
Efficient Virtual Machine Scheduling-policy for Virtualized
Heterogeneous Multicore Systems

Ibrahim Takouna, Wesam Dawoud, and Christoph Meinel
Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

{ibrahim.takouna, wesam.dawoud, christoph.meinel}@hpi.uni-potsdam.de

Abstract— Heterogeneous multicore processors could be
the future trend of processors’ industry due to their
performance-power efficiency. In the operating systems do-
main, A heterogeneity-aware scheduler assigns a thread
or an application to an appropriate core to realize this
efficiency. Using virtualization technologies enables resource
consolidation and achieves effective utilization of resources.
Nevertheless, Hypervisors’ scheduling-policy is based on
the round robin algorithm to ensure fairness among VMs.
Emerging heterogeneous system and virtualization increases
power savings and enhances resources utilization. This com-
bination needs a new scheduler, which schedules each VM
to an appropriate core based on its characteristics. In this
paper, we present sources of delay in virtualized environment
that could degrade performance of VMs. Then, we inves-
tigate the sensitivity of a VM performance to changes in
clock frequency. A new scheduling policy was implemented
to alleviate sources of delay and to be aware of system’s
heterogeneity. We emulated our heterogeneous testing envi-
ronment using DVFS, and we compared the results to default
scheduling policy in Hypervisor’s scheduler. Nevertheless,
the results show performance improvements for VMs that run
either CPU-intensive or I/O-intensive applications. Finally,
the measured power savings of our heterogeneous testing
environment reach up to 25%.

Keywords: Virtualization, Heterogeneous, Scheduling, Hypervi-
sor, Management.

1. Introduction
Heterogeneous multicore processors could be a common

architecture of future multicore processors due to their
performance per watt compared to homogeneous processors
[1,2,3]. A single processor will contain hundreds of cores
that vary in some micro-architecture features such as clock
frequency, cache size, area, and others [4], but these cores
exploit the same instruction-set architecture. A single chip
might have several complex cores and many simple cores.
The simple cores are characterized as low-speed clock
frequency and low power consumption while fast cores are
equipped with high-performance features such as high-speed
clock frequency and high power consumption. Consequently,
their potential to achieve different levels of performance that
meet applications heterogeneity has prompted researchers in

the operating systems domain to implement heterogeneous
aware schedulers [5,6,7].

Nevertheless, current Hypervisors’ schedulers such as
Xen [8] do not support heterogeneous multicore processors,
but this issue has been recently tackled in [9]. Authors
in [9] have implemented An Asymmetry-Aware Scheduler
for Hypervisors (AASH). Using AASH scheduler achieves
a good performance improvement for CPU-intensive ap-
plications, but this improvement comes with performance
degradation for memory and I/O intensive applications. A
hypervisor scheduler is considered efficient if it assigns
a virtual CPU (vCPU) to run on the appropriate cores
based on the application characteristics in terms of CPU-
intensive, Memory-intensive, or I/O-intensive. Further, the
scheduler must have knowledge of the physical processors’
architecture and their characteristics such as cores’ clock
frequency. By this knowledge, VMs with CPU-intensive
applications should be assigned to complex fast cores to
be executed faster. Generally, scientific applications are
CPU-intensive, multithreaded, and fewer CPU stalls due to
infrequent memory accesses or I/O operations. On the other
hand, I/O-intensive could be assigned to simple slow cores
without losing significant performance and achieving the
power savings.

In this paper, we used NAS Parallel Benchmarks [10]
as CPU-intensive application and netperf benchmark [11]
as I/O-intensive application. We denoted performance sensi-
tivity to CPU clock frequency as "performance-frequency
sensitivity" and performance dependency on Domain-0
as "performance-Domain-0 dependency". Our scheduling-
policy based on these two categories: "performance-
frequency sensitivity" and "performance-Domain-0 depen-
dency" to assign a vCPU to the appropriate core. Conse-
quently, the results showed good performance improvements
for VMs with CPU-intensive applications and for VMs with
I/O-intensive applications as well. Further, in some experi-
ments, the average combined performance gain reaches up to
70%. Eliminating sources of delay is the foundation of these
improvements. Finally, our heterogeneous experimental envi-
ronment achieves 25% of power savings. The power savings
are gained from this architecture, which runs on two cores
with high frequency and other two cores with low frequency.

The key contributions are as follows:
• We present and classify sources of delay that might lead

to performance degradation of the whole system such
as inter-process commutation and scheduling delay.

• Then, we illustrate performance of NPB benchmark
performance-frequency sensitivity for both OpenMP
and SERIAL versions of NPB benchmark. Similarly,
we investigate sensitivity I/O-intensive applications to
clock frequency and their dependency on Domain-0
using netperf benchmark with TCP and UDP streams
options.

• We present our modified scheduling-policy that applied
to the default credit scheduler of Xen Hypervisor.

• Finally, we discuss the results of experiments showing
performance comparison between the default and the
modified scheduling-policy.

The rest of paper is organized as follows. The next
section discusses sources of delay in virtualized environment
and motivates our work. Section 3 presents details about
experimental platform and the benchmarks that were used.
In Section 4, we discuss sensitivity of VMs performance to
CPU clock frequency. Performance evaluation is presented
in Section 5. The related work is described in Section 6.
Finally, conclusions is presented in Section 7.

2. Background and Motivation
2.1 Background

In virtualized servers, virtual CPUs (vCPUs) of a virtual
machine (VM) usually experience scheduling delay due to
their competition on physical CPUs (pCPUs) with other vC-
PUs of the co-hosted VMs including the privileged domain
of the Hypervisor (i.e., Domain-0). We discuss sources of
delay that impede VMs to achieve the best performance.
Sources of delay effect on Network I/O was discussed
in [12], meanwhile inter-process communication delay was
experienced in [13] due to threads synchronization. We point
out these sources as follows.

a) Delay influences network I/O VMs performance:
1) The network communication between two VMs is a

type of I/O that mainly depends on Domain-0 because
a VM does not have privileges to access the physical
NIC. Nevertheless, more details could be found in
[12].

• Sending a packet from a VM to another VM
in the same host might experience delay due to
scheduling Domain-0. The delay is the time period
between a VM (a sender) copying a packet into the
Domain-0’s transmission-I/O-ring and Domain0
being scheduled next to notify another VM (a
recipient) in the same host by setting up an event
channel notification.

• Sending/Receiving a packet from a VM to another
VM into another host: The delay is the time period
between a VM (a sender) copying a packet into the

Domain-0’s transmission-I/O-ring and Domain0
being scheduled next to send it via the physical
NIC of host and the time period between receiving
a packet in the physical NIC of the server hosting
the recipient VM and Domain-0 being scheduled
next to set up an event channel notification for the
recipient VM.

2) Delay related to sender VMs scheduling which is the
waiting period of a VM to be scheduled for copying
a packet into the Domain-0’s transmission-I/O-ring.

3) Delay related to recipient VMs scheduling which is
the duration between when Domain0 sets up an event
channel notification for the recipient VM and when
the recipient being scheduled next to read the packet
from Domain-0’s transmission-I/O-ring.

b) Delay influences CPU-intensive VMs performance:
1) To achieve better I/O latency, the Xen Credit sched-

uler prioritizes vCPU I/O-intensive. When a vCPU is
blocked waiting for I/O it will not consume cred-
its; when it wakes, it enters the BOOST state and
may immediately preempt running vCPU. Generally,
vCPU (CPU-intensive) has less credit than vCPU (I/O-
intensive). The frequent preemption of vCPU degrades
performance especially for cache sensitive applications
because some pCPU cycles go for cache-warming.

2) Delay related to inter-process communication comes
from asynchronous assignment for vCPU. Xen credit
scheduler assigns vCPU asynchronously to satisfy
the fairness among vCPUs in the host. However,
asynchronous scheduling decreases performance of a
multithreaded application that needs synchronization
among its threads.

After introducing sources of delay, we give an overview of
Xen’s credit scheduler [8]. The scheduler gives each vCPU
300 credits for a 30ms accounting period. A 100 credits
is subtracted from vCPU each tick. A tick equals 10ms.
The scheduler selects the next vCPU to run on pCPU after
prioritizing vCPUs with either OVER or UNDER according
to their remaining credits. The selection is preformed when
the current running vCPU finishes its time-slice or its status
becomes idle or blocked.

2.2 Motivation
Increasing number of cores in a single chip has become

the mainstream industry to avoid vertical scaling of CPU
frequency. A single chip expected to contain hundreds of
cores that could be heterogeneous either by design or due to
variability and possibility of defects with time [14]. Never-
theless, Heterogeneous multicore promises to achieve 60%
in power saving compared to homogeneous [3]. Similarly,
using virtualization technologies realizes efficient power
savings by hosting multiple virtual machines on a single

physical server. In this paper, we combine heterogeneous
processors with virtualization technology to demonstrate the
potentials of this combination in achieving power savings
and maintaining applications performance at the acceptable
level. Current Hypervisors’ schedulers based on the round
robin scheduling algorithm ensure fairness share of physical
cores among VMs, but these schedulers were tailored for
homogeneous cores, so using them in heterogeneous en-
vironment causes large performance losses. However, the
advantages of this combination could not be achieved with-
out dynamic classification for VMs and schedulers aware of
VMs classification and processors’ heterogeneity. This paper
sheds light on some of these advantages to motivate research
in this area.

3. Testing Environment and Bench-
marks
3.1 Experimental Platform

Our experimental platform is a Dell OPTIPLEX 980
server with an Intel quad-core processor frequency range
2.79 - 1.2GHz, 8MB shared L3 Intel Smart Cache, and
VID-Voltage rang 0.6500V-1.4000V. The server is equipped
with 8GB memory. We emulated a heterogeneous processor
according to expected frequency ranges in future hetero-
geneous systems[4], so we set two cores with high clock
frequency FF = 2.79GHz and other two cores with low
clock frequency FL=1.33GHz. We considered each core
as a physical CPU (pCPU). Our experimental virtualized
environment based on Ubunutu-10-32bit-Xen 4.1. Ubuntu
operating system was used for para-virtualized unprivileged
domains. The number of VMs and vCPUs was changed
according to experiments purpose, and each experiment in
this paper was repeated at least five times and the average
of these readings was considered.

3.2 Benchmarks
The NAS Parallel Benchmarks [10] (NPB) was designed

to evaluate the performance of HPC systems. NPB consists
of a set of programs that differ in dataset size. The dataset
size increases according to the chosen class (i.e., S, W,
and A-D) during compilation. Further, NPB suite comes
in a variety of versions: SERIAL, OpenMP, MPI, and
Java. The SERIAL and OpenMP versions were used in our
experiments and compiled with class C dataset which is the
second largest dataset after class D. Authors of [15] studied
NPB characteristics and provided performance analysis for
MPI version. Generally, the NPB programs show a high
CPU utilization, and this indicates that those programs are
computation-intensive and infrequently blocked for com-
munication or I/O operation. When a program runs with
four threads, the communication patterns in these programs
are as follows. BT and SP exhibit a mesh communication
pattern, but BT includes a number of I/O operations. CG

shows a one dimensional nearest neighbor chain pattern.
LU and EP show a ring and negligible communication
pattern respectively. Finally, CG and LU are communication
intensive and their message size is large compared to the
other programs, but LU is a synchronous-sensitive among its
threads[13]. We denote OpenMP version of NPB by NPB-
OMP that encloses CPU-intensive parallel programs, and the
SERIAL version by NPB-SER that includes CPU-intensive
single thread programs. Furthermore, we refer to individual
program in NPB suite using this notion EP-OMP which
means EP program of OpenMP version, or EP-SER which
means EP program of the SERIAL version.

Netpref [11] is a network benchmark with a variety of
options. We used netperf with TCP_STREAM option to
measure TCP channel bandwidth and with UDP_STREAM
to measure UDP channel bandwidth. In this paper, we refer
to them with netperf-TCP and netperf-UDP respectively.

4. VMs SENSITIVITY ANALYSIS
In this section, we analyzed sensitivity of VMs’ perfor-

mance to changes in CPU clock frequency for VMs that
run CPU-intensive and I/O-intensive applications. Then, we
illustrated dependency of VMs’ on Domian-0 for VMs with
I/O-intensive applications.

4.1 VMs with NBP Sensitivity Analysis
To analyze VMs performance-frequency sensitivity, we

used NBP-SER and NPB-OMP benchmarks as CPU-
intensive programs. In this experiment, we pinned vCPUs
of Domain-0 to cores (0,1) and vCPUs of VMs were pinned
to the another two cores (2,3) to avoid Domain-0’s influence
on the VMs; in other words, to prevent Domain-0 from
being queued with the VMs in the same queue. First, the
experiment was run while the cores (2,3) were set to run with
high frequency FF =2.79GHz as fast cores. Then, it was run
again after changing frequency settings of the cores (2,3) to
low frequency FS=1.33GHz as slow cores. Finally, we used
the price elasticity of demand economics formula to deter-
mine program’s completion time and throughput sensitivity
of clock frequency. We considered T the completion time and
Th the throughput as the demand, and F clock frequency as
the price. The sensitivity was determined using the formula
from [18]. ET,F is the completion time sensitivity of clock
frequency, and ETh,F is throughput sensitivity of clock
frequency.

ET,F =
TF − TS

FF − FS
∗ FF + FS

TF + TS
(1)

ETh,F =
ThF − ThS

FF − FS
∗ FF + FS

ThF + ThS
(2)

Due to the inverse relationship between CPU frequency
and completion time, ET,F values are negative, so com-
pletion time increases as CPU frequency decreases and

(a) (b)

Fig. 1: Performance-frequency sensitivity for NPB-OMP
and NPB-SER versions run on a VM with two vC-
PUs. (a)sensitivity of completion time to frequency, and
(b)sensitivity of throughput to frequency.

vice versa. On the other hand, ETh,F values are positive
because of the direct relationship between CPU frequency
and throughput. Program speedup depends on program char-
acteristics, but it does not have a liner relationship with
CPU frequency. However, CPU-intensive programs might
have a semi-liner relation with frequency because of either
infrequent memory accesses or I/O operations. Figure 1
shows NPB-OMP and NPB-SER benchmarks performance-
frequency sensitivity (i.e., completion time and throughput).
In NPB benchmark, each program has a different memory
access behavior and various inter-process communication
patterns. These characteristics determine sensitivity of a
program to frequency changes. For example, the completion
time of EP-OMP and EP-SER programs had the same
and the highest sensitivity. This high sensitivity due to the
negligible inter-process communication in the multithreading
EP-OMP program, and none inter-process communication
in the single thread EP-SER program. Furthermore, EP-
OMP is seldom memory access compared with CG-OMP
and LU-OMP. Generally, NPB-SER programs sensitivity to
frequency changes was higher than NBP-OMP due to the
sequential execution of instructions in NPB-SER and inter-
process communication patterns or I/O operations in some
of NBP-OMP programs such as CG and BT respectively.
On the other hand, NBP-OMP programs with intensive inter-
process communication were less sensitive to frequency such
as CG-OMP and LU-OMP. FT, a mixed type program,
almost had the same sensitivity in NPB-SER and NPB-
OMP. Unlike LU-OMP, BT-OMP includes a number of
I/O operations that do not need synchronization among its
threads.

4.2 VMs with I/O Sensitivity Analysis

We analyzed sensitivity of VMs performance with I/O-
intensive to CPU frequency. Then, as I/O operations depend
on Domain-0, we tested VMs performance-Domain-0 depen-
dency.

4.2.1 CPU Frequency Sensitivity
In this experiment, we ran netperf with TCP-STREAM

and UDP-STRAEM options to test I/O performance-
frequency sensitivity using formula 2. The setting of this
experiment was the same setting when we tested VM with
NBP sensitivity. As shown in figure 2-(a), TCP test is more
sensitive to core frequency than UDP due to the nature of
TCP-packet; UDP does neither message fragmentation nor
reassembly. Further, the aggregate costs of non-data touching
overheads consume majority of the total software process-
ing time. The non-data touching overheads come from as
network buffer manipulation, protocol-specific processing,
operating system functions, data structure manipulations
(other than network buffers), and error checking[16]. To
validate our test, we used SCP application TCP-based to
transfer a 500MB file between two VMs and we found the
same results obtained using netperf-TCP.

4.2.2 VMs with I/O Domain-0 Dependency
In this experiment, we ran netperf benchmark with

TCP-STREAM and UDP-STRAEM options to test I/O
performance-Domain-0 dependency. For this end, we re-
versed the scenario of VM performance-frequency sensi-
tivity, so the cores (2,3) settings were not changed but
were set to high frequency FF =2.79GHz where VMs were
pinned in cores (2,3). On the other hand, The cores (0,1)
were set to high frequency FF =2.79 GHz where Domain-0
was pinned. Then, we ran it again while the frequency of
cores (0,1) is low FS=1.33GHz. Finally, we computed the
performance-Domain-0 dependency using formula (2). The
result of this experiment is shown in figure 2-(b). It illustrates
that both netperf-TCP and netperf-UDP depend on Domain-0
for commutation between to VMs, but netperf-TCP depends
on Domain-0 more than netperf-UDP.

The conclusion is that applications based on TCP protocol
are frequency sensitive and they are Domain-0 dependant as
depicted in figure 2-(a) and figure 2-(b) respectively.

(a) (b)

Fig. 2: Performance-frequency sensitivity and Domain-0
dependency for NPB-OMP and NPB-SER versions run on a
VM with two vCPUs. (a) performance-frequency sensitivity,
and (b) performance-Domain-0 dependency.

5. Performance Evaluations
In this section, we evaluated our improved scheduling-

policy with the following rules:
• The weight of VM is proportional to the number of

vCPUs.
• CPU-intensive vCPU should not be queued with I/O-

intensive vCPU. Furthermore, CPU-intensive vCPU
should be placed in the fast pCPU’s queue meanwhile
I/O-intensive vCPU in the slow pCPU’s queue.

• A virtual machine with CPU-intensive application and
a single vCPU should be placed in fast pCPU’s queue
to accelerate the sequential execution.

• The time-slice for the fast pCPU’s queue is 30ms and
time-slice for slow cores is 10ms as show in figure 3.
We chose the value 10ms for the short slice as one tick
to avoid high context switching and to keep consistent
credit accounting.

• The cores settings for the experiments were that the
fast cores (0,1) ran on frequency FF =2.79GHz and the
slow cores (2,3) ran on frequency FS=1.33GHz.

(a)

(b)

Fig. 3: Scheduling time-slice modifications.(a) time-slice =
30ms for fast cores, and (b) time-slice = 10ms for slow cores.
The accounting period of vCPU is 30ms for both fast and
slow cores.

5.1 I/O and CPU-intensive Isolation
In this experiment, we created three VMs one with two

vCPUs while each of the other two VMs has one vCPUs.
We ran netperf on the two VMs with one vCPU for testing
TCP and UDP bandwidth channels between them. The VM
with two vCPUs used to run NPB-SER and NBP-OMP
programs. We ran the three VMs with our new scheduling-
policy. First, we used EP and CG programs in NPB-SER
with netperf, then EP and CG of NPB-OMP were used. We
pinned the VMs with I/O to the slow cores (2,3) and the
VM with CPU-intensive was pinned to the fast cores (0,1).
Performance improvement for both I/O and CPU-intensive

VMs compared to the default scheduler is illustrated in figure
4. Figure 4-(c) shows that the performance gain of CG.C is
better than EP.C. Indeed, EP.C has negligible inter-process
communication compared to CG.C which has also memory
accesses. On the other hand, netperf-TCP throughput when
co-hosted with VM that ran NBP-SER is better than when
co-hosted with VM that ran NBP-OMP. As seen in figure 2-
(b), netperf depends on Domain-0 and NPB-SER is a single
thread test that gave Domain-0 chance to be scheduled in
fast cores and improve I/O operations for netperf-TCP. The
aggregate average gain is depicted in figure 4-(c). Obviously,
isolating CPU-intensive vCPUs from I/O-intensive vCPUs
was the main reason for performance improvement. Using
isolation eliminated the sources of delay that affect CPU-
intensive vCPUs performance.

(a) (b) (c)

Fig. 4: I/O and CPU-intensive Isolation Performance im-
provements; netperf-TCP run on a VM with one vCPU,and
NPB-OMP run on a VM with two vCPUs. (a) Through-
put gain for NPB-OMP and netperf-TCP benchmark, (b)
throughput gain for NPB-OMP and netperf-TCP benchmark,
and (c) the average improvement of the overall system.

5.2 VMs with sensitive Inter-process Comm.
In this experiment, we tested the performance gain for

inter-process communication intensive such as CG and
LU of NPB-OMP version. The performance of NPB-OMP
benchmark in VM is near to the performance in physical
server as long as the vCPUs are less than pCPUs, and LU-
OMP is the most sensitive program to communication delay
[13]. For testing inter-process communication intensive pro-
gram performance improvement, we created one VM with
one vCPU and another VM with four vCPU. Nevertheless,
we had five vCPUs in addition to four vCPUs for Domain-0.
The performance gain is illustrated in figure 5 where figure
5-(a) shows Throughput gain and completion time speedup
for NPB-OMP while figure 5-(b)illustrates Throughput gain
and completion time speedup for NPB-SER. Figure 5-(c)
shows the average aggregated performance gain for NPB
programs with two versions. Nevertheless, LU-OMP gained
about 70% performance improvement. This improvement

due to changing the time-slice of the slow pCPUs’ to 10ms
which increases scheduling frequency. Increasing schedul-
ing frequency gave chance for inter-process communication
and synchronization. Further, decreasing time-slice decreases
holding time when vCPU status "busy blocking" holds pCPU
[17]. A lot of "busy blocking" wastes pCPU cycles and
degrades the overall system performance.

(a) (b) (c)

Fig. 5: CPU-intensive with inter-process communication
intensive performance improvements:NPB-OMP run on a
VM with four vCPUs and NPB-SER run on a VM with one
vCPU. (a) Throughput gain and completion time speedup
for NPB-OMP,(b) throughput gain and completion time for
NPB-SER, and (c) the average improvement of the overall
system.

5.3 Estimated Power Savings
As our physical platform is homogeneous, we have used

dynamic voltage and frequency scaling (DVFS) mechanism
to emulate a Heterogeneous environment. Nevertheless, we
calculate the expected power saving in our experimental
environment using formula (3). Formula (3) shows that the
power consumption has a direct proportional to F which is
the clock frequency and the square of Voltage (V).

P = C ∗ F ∗ V 2
V ID (3)

Consequently, homogeneous architecture (HO) will consume
PHO with four cores ran on high frequency FF =2.79GHz
and VV ID=1.4V, while heterogeneous architecture (HE)
will consume PHE with two cores with high frequency
FF =2.97GHz with VV ID=1.4V and the other two ran with
low frequency FS=1.33GHz with VV ID=0.65V. The theo-
retically power savings gain is 45% calculated using (1-
PHE /PHO)*100 formula, but the measured values of power
savings reach up to 25%.

6. Related Work
Most of the works related to heterogeneous processors

have been done in operating systems domain. Our work
overlaps with two categories: (i) Heterogeneous scheduling
awareness for OS, (ii) Heterogeneous scheduling awareness
for Hypervisors. First, the algorithms for heterogeneous

awareness in operating systems field can be described as
follows. The algorithm presented in [6] assigns the best
threads (i.e., threads with high computation demands) to
run on fast cores; however, selecting the best threads via
continuous monitoring of performance based on instructions
per cycle (IPC). Furthermore, continuous monitoring for
threads before getting the best thread to the fast core might
take long time and consume more resources. This algorithm
could be modified for Hypervisors if we consider a virtual
machine as a long lived thread. By determining the archi-
tectural properties of an application, the algorithm in [16]
find the best threads to be assigned to fast cores. However,
we used the same methodology to classify virtual machines
that proposed in [16]. The algorithm proposed in [19] boost
the sequential phases of parallel applications by executing
them on fast cores. In our work, the scheduler assigns CPU-
intensive VMs with single vCPU to fast cores. In [20], the
scheduler places more threads on fast cores than slow cores,
where the core load is proportional to its frequency speed.
Unfortunately, this technique is not suitable for Hypervisors
because virtual machines will experience cache contentions
that degrade their performance [21].

Second, heterogeneous scheduling awareness for Hyper-
visors according to the recent work was presented in [9].
These were not much research done in this domain;however,
paper [9] was implemented An Asymmetry-Aware Scheduler
for Hypervisors which is a scheduler aware to heterogeneity
of multicore processor. Using AASH scheduler achieves a
good performance improvement for CPU-intensive VMs, but
this improvement came with performance degradation for
memory and I/O intensive VMs. Our idea of shortening the
time-slice for the slow cores similar to dynamic switching
frequency scheduling policy proposed in [20], but it was
proposed for homogeneous environment and for pinned
virtual machines. Authors in [20] suggested to set the time-
slice to one millisecond for some CPU-Intensive VMs, but
according to the comments in Xen’s source code [22], a 1ms
is the given delay for pCPU to build its cache for vCPU
between vCPU migrations. So, one millisecond time-slice
is very expensive for CPU-intensive VMs due to frequent
cache-warming that means more pCPU cycles losses.

7. Conclusions
In our scheduling-policy, we invested the recommen-

dations that were proposed for operation systems sched-
ulers. The policy is suitable for virtualized environments
that co-hosted heterogeneous type of VMs. We presented
scheduling-policy that aware of virtual machines and phys-
ical host heterogeneity to realize the promises of Hetero-
geneous multicore processor in virtualized environments.
Analyzing VM characteristics is the most significant stage to
place a VM at the suitable cores that keep its performance
acceptable. Furthermore, elimination of delay sources that
impede performance gaining could bring good performance

improvements. Our results proved that heterogeneous mut-
licore systems could add more advantages in terms of
power savings when combined with virtualiziation tech-
nologies. Nevertheless, the average combined performance
improvements gain for both CPU-intensive and I/O-intensive
VMs reached up to 70% in some experiments compared
with default scheduling-policy of Hypervisor’s scheduler.
Furthermore, the power savings achieved in our experimen-
tal environment almost realize the promises in [3], where
25% of power savings have been achieved compared with
homogeneous architecture.

References
[1] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, and P. Husbands, "The

Landscape of Parallel Computing Research: A View From Berkeley,"
UC Berkeley Technical Report UCB/EECS-2006-183, 2006.

[2] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ayguade,
"Performance, Power Efficiency and Scalability of Asymmetric
Cluster Chip Multiprocessors," IEEE Computer Architecture Letters
5(1):4, 2006.

[3] R. Kumar, K. I. Farkas, and N. Jouppi et al, "Single-ISA Heteroge-
neous Multi-Core Architectures: The Potential for Processor Power
Reduction," In Proc. of MICRO 36, 2003.

[4] S. Borkar, "Thousand Core Chips-A Technology Perspective," in Proc.
of the DAC, 2007.

[5] R. Kumar, Dean M. Tullsen, P. Ranganathan, N. Jouppi, and K. Farkas,
"Single-ISA Heterogeneous Multicore Architectures for Multithreaded
Workload Performance," in Proc. of the 31st Annual International
Symposium on Computer Architecture, 2004.

[6] R. Kumar, D. M. Tullsen, and P. Ranganathan et al, "Single-ISA
Heterogeneous Multi-Core Architectures for Multithreaded Workload
Performance," in Proc. of ISCA, 2004.

[7] M. Becchi and P. Crowley, "Dynamic Thread Assignment on Hetero-
geneous Multiprocessor Architectures," in Proc. of the Conference on
Computing Frontiers, 2006.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, "Xen and the Art of
Virtualization," in Proc. SOSP ’03 Proceedings of the nineteenth ACM
symposium on Operating systems principles, 2003.

[9] V. Kazempour, A Kamali, and A. Fedorova, "AASH: an asymmetry-
aware scheduler for Hypervisors,"in Proc. of the 6th ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments, 2010.

[10] R. V. der Wijngaart, "NAS Parallel Benchmarks v. 2.4", NAS Tech-
nical Report NAS-02-007, October 2002.

[11] R Jones, "NetPerf:a Network performance benchmark,"
http://www.netperf.org.

[12] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Siva-
subramaniam, "Xen and co.: communication-aware cpu scheduling
for consolidated xen-based hosting platforms," in Proc. of the 3rd
international conference on Virtual execution environments, pp. 126-
136, 2007.

[13] C. Xu, Y. Bai, and C. Luo, "Performance Evaluation of Parallel
Programming in Virtual Machine Environment," In Proc. of Sixth
IFIP International Conference on Network and Parallel Computing,
pp. 140-147, 2009.

[14] S. Borkar, "Designing Reliable Systems from Unreliable Components:
The Challenges of Transistor Variability and Degradation," in IEEE
Micro, 5(6):10-16, 2005.

[15] J. Subhlok, S. Venkataramaiah, and A. Singh, "Characterizing NAS
benchmark performance on shared heterogeneousnetworks," in Proc.
of 11th International Heterogeneous Computing Workshop, 2002.

[16] J. Kay and J. Pasquale, "The Importance of Non-Data Touching
Processing Overheads in TCP/IP," In Proc. of ACM SIGCOMM, 1993.

[17] H. Chen, H. Jin, K. Hu, and J. Huang, "Dynamic Switching-Frequency
Scaling: Scheduling pinned Domains in Xen VMM," in Proc. of 39th
International Conference on Parallel Processing,pp. 287-296, 2010

[18] D. Shelepov and A. Fedorova, "Scheduling on Heterogeneous Multi-
core Processors Using Architectural Signatures," in Proc. of the Work-
shop on the Interaction between Operating Systems and Computer
Architecture, in conjunction with the 35th International Symposium on
Computer Architecture (Beijing, China, June 21-25, 2008). WIOSCA
’08.

[19] J. Saez, M. Prieto, A. Fedorova, and S. Blagodurov, "A Comprehen-
sive Scheduler for Asymmetric Multicore Processors," in Proc. of the
5th ACM European Conference on Computer Systems (EuroSys) 2010,
2010.

[20] T. Li, D. Baumberger, and D. A. Koufaty et al, "Efficient Operating
System Scheduling for Performance-Asymmetric Multi-Core Archi-
tectures,"In Proc. of SC ’07, pp. 1-11, 2007.

[21] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, "Modeling Virtual Ma-
chine Performance: Challenges and Approaches," Intel Corporation,
2009.

[22] http://lxr.xensource.com/lxr/source.

