

accuracy of Model-1 empirically outperforms the prediction

accuracy of Model-2 and Model-3.
Significantly, our proposed models achieve high predic-

tion accuracy due to considering both the number of active

cores and the average running frequency. Additionally, the

precise readings of CPU-Power that were realized using

CPU-Power measurement capability of our server assisted

us to build these accurate models. To test our models’ ability

to predict those un-sampled combinations of frequency and
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Figure 7: Prediction accuracy of the CPU-Power models.

number of cores, we conducted some experiments with

different un-sampled combinations frequency 2.53GHz and

number of cores. Table II presents the results of these

experiments. The results proved that our models are able to

predict with high accuracy even un-sampled combinations

of frequency and number of cores.

B. Memory-intensive applications

In this section, we evaluated performance of the models

for applications that are considered memory-intensive using

CG benchmark. Fig. 8 shows the estimated power versus

the measured power. The diagonal line represents the per-

fect predication line which illustrates the deviation of the

estimated values from the measured values. In other words,

the predicted value is equal or close to the measured value if

it is one of the perfect predication line points or close to this

line. From Fig. 8, the data points that represent our models

lie very close to the perfect predication line. Furthermore,

we computed the maximum prediction error of each Model.

We found that Model-1 and Model-2 had less maximum

prediction error compared to the other two models. However,

with less than 6% maximum prediction error for Model-

1 and Model-2, these two models are still accurate. The

maximum prediction error of Model-0 was 14.4%.

C. IO-intensive applications

As we presented the performance of our models for CPU-

intensive and Memory-intensive applications in the previous

sections, this section presents performance of the models

for IO-intensive applications. We repeated the experiments

procedure of the previous section using BT benchmark.

Fig. 9 also shows the estimated power versus the measured

power. We can see that the predicted values of Model-1 are

on perfect predication line or very close to it. In contrast

to Model-1, Model-0 and Model-3 show a large deviation

Table II: The predicted CPU-Power for un-sampled combi-

nation of frequency 2.53 GHz and number of cores.

Cores Measured Model-0 Model-1 Model-2 Model-3
3 42 47.09 42.27 41.23 42.06
4 45 47.09 45.57 44.53 45.46
8 58 47.09 58.77 57.73 59.06
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Figure 8: CPU-Power models fit for CG-Memory-Intensive:

measured vs. estimated.
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Figure 9: CPU-Power models fit for BT-IO-Intensive: mea-

sured vs. estimated.

from the perfect line. Moreover, we found that Model-1 and

Model-2 had less maximum prediction error compared to

the other two models. Model-1 and Model-2 achieved less

than 5% maximum prediction error. Finally, the maximum

prediction error of Model-0 became worse with 22.07%

error.

V. RELATED WORK

Power models could be built for a full server or for a par-

ticular component of the server such as a CPU. At the server
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level, Dynamic Voltage/Frequency Scaling (DVFS) mecha-

nism is exploited to obtain power consumption proportional

to the total workloads demand of VMs hosted on servers.

DVSF mechanism enables processors to run on different

performance states. Many papers have explored policies for

reducing CPU power consumption using DVFS [15]-[18],

but these approaches are not designed for virtualized servers

that host multiple applications on the same physical server

and allow dynamic change of virtual machine configuration.

There are several solutions implemented for virtualized

environments [20]-[22]. Kusic et al. [20] have developed a

dynamic resource provisioning framework based on looka-

head control, which estimates the future workload demand.

However, they concluded that the intensity of the workload

directed at the VMs does not affect the power consumption.

Additionally, they reported that the power consumed by a

host machine only affected by the number of VMs running

on it regardless of the arrival rate experienced by the VMs.

In this paper, we show different results where the power

consumption changes with the workload intensity even when

we have one VM.

To implement a power management mechanism for a

system, it needs to construct a power consumption model for

the system. The BlackBox approach is a common approach

to construct a power model for either a full-system or a

single processor. Using BlackBox approach could sacrifice

some accuracy, but it realizes simplicity by avoiding reliance

on detailed knowledge of the hardware’s implementation.

We summarize some of the previous works that adopt this

approach to build a power model for either a full-server

or a single component such as a processor. Importantly, we

used BlackBox approach to build our models. This approach

totally depends on the training data. In this work, we

measured both of frequency and CPU-power using precise

tools.

There are several works considering power modeling of a

full-server. Ranganathan et al. [24] has proposed a dynamic

power budgeting optimizations. In their work, a lookup table

has been built for relating power and performance to system

resource utilization. Similarly, Fan et al. [10] have developed

a power optimization model using a linear model based on

CPU utilization and a measured power. Furthermore, a linear

model has been used to facilitate server consolidation [26].

This model used CPU, memory, and disk utilization for

a server. In [27], authors have constructed a model based

on utilization and CPU performance counters to model the

power consumption of two different servers [27]. Finally, [7],

[8] have proposed a non-linear relationship between power

and frequency to estimate power consumption of servers.

Generally, a full-server power consumption model should be

re-calibrated when applied to a different server or a different

application.

On the other hand, different power models have been

constructed to model the power consumption of a processor

[23][28][29]. For instance, Bellosa et al. [28] and Li et al.

[23] used performance counters to generate power models.

They have determined a linear relationship between proces-

sor power consumption and several performance counters. A

linear model of the power consumption of an Intel XScale

processor and its memory system has been built in [29]. In

[30], authors have built a model for power consumption at a

task level based on CPU cycles and memory cycles executed

for different types of tasks in operating system; however,

they did not consider a multithreaded tasks and multicore

processors. Finally, Ben-Itzhak et al. [5] has constructed a

simple linear power model for multithreaded applications.

Their model has been used to achieve power-aware thread

allocation solutions. In contrast, we take into account the

ability of a core to be run with different frequency levels.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed models to estimate

the power consumption of multicore processors. Our work

is distinguished from previous work by considering both

the number of active cores and the frequency of multicore

processor. We developed our prediction models using an

Intel(R) Xeon(R) CPU E5540 processor. We validated our

proposed models statistically and experimentally with varied

workloads. The results of the experiment showed that our

model achieved high accuracy of CPU-Power estimation.

Furthermore, we applied our model to predict power con-

sumption of different applications that are characterized as

CPU, Memory, and IO intensive. Then, we compared the

worst predication error of these models. The results indicated

that our models in particularly Model-1 and Mode-2 had a

stronger robustness than Model-0.

Hence, our proposed models can be applied to dynamic

power-aware configuration of cores’ frequency and virtual

machines’ vCPU number. This enables new adaptive power

management solutions for virtualized servers. Furthermore,

they can be used to realize a fine-grained power provisioning

proportional to workloads.
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