
An attribute assurance framework to define and match trust in identity attributes

Ivonne Thomas

Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam, Germany

ivonne.thomas@hpi.uni-potsdam.de

Christoph Meinel

Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam, Germany

meinel@hpi.uni-potsdam.de

Abstract—Identity federation denotes a concept for the
controlled sharing of user authentication and user attributes
between independent trust domains. Using WS-Federation,
service providers and identity providers can set up a Circle of
Trust, a so called federation, in which each member is willing
to trust on assertions made by another partner. However, if
a member has to rely on information received from a foreign
source, the need for assurance that the information is correct
is a natural requirement prior to using it. Identity assurance
frameworks exist that can be used to assess the trustworthiness
of identity providers. The result of this assessment is a level of
trust, that can be assigned to an identity provider. However,
existing approaches for evaluating identity assurance do not
allow to define trust levels for individual attributes.

In our trust model, we consider both: (a) trust in an identity
provider as the issuer of assertions and (b) trust in single
attributes that an identity provider manages. In this paper, we
show how our approach that we implemented in a logic-based
framework can be used in web service scenarios to provide
trust information on the level of identity attributes, especially
about the verification process, and to match trust requirements
of attributes during request processing.

Keywords-Identity and Attribute Assurance, Identity Feder-
ation, Trust

I. INTRODUCTION

The open and decentralized nature of Service-oriented

Architectures demands for new security concepts that take

these characteristics into account. In the field of identity

management, open identity management models ([1], [2])

such as the decentralized or federated identity management

emerged to specifically address the needs of sharing identity

information across multiple security domains. Designated

entities to offer identity services, called identity providers
(IPs), are at the heart of these new models. Identity providers

perform the task of authenticating users as well as managing

their identity data. Service providers can request identity

data from an identity provider and use it for example in

their access control decisions.

A necessity to share identity information across security

domains is the willingness of involved parties to trust on

information that is received from a foreign domain. In

order to establish this trust, a relying party ought to know

how the information received from an identity provider has

been gathered, stored and processed inside the organization

offering the identity service. In fact, the whole process, tech-

nologies, protections, infrastructure and other safeguards in

place, on which assertions are based influence the confidence

a relying party such as a service provider can put in received

assertions - reaching from organizational aspects such as the

legal situation to technical details such as the used token type

to transfer identity information from the identity service to

a requesting party.

Identity assurance frameworks have been developed by

initiatives and organizations around the world with the goal

to align different trust requirements by defining a common,

standardized set of trust criteria to assess an identity provider

and its systems. Often these trust criteria are clustered and

assigned a level of trust or in case of digital identities a level

of assurance (LoA). A level of trust or level of assurance

(LoA) reflects the degree of confidence that someone can

assign to the assertions made by another party, such as

an identity provider, with respect to the users identity

information.

Using current identity assurance frameworks, identity

providers are assigned a level of trust according to the

criteria they fulfill. However, looking at the online world, we

find very varying trust requirements to use a service. Often

it does not matter whether our online identity matches with

our real-life identity as long as it always the same identity

we use to interact with a web site or service. On the other

side, as soon as a risk is involved in transactions, a service

will require the assurance that an online user matches a real-

life identity in order to held him/ her liable in case anything

bad happens. This distinction between verified identities and

identities containing self-asserted attributes is not in the

scope of current assurance frameworks. Also, using existing

assurance frameworks, it is hard to reflect possible changes

of a user’s identity trust level over time. As identity proofing

processes are cost-intensive and time-consuming due to the

effort required to verify identity attributes, a verification of

an attribute might not be desired as long as a user is not

involved in transactions that require it. Therefore a user

might decide to register with an identity provider without

proper identity proofing, having for example his/ her name

2011 IEEE International Conference on Web Services

978-0-7695-4463-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ICWS.2011.80

580

self-asserted and getting involved in the identity proofing

process only upon concrete demand. This requires a different

trust level per user and does not allow to rate an identity

provider as a whole.

In Thomas et al. [3], we argued that in order to reflect

these differences, it is not sufficient to assign a single trust

level to an identity provider. Instead, additional trust levels

for attributes are needed in order to reflect the assurance

quality of different digital identities hold by an identity

provider. In [4], we propose a two layered trust model that

considers both: the overall trust into an identity provider and

the trust into the identity of a user.

In this paper, we present our framework based on our

two-layered trust model, that allows to represent trust in an

identity provider as well as trust in the identity attributes.

We further defined general verification classes as a possible

way to describe the verification of attributes in our model.

In our framework we use an approach based on Horn logic,

which allows us to easily reason over considered entities

and its trust characteristics. In this paper, we present this

framework and give two use cases to show its applicability in

different scenarios. In particular, at the identity provider side,

we match requests for attributes with a particular verification

need with the available attributes in the provider. At the

service provider side, we use our framework during policy

creation to find suitable identity providers that match the

given trust requirements.

The rest of paper is structured as follows. The following

section describes a small motivating scenario that highlights

our vision, that is addressed by our research. Afterwards,

Section II considers related work in the field of identity

assurance. Section III presents our attribute assurance frame-

work including a formalization of our model and details

about its implementation. Section IV describes two use

cases, in which we applied our framework. Finally, Section

V concludes the paper.

A. Motivating Scenario

Our vision is an open world, in which identity providers

are commonplace and users can choose freely between them

to manage their identity information and to issue it to service

providers that require this information. As service providers

can have very varying requirements for identity attributes

and their quality, users are facing the task to choose among

many identity providers the one(s) that match with the

service providers needs.

In our vision, which is illustrated in Figure 1, each identity

provider holds a set of attributes with possibly different

qualities of trust. A bank could for example reliably assert

a user’s payment details while a university could assert

whether a user is a student. Also, with regard to the recent

launch of electronic id cards in various countries, an identity

provider, which has been approved to access the users’

Identity Provider

University trusted

isStudent verified: issuer-controlled

name unverified: user entered

address unverified: user entered

Identity Provider

federal eID
Service

highly trusted

name verified by eID

address verified by eID

birthday verified by eID

Identity Provider

Bank highly trusted

account info verified: issuer-controlled

name verified by In-Person Proofing

address verified by independent back channel

Relying Party

Travel
Service

name verified

address verified

account info verified: issuer-controlled

isStudent verified: issuer-controlled

same
 federation

well known authority

underlying
contract

requires:

asserts:

asserts:

asserts

Legend:

Organisational
Trust

Trust
Reason

< role >

< Common
Name >

< Identity Provider
Assessment >

< Attribute
Name >

< Attribute Verification
Context >

asserts

Figure 1. Vision of a scenario with multiple identity providers issuing
identity attributes with different qualities of trust.

electronic id cards can assert reliably attributes as name,

address or date of birth.

As opposed to the identity providers, there are service

providers that need certain identity attributes of a user and

take the role of the relying party. Depending on the intended

transaction, the service provider might require different

degrees of assurance of a user’s identity and its attributes.

Current technologies as OpenID [5] or Information Card

[6] only offer the possibility to express (a) which attributes

are required and (b) whether any identity provider or a

specific one should be used. Using Web Service technologies

possibilities are a bit broader: WS-SecurityPolicy [7] allows

to state a list of required attributes per issuer (identity

provider).

In our scenario, we aim at expressing not only which

attributes are required and which identity provider(s) are

suitable to assert them, but also which trust level an issued

attribute value should have as well as which properties

should apply for the issuing identity provider. To give an

example, we want to formulate requirements such as ”The

relying party requires an attribute name from the user who

proved his name by registering in-person at a federated
identity provider.”.

II. RELATED WORK

The problem of identity assurance has been addressed

by various initiatives and organizations around the world.

At first driven by governments in various countries (cf. for

example UK Office of the e-Envoy [8], NISTs Special Pub-

lication 800-63 ”Electronic Authentication Guideline” [9],

etc.), in recent days also industry and educational institutions

joined the effort of defining identity assurance guidelines

with the goal to provide a more trusted interaction between

online partners. As a result a number of so called identity

assurance frameworks have been designed with the one

581

provided by the InCommon federation ([10], [11]) being the

most comprehensive approach among them. As said before,

identity assurance frameworks usually define a number of

trust levels that can be assigned to an identity provider.

However, trust levels for attributes are not in the scope of

current identity assurance frameworks.

Work regarding trust levels for attributes has been con-

ducted by Chadwick et al. in [12]. Chadwick et al. build

on NIST’s [13] concept of assurance levels. Similar to our

work, they propose to have separate metrics for identity

proofing processes (expressed in the Registration LOA) and

the authentication of a subject (expressed in the Authentica-

tion LOA). Authentication LOA and Registration LOA are

combined to a Session LOA and send in each assertion from

an identity provider to a service provider. Compared to this,

in our work, we assign trust levels not only to the registration

and authentication process, but to individual attributes. For

this purpose we define verification classes in a hierarchical

manner to express details on the verification of attributes

at an identity provider. Our motivation is to provide more

choices for a relying party’s policy to express its demands

and for identity providers to express their offers.

Mohan et al. [14] provide a framework, called At-

tributeTrust, for evaluating trust in aggregated attributes.

Attributes are provided by trusted attribute providers. Trust

in these attribute providers in turn is calculated by using a

reputation system model. In their approach, service provider

express their confidence in other entities to supply trusted

attributes. After each successfully completed transaction,

service providers are asked to provide feedback for attribute

providers. Over time, chains of confidence are formed be-

tween service providers and attribute providers. Compared

to our approach, AttributeTrust builds up a global graph

by aggregating feedback of multiple parties to express the

confidence in other entities to assert trusted attributes. For

this reason, as opposed to our work, individual assessments,

based for example on the fact that a relying party has a

contractual relationship to an attribute provider, are hard to

express using the AttributeTrust framework. Also, Mohan et

al. do not differentiate between trust in attributes and trust

in the attribute provider itself.

In her PhD thesis, Bharghav-Spantzel[15] establishes the

notion of two types of assurance, namely validity assurance

and ownership assurance. Validity assurance refers to the

correctness of information while ownership assurance refers

to the confidence that a claim actually belongs to a Subject.

Her work is part of the VeryIDX[16] identity management

system that fosters anonymisation techniques such as the

Zero-knowledge proof of knowledge protocol to preserve the

users’ privacy. Assurance levels are used to describe the

ownership and consistency of identity records. Compared to

our approach, Bharghav-Spantzel also suggest to consider

trust aspects of attributes more diverse and to have different

levels for the correctness of information and for the subject-

to-account mapping. In our research, we go a step further

and describe attribute assurance details on an even more

detailed level. To give an example, our assurance framework

allows not only to define different trust levels, but also to

express certain properties as part of our assurance model

such as the used verification of an attribute or whether an

identity provider is part of the same federation.

Baldwin et al. present an identity assurance framework

in [18], which clusters assurance aspects for identity trust.

The approach classifies aspects according to the identity

management lifecycle consisting of a registration phase,

the maintenance phase and a destruction step when the

digital identity is not needed any longer. As in most identity

assurance frameworks trust in attributes is only considered

during the registration phase.

III. ATTRIBUTE ASSURANCE FRAMEWORK

This section presents our attribute assurance framework

which is based on our two-layered trust model, which has

been presented in earlier work [4].

A. Organizational and Identity Trust

In our two-layered model, we distinguish between two

types of trust. First, we consider the trust in the identity

provider’s operator, basically its readiness to support and

operate a reliable operational service. This includes the legal

situation, laws and guidelines an identity provider adheres

to or the storage of user data on its internal systems. In

our model, we call this aspect organizational trust. Organi-

zational trust manifests often in federation agreements and

contracts between the involved parties.

Identity trust on the other hand as stated in [4] is mainly

characterized by factors that are subject to vary between

different digital identities of the same or different users

within an identity provider. Such factors are for example the

authentication process and the subject-to-account mapping,

as well as the trustworthiness of the subject’s attributes and

the token.

B. Formalization of our Trust Model

Our attribute assurance model consists of certain concepts

such as identity providers I, attribute types T , verifica-

tion classes V , etc. as well as relations among them and

properties that apply in particular to the concept of identity

providers as for example isFederationPartner(i) = true for

i ∈ I. In particular, let

• S be a set of service providers,

• I be a set of identity providers,

• P be a set of participants with S, I ⊆ P ,

• O be a set of organizational trust levels (identity

provider trust levels),

• A be a set of attributes,

• T be a set of attribute types and

• V be a set of attribute verification classes

582

Our model comprises the following relations:

1. Concerning attributes, attribute types and identity

providers:

• First of all, identity providers are able to assert certain

user attributes of a certain attribute type t ∈ T , that is

Assert ⊆ (I × T).
• Each attribute is assigned a type: h : A �→ T
• Applies ⊆ (V×T) denotes that an attribute verification

class is applicable to an attribute type.

• AttrTrust : (I ×T) �→ 2V whereas (I ×T) ∈ Assert
maps attributes hold by an identity provider to a set of

verification classes that are supported by the identity

provider.

2. Concerning attribute trust and attribute verification con-

texts

• Each attribute verification context is represented by an

attribute verification class v ∈ V .

• Attribute verification classes can be put in a hierarchical

structure. subClassOf : V �→ V denotes that v1 ∈ V
is a sub class of attribute verification class v2 ∈ V:

subClassOf (v1) = v2

3. Concerning organizational trust and identity providers

properties.

• Each identity provider I is characterized by a set of

properties P .

• A property P is a triple 〈n, pr, v〉, whereas n ∈ N is

a property name, pr ∈ Prn is a binary predicate and

v ∈ Vn a value from the set of possible values for n.

• The following predicate symbols are considered: Pr =
{=, �=, <, >,≥,≤}. Prn is the set of predicates that is

applicable to a given n ∈ N .

• OrgTrust ∈ N is a special property describing the

overall assessment of the trust relationship of a relying

party to an identity provider. VOrgTrust = O is the set

of possible values.

• hasProperty ⊆ (P ×I) maps a property to an identity

provider.

• Given the special property 〈OrgTrust , P r,O〉 ∈ P ,

(〈OrgTrust , P r,O〉 × I) ⊆ hasProperty denotes that

an identity provider is assigned an organizational trust

level.

Facts, rules and queries: All assurance knowledge is

presented as facts and rules, that are based on predicate

logic, in particular on Horn clauses. Facts are definite Horn

clauses consisting of exactly one positive literal, therefore

exactly one predicate p. Rules are Horn clauses consisting

of a disjunction of one positive and at least one negative

literal. They are usually written as implications:

p1 ← p2 ∧ · · · ∧ pn.

Predicates are all of the above defined relations and prop-

erties, e.g. Assert(i1, t1) evaluates to true if i1 ∈ I asserts

attributes of type t1 ∈ T .

Facts and rules form together the knowledge base.

• A knowledge base K contains a set of facts that is

trusted by the ones relying on this knowledge base:

K ⊆ F . A knowledge base can be shared by multiple

participants, that is Ke1,..,en , e1, .., en ∈ E , or belong

to a single entity, such as Kr for a relying party r ∈ R.

Queries can be formulated in order to reason over the

knowledge base. A query is a conjunction of positive literals.

It has the form

p1 ∧ p2 ∧ · · · ∧ pn.

Example: Consider a relying party r ∈ R that is

in the same federation as the identity provider i1. As an

example, the relying party could have the following facts in

its knowledge base Kr.

First, the relying party knows that identity provider i1 ∈ I
can assert attributes of type t1, t2 ∈ T Therefore,

Assert = {< i1, t1 >, < i1, t2 >} ∈ Kr.

Furthermore, V = {v1 = ”verified”, v2 =
”certificate-based”, v3 = ”unverified”} denote available

attribute verification classes to describe the attribute verifica-

tion whereas v2 denotes a concrete verification mechanism

of v1: subClassOf (v2) = v1. We assume, that the attribute

verification class v2 ∈ V is applicable to attribute type t1.

t1 could for example be the email address of a user, which

is provable by a an email certificate. We further assume that

the attribute verification classes v1 and v3 are applicable to

all attribute types. Therefore,

Applies = {< v2, t1 >, < v1, t1 >, < v1, t2 >, < v3, t1 >,

< v3, t2 >} ∈ Kr.

In our example, we assume that the identity provider i1 can

verify attributes of type t1 using the attribute verification

class v2 = ”certificate-based”. Also the other classes v1

and v3 are supported. Therefore

AttrTrust(i1, t1) = {v1, v2, v3}.
Attributes of the second attribute type t2 are always unver-

ified when managed by i1. Consequently,

AttrTrust(i1, t2) = {v3}.
In order to characterize the organizational trust

relationship, the following properties are considered

by the relying party. First, the relying party considers

whether an identity provider is in the same federation as

itself and second, the relying party considers the ICAM

trust level an identity provider is certified with. We have

N = {n1 = OrgTrust, n2 = FederationPartner} as

the possible property names with PrOrgTrust = Pr and

PrFederationPartner = {=, �=} ⊂ Pr.

VOrgTrust = O = {”ICAM Level 1”, ”ICAM Level 2”,”none”}
are the available organizational trust levels and

583

VFederationPartner = {true|false} are the possible values for

n2.

We said, that the identity provider i1 is part of a federa-

tion, therefore

FederationPartner(i1) = true.

Furthermore, i1 is certified with an ICAM trust level of 2,

therefore

OrgTrust(i1) = ICAM Level 2.

C. Implementation

We implemented our model described in the previous

section III-B as a Java-Prolog based framework that can be

included in various implementations of identity providers,

web service clients as well as web services. In summary,

our attribute assurance framework allows to

• define a global knowledge base containing supported

attribute types, supported verification classes per at-

tribute type as well as known identity providers, their

properties and trust levels. Furthermore, verification

classes of attributes can be defined in a hierarchical

order.

• assign verification classes to concrete attributes of users

• query the knowledge base for available identity

providers that can assert a given set of attributes and

verification requirements

• match a request for an attribute with a certain verifica-

tion class to the available attributes

We choose to use Prolog as a programming language as

it provides a declarative way of presenting our knowledge

base. Each Prolog program is made of facts and rules that

operate on the set of facts. We can easily add new facts

and define additional rules to match the requirements of

a given scenario. Furthermore Prolog allows us to reason

over the given set of facts while at the same time providing

us the necessary flexibility in defining these facts. As each

web service scenario can demand for different verification

classes and properties that one considers to assess an identity

provider, a framework to add assurance information to

attributes should be able to deal with this flexibility.

The core of our framework is the knowledge base con-

sisting of a set of facts, such as ”Identity provider i1 can

assert attribute a1 with a trust level v2.” and rules such as

”All identity provider within the federation are trusted”.

We provide an API to configure the knowledge base

according to the model. Once defined, multiple kinds of

queries can be formulated to the knowledge base. The

following list gives some examples:

• Find all attributes a ∈ A an identity provider i ∈ I can

assert with a trust level of v ∈ V and v = ”verified”
• Find all identity provider i ∈ I that are in a given

federation and can assert a verified attribute a = name
that has been proven by in-person registration at the

identity provider (v = in-person).

• Find all identity providers i ∈ I with a trust level of

at least 3 according to the ICAM [19] specification

of identity assurance levels that can provide a verified

student attestation a = isStudent with v = verified.

• Find a set of identity providers that can provide a ver-

ified email address issued by any identity provider and

the name and age of the user issued by an authorized
eID Service (electronic ID card).

IV. USE CASES

In this section, we show how our attribute assurance

framework described in the previous section III can be used

in web and web service based scenarios to augment open

identity management solutions with the ability to deal with

attributes of different trust qualities. In the first use case, we

focus on the identity provider side and show how we can

use our attribute assurance framework to match an incoming

request for a verified attribute with the attributes which are

available at the identity management system of the identity

provider.

A. Matching verified attributes at an identity provider

The core of this use case is our implementation of a

trust-aware identity provider, which is shown in Figure 2.

It features general identity management system functionality

including creating, editing and deleting multiple digital iden-

tities and associated attributes, the option to verify certain

attributes as well as interfaces to request, issue and sign

security tokens. Supported and used standards are WS-Trust

1.3 [20], SAML 1.1, SAML 2.0 [21] as well as Information

Card [6] and the OpenID 2.0 Authentication specification

[5].

Our identity provider, whose architecture is shown in

Figure 2, is used by students of the university to authenticate

with various web as well as web service based relying

parties in and outside the university. Students have the

choice to go through a verification of certain attributes

whereas several verification methods are supported. For an

email address for example, a user can provide an email

certificate, which proves that s/he has the entered email

address or an email including a confirmation link can be

send to the user. As each student is also issued an email

address from the university, this email address is verified

by default as the university as the issuer can reliably assert

that the email address exists and belongs to the user. We

define different categories of verification, called verification

classes, for each kind of verification. In our email example,

the corresponding verification classes are proofByCertificate,

backChannelProofing and issuer-controlled.

1) Defining the knowledge base: In order to define the

knowledge base, we need to define all supported attributes,

a hierarchy of verification classes, and assign attributes to

verification classes. As said before, we defined a number of

584

Id
en

tit
y

P
ro

vi
de

r

A
ttr

ib
ut

e
A

ss
ur

an
ce

F

ra
m

ew
or

kAdministrator

User

C
on

fig
ur

at
io

n
A

P
I

Registration & User Mgmt

w
eb

-b
as

ed
 U

se
r

In
te

rf
ac

e

User Attribute Management

User & Attribute
Database

Assurance Knowledge Base

Supported
Attribute
Types

Supported
Verification

Classes

Attribute
Values

Reasoning and Query API

Security Token Service

R

●
 ●

 ●

WS-Trust Relying
Parties

R

OpenID Request Processor

● ●
 ●

OpenID enabled
Relying Parties

Attribute
Matching

Figure 2. Architecture of our identity provider using the Attribute
Assurance Framework.

verification classes for our purposes that can be used in var-

ious scenarios to specify attribute verification requirements.

When defining these classes for our use case, we tried to find

general verification schemes that can be applied to several

attributes, but might be implemented in different ways. For

example, the verification of an attribute by an independent

back channel can be done for email addresses by sending an

email to the claimed address with a verification link in it.

The same scheme can also be used to verify a bank account.

In this case a small amount of money (1 cent) is usually

transferred to the claimed account with a password in the

transaction data, that the user needs to enter later on to prove

that s/he is the owner of the account. Altogether, we defined

six verification classes plus the two all-comprising classes

verified and unverified, which are shown in Figure 3.

Besides the verification classes, our knowledge base hold

a number of supported attributes. In our implementation,

we support the list of well-known claim types that has been

defined by Microsoft in [22]. Each attribute corresponds to a

claim type URL as defined by the InformationCard Interop-

erability specification [23] and to an OpenID Attribute Type

as defined by the OpenID Attribute Exchange specification

[24].

2) Used Claimtypes: We mapped our verification classes

to current technologies by defining custom claim types.

Each attribute is assigned a number of URIs that identify

the attribute together with the used verification in a global

Legend:

Verification
Method

verified unverified

Verification
Status

In-Person
Proofing

Back Channel
Verification

Issuer
Controlled

User
Entered

is ais a

leads To

is a is a

leads To

Verified Source

leads To

based on

Unverified
Source

based on

Certificate

is a

electronic
ID card

is a

< Name >
Attribute

Verification
Class

Figure 3. Defined Verification Context Classes.

context. In our implementation, we use the following name

scheme to identify a verified attribute:

• for InformationCard:

http://openid.hpi.uni-potsdam.de/
icschema/<Attributename>/
<VerificationContextClassName>

• and for OpenID:

http://openid.hpi.uni-potsdam.de/
axschema/<Attributename>/
<VerificationContextClassName>

3) Querying the knowledge base: When a request is

received from a relying party for a certain attribute either

at the Security Token Service (STS) endpoint or at the

OpenID Request Processor, the User Attribute Management
as shown in Figure 2 is queried to retrieve the attribute values

of the Subject of the request from the User & Attribute
Database. Afterwards, the Attribute Matching component

checks whether the requested verification class matches with

the verification context of the attribute of the user. As veri-

fication classes can be hierarchical, a request for a verified

email address could result in an email attribute with one of

the context classes issuer-controlled, backChannelProofing
or proofByCertificate. If the match succeeds, the attribute

value is returned. Otherwise a message is returned to the

requestor.

B. Generating policies based on assurance information

In the second use case, we use our attribute assurance

framework to find those identity provider(s) among a group

585

of available identity providers that matches with a service

providers requirements for verified attributes. Looking at

current web service scenarios, a service provider usually

specifies a list of trusted identity providers to retrieve

attributes from. Using our framework, we foster a scenario,

in which identity providers are holding different sets of

users’ identity attributes with possibly different trust quali-

ties. Companies, for example, might provide security token

services for their employees to collaborate more effectively

with partners by creating or joining federations between their

own and the foreign security token services. Such a security

token service associated with an organization can keep track

of its users in a much better way than identity providers for

the web, which do not restrict their service to a specific

group of people. In fact, with the latter ones often the regis-

tration of users takes place online without any verification.

As both kinds of identity providers are beneficial depending

on the intended use, our framework can be used to focus

on these differences by stating for each identity provider

not only whether it is trusted or not, but also which of

the attributes are verified. With this knowledge a service

provider can specify its trust requirements per attribute and

find a combination of suitable identity providers.
Our use case consists of a service provider offering an

Order Service, which is used by a client included in an

online store to order items. As can be seen in Figure 4,

each request to the Order Service is intercepted by a policy

enforcement point. An access request is send to the Policy
Decision Point, which checks based on the policy whether

the Subject of the request is authorized to access the service.

In order to define the policy, a service’s requirements for

attributes are matched with the Assurance Knowledge Base.

1) Defining the knowledge base: In the knowledge base,

we define

• a number of available identity providers, e.g. I = {i1 =
”University IP”, i2 = ”Bank IP”}

• the attributes, they can assert, e.g. Assert = {<
i1, isStudent >, < i1, name >, ..., < i2, name >, ...}.

• the corresponding verification classes, e.g.

AttrTrust(i1, name) = ”user-entered”,

AttrTrust(i2, name) = ”In-Person”
• the organizational trust levels, e.g. O =
{”trusted”, ”highly trusted”}

• further rules and properties, such as whether an iden-

tity provider is federated or that all federated identity

providers have the organizational trust level trusted.

In our scenario, the knowledge base is defined by the service

provider’s IT security management and configured by an

administrator.
2) Defining trust requirements of the service and gener-

ating policies: For each service of the service provider, a

policy is defined and enforced. Such a policy depends on the

risk involved with a transaction. For the OrderService, we

Service Provider

Administrator

C
on

fig
ur

at
io

n
A

P
I

Assurance
Knowledge Base

Reasoning and
Query API

Client

A
ttr

ib
ut

e
A

ss
ur

an
ce

F

ra
m

ew
or

k

Token
Processing
Component

Policy
Decision

Point

R

SOAP

WS-Policy

R

(Policy Enforcement Point)

Order
Service

Policy
Generator

Identity
ProviderIdentity

Provider

R

S
O

A
P

Figure 4. Architecture of the service provider using the Attribute
Assurance Framework.

could for example assume, that an attribute name is required

from the user which registered in-person and showed a valid

ID card. The identity provider i ∈ I needs to be a federated

IP:

(isFederated(i), Assert(i, name), AttrTrust(i, In-Person))

Given the request, a reasoning is done over the Assurance
Knowledge Base. The result is a list of possible identity

providers that can be used in the policy or an empty list

in case the request can not be matched. If more than one

combination is possible, either all combinations are written

down in the policy file, which however requires a client

that can deal with multiple policy alternatives or one is

chosen by the Policy Generator. The resulting policy file is

compliant to the standards WS-Policy [25] and WS-Security

Policy [7] and can be used with any standards-based policy

enforcement point.

Another situation that can occur when several attributes

are required by the service, is the need to aggregate attributes

from different identity providers. In our scenario, this is

done by the client. When the client receives the policy from

the service and the policy demands security tokens from

different identity providers, the client will query them one by

one, aggregate them and send them to the service provider.

V. CONCLUSION

Current efforts in defining identity assurance in the open

world show its importance for service providers as well as

service consumers when interacting in a global market. Only

if a relying party can assess the degree of confidence it can

put in the assertion made by someone else, it will be able

to accept this information and to use it in its own processes.

Unfortunately, existing identity assurance frameworks assess

586

identity providers mostly as a whole which leads to the

situation, that identity attributes are mostly requested from

a specific trusted identity provider if the trust requirements

are high or from any identity provider, if there are no

trust requirements. In our model, we aim at providing trust

information on the level of identity attributes, especially

about the verification process, and to use this information

in policies and attribute requests to allow a more flexible

choice of identity providers as well as an aggregation of

identity attributes from multiple sources.

In this paper, we present our attribute assurance frame-

work that augments identity management solutions with the

ability to define trust in identity providers as well as trust

into single attributes. We use an approach based on Horn

logic to reason over a defined knowledge base containing

trust information about identity providers, the attributes they

can assert as well as the verification process. The approach

is implemented in a Java-Prolog based framework and has

been used in various example scenarios. Two use cases to

show the applicability of the approach are described as part

of this paper. In particular, at the identity provider side, we

match requests for attributes with a particular verification

need with the available attributes in the provider. At the

service provider side, we use our framework during policy

creation to find suitable identity providers that match the

given trust requirements.

REFERENCES

[1] Jøsang, A., & Pope, S. (2005). User Centric Identity Manage-
ment. In A. Clark, K. Kerr, & G. Mohay (Ed.), AusCERT Asia
Pacific Information Technology Security Conference, (p. 77).

[2] Rieger, S.: User-Centric Identity Management in Heteroge-
neous Federations. ICIW ’09: Proceedings of the 2009 Fourth
International Conference on Internet and Web Applications and
Services (2009).

[3] Thomas, I. and Meinel,Ch.: ”Enhancing Claim-Based Identity
Management by Adding a Credibility Level to the Notion of
Claims,” Services Computing, IEEE International Conference
on, pp. 243-250, 2009 IEEE International Conference on
Services Computing, 2009

[4] Thomas,I. and Meinel, Ch.: An identity provider to manage
reliable digital identities for SOA and the web. IDTRUST ’10:
Proceedings of the 9th Symposium on Identity and Trust on
the Internet (2010).

[5] The OpenId Foundation: OpenID Authentication 2.0 - Final
Specification, 2007,http://openid.net/specs/.

[6] OASIS: Identity Metasystem Interoperability Version 1.0,
2009, OASIS Standards.

[7] Anthony Nadalin et al.: WS-SecurityPolicy 1.2, OASIS Stan-
dard, July 2007.

[8] Office of the e-Envoy, UK: Registration and Authentication
- e-Government Strategy Framework Policy and Guidelines,
2002.

[9] National Institute of Standards and Technology: Electronic
Authentication Guideline, 2006.

[10] InCommon Federation., http://www.incommonfederation.org/

[11] InCommon Federation: Identity Assurance Profiles Bronze
and Silver, 2010.

[12] Chadwick and Inman: Attribute aggregation in federated
identity management. Computer (2009) vol. 42 (5) pp. 33-40.

[13] National Institute of Standards and Technology,
http://www.nist.gov

[14] Mohan and Blough: AttributeTrust - A Framework for Evalu-
ating Trust in Aggregated Attributes via a Reputation System.
Sixth Annual Conference on Privacy, Security and Trust, pp.
201-212, 2008.

[15] Bhargav-Spantzel, A.: Protocols and Systems for Privacy
Preserving Protection of Digital Identity, PhD Thesis (2007).
http://www.gradschool.purdue.edu/downloads/ETDForm9-
E2.pdf, 1-222.

[16] Paci, F., Bertino, E., Kerr, S., Squicciarini, A., Woo, J. (2009).
An Overview of VeryIDX - A Privacy-Preserving Digital
Identity Management System for Mobile Devices. Journal of
Software, 4(7), 1-11. doi:10.4304/jsw.4.7.696-706

[17] Yong, J., Bertino, E.: Digital identity enrolment and assurance
support for VeryIDX. Computer Supported Cooperative Work
in Design (CSCWD), 2010 14th International Conference on,
734-739. doi:10.1109/CSCWD.2010.5471880

[18] Baldwin, A., Casassa Mont, M., Beres, Y., & Shiu, S.: Assur-
ance for federated identity management. Journal of Computer
Security - Digital Identity Management (DIM 2007) , 541-572,
2010.

[19] Identity, Credential & Access Management (ICAM): Trust
Framework Provider Adoption Process (TFPAP) For Levels
of Assurance 1, 2, and Non-PKI 3, Version 1.0.1, Release
Candidate, Sept. 2009.

[20] Anthony Nadalin et al.: WS-Trust 1.3, OASIS Standard,
March 2007.

[21] SAML V2.0, OASIS Standard, March 2005.

[22] Arun Nanda and Michael B. Jones: Identity Selector Interop-
erability Profile V1.5, July 2008.

[23] Michael B. Jones and Michael McIntosh: Identity Metasystem
Interoperability Version 1.0, Committee Draft 01, November
2008.

[24] The OpenId Foundation: OpenID Attribute Exchange 1.0 -
Final Specification, 2007,http://openid.net/specs/.

[25] Asir S. Vedamuthu et al.: Web Services Policy 1.5 - Frame-
work, World Wide Web Consortium Recommendation, Sept.
2007.

587

