
Whom to trust? –
Generating WS-Security Policies based on Assurance Information

Ivonne Thomas

Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam, Germany

ivonne.thomas@hpi.uni-potsdam.de

Robert Warschofsky

Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam, Germany

robert.warschofsky@hpi.uni-potsdam.de

Christoph Meinel

Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam, Germany

meinel@hpi.uni-potsdam.de

Abstract—As input for authorization decisions as well as
to offer personalized services, service providers often require
information about their users’ identity attributes. In open
identity management systems, these identity attributes are not
necessarily managed by the service providers themselves, but
by independent identity providers. Users might be required to
aggregate identity attributes from multiple identity providers
in order to meet a service’s needs. On the other hand service
providers might also have certain requirements concerning
their confidence in these attributes and face the problem
of choosing one among multiple identity providers that can
possibly assert the same attributes, but with different trust
qualities.

In this paper, we present an architecture to generate service
policies using assurance information about available identity
providers. Our logic-based attribute assurance library, called
IdentityTrust, allows the configuration of a knowledge base
reflecting a service provider’s knowledge about remote identity
providers. Service providers can state their trust requirements
concerning technical and organizational details of identity
providers and their ability to assert identity attributes. A
reasoning engine finds suitable (combinations of) identity
providers, which serve as input for our policy framework that
generates corresponding policies using the WS-Security policy
format.

Keywords-Identity and Attribute Assurance, Identity Feder-
ation, Trust

I. INTRODUCTION

In open environments such as Service-oriented architec-

tures or the Web, participants as users, service providers

and service consumer often do not know each other, but

nevertheless require information from each other to perform

meaningful transactions. Open identity management models

have been designed to specifically address these needs.

Identity providers are at the heart of these models and

are set up by organizations and companies world-wide to

share identity information in a controlled manner across

organizational borders.

Naturally, these identity providers hold different sets of

users’ identity attributes with possibly different trust quali-

ties. Companies, for example, might provide security token

services for their employees to collaborate more effectively

with partners. Such security token services that are offered

by organizations can keep track of users in a much better

way than identity providers for the web, which do not restrict

their service to a specific group of people. In fact, with

the latter ones often the registration of users takes place

online without any verification. Nevertheless, both kinds of

identity providers are useful and it depends on the intended

transaction and its trust requirements which one is the best

to be used.

Policies that are deployed with a service announce the

trust requirements a service has and are essential to commu-

nicate with clients. With regard to identities, policies usually

state required attributes (claims) as well as trusted identity

providers the service accepts security tokens from.

In order to choose the right identity provider(s) for a given

transaction, identity assurance is a major consideration.

Identity assurance denotes the degree of confidence a service

provider can have in the belief that a user’s identity in the

digital world actually matches with his real-life identity.

Unfortunately, this confidence depends on many factors.

Basically the whole process, technologies, protections, in-

frastructure and other safeguards in place at a remote identity

provider, on which the provider’s assertions are based, need

to be taken into consideration.

In order to ease this process, we developed an attribute

assurance library, called IdentityTrust, that allows to reflect

these differences of identity providers. In particular, our

framework can be used to describe for each identity provider

not only whether it is trusted or not, but also which of the

attributes that an identity provider holds are verified.

In this paper, we present an architecture that uses this

library to generate policies. The benefit is, that a policy

administrator can state requirements for attributes and iden-

tity providers with demands for a certain assurance level,

which are automatically resolved to suitable (combinations

of) identity providers and corresponding policy alternatives.

The rest of the paper is structured as follows. The

following section describes a small motivating scenario

that highlights our vision. Afterwards, Section III considers

related work in the field of identity assurance. Section IV

describes theoretical concepts before Section V describes

2011 Ninth IEEE European Conference on Web Services

978-0-7695-4536-3/11 $26.00 © 2011 IEEE

DOI 10.1109/ECOWS.2011.29

65

Identity Provider

Potsdam
University

trusted

isStudent verified: issuer-controlled

name unverified: user entered

address unverified: user entered

Identity Provider

federal eID
Service

highly trusted

name verified by eID

address verified by eID

birthday verified by eID

Identity Provider

Berliner
Bank

highly trusted

account info verified: issuer-controlled

name verified by In-Person Proofing

address

Relying Party

Travel
Service

name verified

address verified

account info verified: issuer-controlled

isStudent verified: issuer-controlled

same
 federation

well known authority

underlying
contract

requires:

asserts:

asserts:

asserts

Legend:

Organisational
Trust

Trust
Reason

< role >

< Common
Name >

< Identity Provider
Assessment >

< Attribute
Name >

< Attribute Verification
Context >

asserts

Figure 1. Vision of a scenario with multiple identity providers issuing
identity attributes with different qualities of trust.

our architecture to generate policies from trust requirements

that involve identity assurance aspects. Finally, Section VI

concludes the paper.

II. MOTIVATING SCENARIO

Our vision is an open world, in which identity providers

are commonplace and users can choose freely between them

to manage their identity information and to send it to service

providers that require this information. As service providers

can have widely varying requirements for identity attributes

and their quality, users face the task to choose among many

identity providers the one(s) that match with the service

providers’ needs.

In our vision, which is illustrated in Figure 1, each identity

provider holds a set of attributes with possibly different

qualities of trust. A bank could for example reliably assert

a user’s payment details while a university could assert

whether a user is a student (cf. Fig.1: verified attributes).

Also, with regard to the recent launch of electronic ID cards

in various countries, an identity provider, which has been

approved to access the users’ electronic ID cards, can assert

reliably attributes such as name, address or date of birth (cf.

Fig.1 “verified by eID”).

Service providers on the other side take the role of the

relying party. Depending on the intended transaction, a

service provider might require different degrees of assurance

of a user’s identity and its attributes. In our use case, which

is used to illustrate our concepts throughout this paper, the

relying party is a travel agency that offers various services on

the internet. One of those services is a flight booking service,

allowing a client application to make a flight booking. In or-

der to do so, the booking service requires identity attributes

such as name and address to issue the electronic flight ticket.

Furthermore, if the user can prove that s/he is a student, 10 %

is taken off the ticket price. Also, valid payment details are

required to guarantee the booking. Regarding the confidence

in the required attributes, we assume the following: For

name and address any identity provider who verifies this

data against an authoritative document is accepted by the

service provider; whether the user is a student, can only be

asserted by its university and finally for the payment details

(account info), we assume, that the service provider accepts

only identity providers that are part of the federation it is

affiliated with, and that have verified their users’ payment

details.

Given such a list of trust requirements, this paper shows

how we can derive policy statements that are expressible

using existing policy web service standards, in particular

WS-Policy[1] and WS-SecurityPolicy[2].

III. RELATED WORK

The problem of identity assurance has been addressed

from researchers and governments and international orga-

nizations alike.

A. Identity Assurance Frameworks

Several initiatives around the world have defined identity

assurance frameworks with the aim to unify and standardize

the perception of assurance into a digital identity. Among

them are government initiatives (cf. for example UK Of-

fice of the e-Envoy [3], NISTs Special Publication 800-63

“Electronic Authentication Guideline” [4], etc.), as well as

– in particular in recent years – also efforts from industry

and the educational sector. One popular example is the In-

Common Identity Assurance Assessment Framework [5] that

is developed by the InCommon initiative [6], a federation

of companies, universities and government organizations.

The framework defines two different trust levels: Bronze
and Silver. The Bronze level provides reasonable assurance

that the same person is authenticating on subsequent visits.

The Silver level builds upon the Bronze level requirements

and demands for example stronger credential technologies,

individual identity proofing as well as certain requirements

to secure the business and IT security management processes

that manage the digital identities. The Silver level is intended

for medium risk transactions that require individual user

accountability.

Compared to our approach, that provides assurance on

the granularity of identity attributes, existing assurance

frameworks mostly refer to the identity as a whole, and

do not refer to trust requirements of specific attributes. It

is for example not possible to distinguish between self-

asserted attributes an identity provider might manage besides

attributes that were verified. Also, using existing assurance

frameworks, it is hard to reflect possible changes of a user’s

identity trust level over time. As identity proofing processes

are cost-intensive and time-consuming due to the effort

required to verify a users identity attributes, a verification

66

of an attribute might not be desired as long as a user is not

involved in critical transactions.

B. Academic Approaches

Mohan et al. [8] provide a framework, called At-

tributeTrust, for evaluating trust in aggregated attributes.

Attributes are provided by trusted attribute providers. Trust

in these attribute providers in turn is calculated by using a

reputation system model. In their approach, service providers

express their confidence in other entities to supply trusted

attributes. After each successfully completed transaction,

service providers are asked to provide feedback for attribute

providers. Over time, chains of confidence are formed be-

tween service providers and attribute providers. Compared

to our approach, AttributeTrust builds up a global graph

by aggregating feedback of multiple parties to express the

confidence in other entities to assert trusted attributes. For

this reason, as opposed to our work, individual assessments,

based for example on the fact that a relying party has a

contractual relationship to an attribute provider, are hard to

express. Also, Mohan et al. do not differentiate between trust

in attributes and trust in the attribute provider itself.

Work regarding trust levels for attributes has also been

conducted by Chadwick et al. in [9]. Chadwick et al.

build on NIST’s [4] concept of assurance levels. Similar

to our work, they propose to have separate metrics for

identity proofing processes (expressed in the Registration

LOA) and the authentication of a subject (expressed in the

Authentication LOA). Authentication LOA and Registration

LOA are combined to a Session LOA and sent in each

assertion from an identity provider to a service provider.

Compared to this, in our work, we assign trust levels not

only to the registration and authentication process, but to

individual attributes. For this purpose, we define verification

context classes (cf. [7]) in a hierarchical manner to express

details on the verification of attributes at an identity provider.

Our motivation is to provide more choices for a relying party

to express its demands and for identity providers to express

their offers.

In her PhD thesis, Bharghav-Spantzel [11] establishes the

notion of two types of assurance, namely validity assur-

ance and ownership assurance. Validity assurance refers to

the correctness of information while ownership assurance

refers to the confidence that a claim actually belongs to

a Subject. Her work is part of the VeryIDX [12] identity

management system that fosters anonymisation techniques

such as the Zero-knowledge proof of knowledge (ZKPK)
protocol to preserve the users’ privacy. Assurance levels are

used to describe the ownership and consistency of identity

records. Closely related with this work, is an approach

for a quantitative definition of assurance levels for digital

identities by Yong and Bertino [13]. In their paper, the

authors take additional identity information as affiliation

and social background into account in order to assess the

assurance of identity records.

IV. GENERATING POLICIES BASED ON ASSURANCE

INFORMATION

Looking at the process of policy definition from the iden-

tity management point of view, the resulting WS-Security

policy document states required claim types, token types as

well as accepted issuers (if there are specific ones). In our

research, we aim at supporting this policy definition process

by resolving more general trust requirements concerning

identity providers and attributes to concrete policy alterna-

tives. Examples include contractual relations or federation

affiliations, the verification of attributes as well as details

about the registration of users. The foundation is provided

by our attribute assurance library that allows a) to define

a common assurance knowledge base and b) to reason

over this knowledge base based on a given query. The

output is a list of identity providers or combinations of

identity providers matching the query. This list serves as

input to create policy alternatives based on our policy model

described in Section IV-B which can be translated directly

to the WS-Security format.

A. Underlying Assurance Model

Our attribute assurance model consists of certain concepts

such as identity providers I, attribute types T , verification

context classes V , etc. as well as relations among them and

properties that apply in particular to the concept of identity

providers as for example isFederationPartner(i) = true for

i ∈ I.

The whole attribute assurance library is based on predicate

logic, in particular on Horn clauses, as we found it to be a

well-suited way to express facts, rules, and queries about

identity providers, their trust relations, and security mecha-

nisms in place. Facts are definite horn clauses consisting of

exactly one positive literal, therefore exactly one predicate

p. Rules are horn clauses consisting of a disjunction of one

positive and at least one negative literal. They are usually

written as implications:

p1 ← p2 ∧ · · · ∧ pn.

p1 is called the head of the rule and p2∧· · ·∧pn is called the

body of the rule. Facts and rules form together the knowledge
base. Queries can be formulated in order to reason over the

knowledge base. A query is a conjunction of positive literals.

It has the form

p1 ∧ p2 ∧ · · · ∧ pn.

Knowledge Representation: All assurance knowledge

is presented as facts and rules and stored in a knowledge

base. Both, a centralized knowledge base as well as multiple

decentralized knowledge bases are possible. A centralized

knowledge base has the advantage that it contains the

67

aggregated knowledge of all participants. However, often it

is not clear who can take the role of the trusted holder of the

database. In the decentralized setting, each knowledge base

reflects the subjective assessment of the holder, which might

not be as complete as a centralized solution, but maybe more

suitable in a decentralized environment. Putting it in a formal

way:

• A knowledge base KE is a set of facts F that are trusted

by the one(s) relying on this knowledge base: KE =
{j|j ∈ F∧j is trusted by all e ∈ E} ⊆ F . A knowledge

base can be shared by multiple participants (entities) E ,

that is Ke1,..,en
and e1, .., en ∈ E . It can also belong to

a single entity, such as a single relying party: Kr for

r ∈ R ⊆ E .

Facts and rules are predicates. The IdentityTrust library

supports a number of pre-defined predicates as well as the

definition of custom predicates:

Let I be a set of identity providers, T be a set of attribute

types,

• Assert : I �→ 2T denotes that an identity provider is

able to assert certain user attributes of a certain attribute

type t ∈ T , e.g. Assert (“Potsdam University”) =

{“isStudent”, “name”, “address”}. The corresponding

predicate Assert(i1, t1) evaluates to true if i1 ∈ I
asserts attributes of type t1 ∈ T .

In order to characterize the verification of an attribute, verifi-

cation context classes can be defined. The idea of verification

context classes is to describe general verification schemes

that are applicable to a set of attributes as described in

Thomas et al. [7]. Examples include the verification based on

a certificate (e.g. for email addresses) or on an authoritative

document (e.g. name and address) both electronically or in-

person. Various verification classes can also be subsumed

under another verification class. Let V be a set of verification

classes:

• subClassOf : V �→ 2V denotes that v1 ∈ V
is a sub class of another verification context class

or of multiple other verification classes. For exam-

ple subClassOf(“checked by InPerson Proofing”) =
{“verified”}

• Applies ⊆ (V × T) denotes that a verification class is

applicable to an attribute type

• AttrTrust : (I ×T) �→ V where (I ×T) ∈ Assert maps

attributes hold by an identity provider to a verification

class.

Furthermore, each identity provider I is characterized by a

set of properties P .

• A property P is a triple 〈n, pr, v〉, where n ∈ N is

a property name, pr ∈ Prn is a binary predicate and

v ∈ Vn a value from the set of possible values for n.

• The following predicate symbols are considered: Pr =
{=,
=, <,>,≥,≤}. Prn ⊆ Pr is the set of predicates

that is applicable to a given n ∈ N .

• hasProperty ⊆ (P ×I) maps a property to an identity

provider.

For example, in order to express the requirement, that the

identity provider should be run by a university and that this

university should be certified by an InCommon [14] trust

level, we define the following identity provider properties:

N = {n1 = isUniversityIP, n2 = hasInCommonTrustlevel}

VisUniversityIP = B

VhasInCommonTrustlevel = {“none”, “Bronze”, “Silver”}

PrisUniversityIP = {=,
=}
PrhasInCommonTrustlevel = {=,
=, <,>,≥,≤}

Rules: Rules are basically derived facts, and can con-

tain all pre-defined as well as custom predicates. A relying

party could for example use a rule to define that an identity

provider is trusted, if it has an InCommon [14] trust level of

at least Bronze and its place of venue in Germany. Let N =
{n1 = placeOfVenue, n2 = hasInCommonTrustlevel} be

defined properties to characterize available identity providers

i ∈ I with reasonable values V . This would result in the

following rule:

• isTrusted (i)← hasInCommonTrustlevel(i) ≤ Bronze∧
placeOfVenue(i) = Germany
Queries: Queries are used to reason over the knowledge

base. As said above, queries have the form p1∧p2∧· · ·∧pn.

To find for example, all identity providers, that can assert

the attributes name and address in a verified manner, we

formulate the query: AttrTrust(i, name) = “verified” ∧
AttrTrust(i, address) = “verified”

B. Our Policy Model

To simplify the creation of service security policies a

platform-independent policy model is described in [15]. This

model serves as an abstraction layer for security policy

languages, simplifies the handling of security policies, and

enables the generation of security configurations in different

policy languages.

A policy in this platform-independent policy model con-

sists of several Policy Alternatives that contain a list of

Security Constraints. In general, a Security Constraint de-

scribes a requirement to fulfill a Security Goal – such as

confidentiality, integrity, or authentication – and contains

information describing what has to be secured and which

security mechanisms must be used.

A Credential is, as shown in Figure 2, used to describe

parts of a digital identity. Therefore, a Credential contains

a set of Claims. A Claim is “a statement made about a

client, service or other resource (e.g. name, identity, key,

group, privilege, capability, etc.)”[16]. It is required that

for each Claim the corresponding information is added

68

to the Credential in the secured message. Additionally, a

Credential can contain Authentication Information that can

be used to verify the authenticity of the Credential.

CredentialClaim

Authentication
Information

Information

Data Transfer
Object

Issuer

Credential Constraints

Credential Type

Subject

Figure 2. Digital Identity Meta Model

Each Credential also has a Credential Type that indi-

cates its type (e.g Username Token, SAML Assertions, or

X.509 Certificate). In addition, Credentials can have optional

Credential Constraints that are used to further define the

credential depending on its type. For example, it can be

defined that a Credential of the type Username Token has

to contain the users’ password in a hashed form instead of

plain text. Finally, each Credential has an issuer, identified

by a unique URI. Depending on that issuer a receiver of the

credential can decide whether the credential is trustworthy.

The Subject element represents the subject of the Credential.
For instance, the subject of a Credential of the type User-
name Token would be the user identified by the username.

An example is shown in Figure 3. The User Authentication
Constraint contains a Credential which requires that the

sender of a message adds information about his identity to

the message. Therefore, this constraint references a list of

required claims and an issuer of the identity information.

Figure 3. Policy Model Exmaple

V. ARCHITECTURE

In this section, we present our architecture to generate

WS-Security policies from trust requirements that contain

assurance needs. We illustrate by means of our motivating

scenario from Section II how our attribute assurance library

Service Provider

Administrator

C
on
fig

ur
at

io
n

A
P

I

Assurance Knowledge
Base

Reasoning and Query API

Client

A
ttr

ib
ut

e
A

ss
ur

an
ce

Li

br
ar

y
(I

de
nt

ity
Tr

us
t)

Token
Processing
Component

Policy
Decision

Point

R

SOAP

WS-Policy

R

(Policy Enforcement Point)

Service

Policy Generator

Identity
ProviderIdentity

Provider

R

S
O

A
P

Policy Model Creator
Service
Require-
ments

Figure 4. Architecture Overview.

can be used to define demands of services for identity at-

tributes and match them with the offers of identity providers.

The result of our matchmaking process is a list of suitable

(combinations of) identity providers that is translated by

the Policy Generator (cf. Figure 4) to a policy document

according to WS-Policy [1] that can be deployed with the

service.

Figure 4 shows the architecture behind this process. There

are three different roles involved in the exchange of identity

information, namely the identity provider, the client and the

relying party that provides the service. Generating policies

and deploying them takes place at the relying party site.

As can be seen from the figure, the relying party uses a

domain-central knowledge base that is configured by an

administrator or owner of the domain via the Configuration
API provided by the IdentityTrust library. This knowledge

base holds all the relying party’s knowledge about other

domains and their identity services.

The Policy Model Creator creates a platform-independent

policy model as described in Section IV-B. The policy model

retrieves as input the defined service requirements that are

then transformed to policy alternatives by a matchmaking

process that matches requirements for attribute claims with

suitable identity providers by querying the knowledge base

via the Reasoning and Query API.
The Policy Generator gets the platform-independent pol-

icy model and translates it to a specific policy language. The

resulting document can be deployed directly at the service.

During service request, the received token is intercepted

69

and processed by the Token Processing Component and

matched with the deployed policy document. Upon success-

ful validation, access is granted to the Service.

A. Defining the knowledge base

The first step in setting up a knowledge base for a domain

is to define the vocabulary that can be used in facts, rules

and queries. As described in Section IV-A, a number of pre-

defined predicates form a standard vocabulary to describe

known identity providers, the claims they can issue as secu-

rity tokens as well as the verification model that has been

used. Beyond that, additional properties of identity providers

can be defined, in particular concerning organizational and

business factors, their technical infrastructure or the type of

tokens they can assert. Typically, the owner of the domain

decides which assessment criteria he considers. This can

happen with the help of existing criteria catalogues, that are

publicly available. InCommon for example provides a very

comprehensive catalogue of assessment criteria that covers

business, policy and operational factors, identity registration,

credential technologies, identity information management as

well as security management criteria. One option is to rely

on such standardized assessments and define predicates as

hasInCommonTrustlevel = {“none” | “Bronze” | “Silver” }
or isISOCertified = {true | false } and add corresponding

facts as hasInCommonTrustlevel(“Potsdam University IP”,

Bronze) = true to the local knowledge base.

Besides such aggregated assessments, another option is to

define the vocabulary in a more fine grained and technical

way. Again, existing frameworks can serve as a base to find

the right terminology. Taking for example the used electronic

credential technology, InCommon defines the following as-

sessment criteria: 1.) whether the credential uniquely identi-

fies a Subject or 2.) the resistance of shared secrets to guess-

ing. If a policy administrator wants to include these criteria

in its trust decisions, s/he can easily define corresponding

predicates as UniqueCredentialIdentifier={true | false} and

ResistanceToGuessingSharedSecret={true | false}, and use

them to create facts, rules and queries about other identity

providers.

And finally, it might also make sense to add domain-

specific properties to the vocabulary. For example, predicates

as isInTheSameFederation or isBusinessPartner allow to

tailor the knowledge base according to the current trust

relationships and contracts of the owning company or or-

ganization.

B. Defining Service Requirements

Services usually have varying trust requirements depend-

ing on the risk that is associated with a transaction. A risk

analysis reveals the required level of trust that serves as

basis for the owner or administrator of the service to define

an appropriate policy.

Table I
EXAMPLE REQUIREMENTS OF THE TRAVEL SERVICE

Attribute (Claim) Assurance Requirements

name AttrTrust (i, name) = “verified”

address AttrTrust (i, address) = “verified”

account info AttrTrust (i, account info) = “issuer-controlled”
∧ FederationPartner(i) = true

isStudent AttrTrust (i, isStudent) = “issuer-controlled”
∧ isUniversityIP(i) = true

As described in [15], statements and requirements ap-

pearing in security polices can be categorized into basic

correlation statements, security constraints expressions and

digital identity expressions. While security constraint expres-

sions define requirements about the protection of messages,

digital identity expressions define requirements about needed

verifications of the requester’s identity. Verifications of the

requester’s identity can be expressed using the defined

vocabulary of the knowledge base. If we take for example

our motivating scenario in Section II, Table I shows the

requirements for the Travel Service.

C. Policy Generation

Once defined, these requirements are used by the Pol-
icy Model Creator to create a platform-independent policy

model that can be translated directly to the WS-Security

policy format. As we are dealing with identity assurance,

we are mainly focussing on requirements concerning the

identity of users. Nevertheless, the resulting independent

policy model can also contain additional requirements.

Querying and reasoning over the knowledge base: Our

goal in this step is to formulate policy alternatives with User
Authentication Constraints as shown in Figure 3 of Section

IV-B. In terms of our assurance model, this means, we need

to find for each required attribute suitable identity providers

that match with our trust requirements. In order to do so,

the Policy Model Creator creates queries over the knowledge

base.

Our architecture is mainly implemented using Java-based

frameworks; and also, the interface of the Reasoning and
Query API of our IdentityTrust library is written in Java.

A Query - object is created by the Policy Model Creator
for each query to the knowledge base. Internally, our Iden-

tityTrust library uses a Prolog engine to reason over the

knowledge base and translates the query to a corresponding

Prolog query, that is send to the Prolog engine. To give an

example, the Prolog query to retrieve identity providers for

the account information attribute is the following:

attrTrust(I, ’issuer-controlled’,
’account info’),

federationPartner(I,true)

The corresponding result set in Prolog is:

70

1: X ← Set of PolicyAlternatives

2: I ← Hashmap containing for each claim a set of IPs

3:

4: invert I to a Hashmap C containing for each IP a set

of corresponding claims

5:

6: repeat
7: Cmax ← set Cx ∈ C where max(#Cx)

8: for all claim c in set Cmax do
9: create policy alternative and add to X

10: remove c from all sets in C
11: end for
12: until all sets in C = {}

Figure 5. Algorithm to generate policy alternatives.

I=’Berliner Bank IP’

Hence, the result of all queries is a set of sets

of identity providers over all attributes: IResult =
{Iaccount info, Iname, IisStudent, ...}. The Policy Model Creator
uses a simple basic algorithm to extract from all result sets a

combination of identity provider such that all required claims

are resolved. This algorithm is shown in Figure 5.

WS-SecurityPolicy Generation based on our policy
model: In order to create a WS-SecurityPolicy instance, the

resulting combination of identity providers and the claims

they will be requested for, have to be transformed into

alternatives of our policy model. Therefore, for each identity

provider in the combination, a policy model Credential is

created which contains the claims and the identity provider

as Issuer. An example of such a Credential is shown in

Figure 6. If there are multiple combinations identified by the

Policy Model Creator, for each combination a policy model

Alternative is created and the corresponding Credentials
are added to this alternative. Finally, the policy model

is transformed to a WS-SecurityPolicy instance using the

algorithm described in [15].

After the application of this algorithm, for each Credential
a token in the <SupportingToken> section of the WS-

SecurityPolicy instance has been created, similar to the

<SamlToken>-element in Figure 6. If there are any other

security requirements for this service, like the need to

encrypt the messages to the service, they could also be stated

using the policy model and would be transformed to the

resulting WS-SecurityPolicy.

D. Calling the service

When calling the service, a service client needs to be

able to deal with multiple policy alternatives in WS-Policy

as well as requests for multiple issued tokens. While the

specification supports multiple tokens, we experienced that

the same does not necessarily hold for the implementations

of the standards. In our use case, we use the Metro Web

<sp:SupportingTokens>
<wsp:Policy>
<sp:SamlToken>
<sp:IssuerName>
sts.trusted-bank.com

</sp:IssuerName>
<wst:Claims Dialect="...">
<ic:ClaimType>sts.trusted-bank.com/

claims/creditCardNumber</
ic:ClaimType>

<ic:ClaimType>sts.trusted-bank.com/
claims/creditCardOwner</
ic:ClaimType>

<ic:ClaimType>sts.trusted-bank.com/
claims/creditCardExpireDate</
ic:ClaimType>

</wst:Claims>
</sp:SamlToken>

</wsp:Policy>
</sp:SupportingTokens>

(Credential)

(Issuer)
sts.trusted-bank.com

(Credential Type)
 SAML

(Client Authentication
Constraint)

(Claims)
(Claim)

sts.trusted-bank.com/claims/
creditCardNumber

(Claim)
sts.trusted-bank.com/claims/

creditCardOwner
(Claim)

sts.trusted-bank.com/claims/
creditCardExpireDate

��1 �1
��2

�2

�2

��3

�3

��4

�4

Figure 6. Transformation of a policy model Credential into a token in a
WS-SecurityPolicy instance.

Service Stack [17]. While resolving a token request for a

single token from one identity provider is not a problem,

we needed to modify the Metro implementation slightly in

order to allow request for two security tokens from different

identity providers (two <IssuedToken>-elements) that

are aggregated at the client side. In this case, the client

reads the policy from our service, and sends a “request-

for-security-token” first to the first identity provider and

afterwards to the second one. Both received security token

(SAML assertions) are added to the header of the SOAP

message sent to the service.

The other case, that is to enable a client to deal with multi-

ple policy alternatives (e.g. get a token asserting the address

from either identity provider A or B), is not supported by

Metro. Therefore, we implemented this logic directly in the

client. Here, the client reads the policy from the service

and tries to receive the required token(s) from the identity

provider(s). If any of the request fails, the client starts over

again using the next policy alternative. Upon successful

retrieval of the required tokens, a request is send to the

service including the security token(s) in its header.

VI. CONCLUSION

Past experiences with open identity management have

shown that identity assurance is a critical factor for accepting

information from another party outside one’s own trust

domain. Only if a relying party can assess the degree of

confidence it can put in the assertions made by someone

else, it will be able to accept this information and to use

it in its own processes. For this reason, identity assurance

plays an important role, in particular, when service policies

are defined by policy administrators in the policy definition

phase.

In this paper, we ease the process of defining a policy

for a web service by providing a framework for identity

assurance that allows the owner of a domain to a) describe

its knowledge about partner and foreign identity providers

in a knowledge base, b) to define service requirements

that include assurance demands such as the verification of

71

attributes and c) to use the defined knowledge base to find

suitable identity providers that fulfill these requirements.

The approach is implemented in a Java-Prolog based library,

called IdentityTrust, and can be used in various scenarios.

In this paper, we present an architecture that uses the

IdentityTrust library to generate WS-Security policies. The

benefit of our architecture that has been implemented as

a proof-of-concept is that the process of choosing iden-

tity providers according to certain assurance requirements

is integrated in the policy definition process. Furthermore

assurance parameters can be chosen in a more fine granular

way.

REFERENCES

[1] Asir S. Vedamuthu et al.: Web Services Policy 1.5 - Frame-
work, World Wide Web Consortium Recommendation, Sept.
2007.

[2] Anthony Nadalin et al.: WS-SecurityPolicy 1.2, OASIS Stan-
dard, July 2007.

[3] Office of the e-Envoy, UK: Registration and Authentication
- e-Government Strategy Framework Policy and Guidelines,
2002.

[4] National Institute of Standards and Technology: Electronic
Authentication Guideline, 2006.

[5] InCommon Federation: Identity Assurance Assessment Frame-
work, 2010,
http: //www.incommonfederation.org/docs/assurance/InCIAAF
1.0Final.pdf

[6] InCommon Federation., http://www.incommonfederation.org/

[7] Ivonne Thomas, Christoph Meinel: Identity Assurance In Open
Networks In Strategic and Practical Approaches for Informa-
tion Security Governance: Technologies and Applied Solution,
IGI Global, 2011.

[8] Mohan and Blough: AttributeTrust - A Framework for Evalu-
ating Trust in Aggregated Attributes via a Reputation System.
Sixth Annual Conference on Privacy, Security and Trust, pp.
201-212, 2008.

[9] Chadwick and Inman: Attribute aggregation in federated iden-
tity management. Computer (2009) vol. 42 (5) pp. 33-40.

[10] National Institute of Standards and Technology,
http://www.nist.gov

[11] Bhargav-Spantzel, A.: Protocols and Systems for Privacy
Preserving Protection of Digital Identity, PhD Thesis (2007).
http://www.gradschool.purdue.edu/downloads/ETDForm9-
E2.pdf, 1-222.

[12] Paci, F., Bertino, E., Kerr, S., Squicciarini, A., Woo, J. (2009).
An Overview of VeryIDX - A Privacy-Preserving Digital
Identity Management System for Mobile Devices. Journal of
Software, 4(7), 1-11. doi:10.4304/jsw.4.7.696-706

[13] Yong, J., Bertino, E.: Digital identity enrolment and assurance
support for VeryIDX. Computer Supported Cooperative Work
in Design (CSCWD), 2010 14th International Conference on,
734-739. doi:10.1109/CSCWD.2010.5471880

[14] InCommon Federation: Identity Assurance Profiles Bronze
and Silver, 2010.

[15] Robert Warschofsky, Micheal Menzel, Christoph Meinel:
Transformation and Aggregation of Web Service Security Re-
quirements, In ECOWS’10: Proceedings of the 8th IEEE
European Conference on Web Services, pp 43-50, 2010

[16] WS-Trust 1.3, OASIS Std., 19th Mar. 2007. [Online]
Available: http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-
trust.pdf

[17] Project Metro 2007. [Online] Available:
http://metro.java.net/discover/

72

