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ABSTRACT: Texts displayed in lecture videos are closely related to the lecture content. Therefore, they provide a
valuable source for indexing and retrieving lecture videos. Textual content can be detected, extracted and analyzed
automatically by video OCR (Optical Character Recognition) techniques. In this paper, we present an approach for
automated lecture video indexing based on video OCR technology: first, we developed a novel video segmenter for the
structure analysis of slide videos. Having adopted a localization and verification scheme, we perform text detection
secondly. We apply SWT (Stroke Width Transform) not only to remove false alarms from the text detection stage, but
also to analyze the slide structure further. To recognize texts, a multi-hypotheses framework is applied, that consists of
multiple text binarization, OCR, spell checking and result merging processes. Finally, we have implemented a novel
algorithm for extracting lecture structure from the OCR-transcript by using geometrical information and text stroke
width of detected text lines. We use both segmented key frames and extracted lecture outlines for the further video
indexing. The accuracy of the proposed approach is proven by evaluation.
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1 Introduction

Since recording technologies have become increasingly robust and easier to use in the last few years, more and more
universities are taking the opportunity to record their lectures and publish them online in order to make them ac-
cessible for students. Hence, many lecturers in professional colleges use Slide presentations instead of blackboard
writing today. This way of recording lectures leads to large amounts of multimedia data very quickly. Thus, finding
lecture video data on the WWW (World Wide Web) or within lecture video portals has become a very important and
challenging task.
We focus our research on such lecture recordings that combining two video streams: the main scene of lecturers which
is recorded by using a video camera, and the second which captures the frames projected onto the screen during the
lecture through a frame grabber (cf. Fig. 1).
The frame grabber output (slide stream) can be synchronized with the video camera automatically during the recording;
Therefore, each key frame of slide videos can be linked to a video recording segment. In this way, indexing two-part
lecture videos can be performed by indexing the slide videos only.
Content-based gathering within video data requires textual metadata that has to be provided manually by the users or
that has to be extracted by automated analysis. For this purpose, techniques from common OCR—focusing on high-
resolution scans of printed (text) documents—have to be improved and adapted to be also applicable for video OCR.
In video OCR, video frames containing visible textual information have to be identified first. Then, the text has to be
separated from its background, and geometrical transformations have to be applied before common OCR algorithms
can process the text successfully.
In this paper, we propose an entire workflow for the structural segmentation of lecture videos, the video OCR analysis,
and the slide structure extraction, as illustrated in Fig. 2.

Copyright c©2010 Permission to copy without fee all or part of the material printed in JMPT is granted provided that
the copies are not made or distributed for commercial advantage.
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Video 1

Video 2

Figure 1: An example lecture video. Video 2 shows the speaker giving his lecture, whereas his presentation is played
in video 1.

We developed a slide video segmenter based on fast CC (Connected Component) analysis, and slide transition recog-
nition. However, this segmenter is not suitable for video frames which are embedded in lecture slides with a different
genre. Thus, we apply image intensity histogram feature and SVM (Support Vector Machine) classifier to distinguish
slide frames and other video frames. For the latter case, we apply the commonly used video segmentation method
based on the histogram differencing metric.
For text detection, we realized a localization and verification scheme: an edge-based text detector serves to achieve
a high recall rate with low computational time expenses. The verification process consists of a SWT (Stroke Width
Transform)-based analysis to remove false alarms.
For text recognition, we employ a multi-hypotheses framework consisting of multiple text segments, common OCR
analysis, spell checking, and result merging processes.
We propose a novel slide structure analysis by using the detected text objects—we use the geometrical information
and the corresponding stroke width value of those text objects for slide title identification, text line classification, and
lecture outline extraction.
We have further integrated the video analysis engines into our lecture video portal. Therefore, the analysis process can
be managed easily.
Operability and accuracy of proposed methods have been evaluated by using publicly available test data sets.
The rest of this paper is organized as follows: Section 2 presents related work, whereas the sections 3–8 describe our
proposed framework in detail. We provide the evaluation and experimental results in section 9. Section 10 concludes
the paper with a brief outlook on future work.

2 Related Work

Adcock et al. proposed a lecture webcast search system [1], in which they applied a slide frame segmenter to identify
the distinct slide images. The OCR and lexical filtering processes are utilized, which in turn generate the indexable
texts. Since they do not apply text detection and text segmentation processes on video frames, the character recognition
accuracy of their approach is therefore lower than our system’s. Moreover, by applying text detection process, we are
able to extract the structured slide text lines, as e.g., title, subtitle, key-point etc. for the indexing task, and build a
more flexible search method.
Wang et al. proposed an approach for lecture video structuring and textual analysis [6]. Their shot boundary detector
computes the changes of text and background regions using thresholds to capture the slide transition. The final video
structuring results are determined by synchronizing detected slide shots and external documents based on OCR texts.
Hunter et al. proposed a SMIL (Synchronized Multimedia Integration Language) based framework to build a digital
archive for multimedia presentations [9]. Similar to [6], they also apply a synchronization process between recorded
lecture video and the PDF slide file that has to be provided by presenters. In contrast to these two approaches, our
system directly analyzes the videos, we thus do not need to take care about the slide format and the synchronization
with an external document is not required. Since the animated content buildup of the slide has not been considered
in [6] and [9], their systems might not work robustly when these effects occur in the slide videos. Furthermore, in [6],
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Figure 2: The entire system workflow. After having segmented frame sequences, text detection is performed on every
single key frame in order to find text occurences. The resulting text objects are then used for text recognition and slide
structure analysis.

the final structuring results are heavily dependent on the OCR results. It might be less efficient concerning computation
time and implies redundancies, when poor OCR accuracy is obtained.
In the last few years, collaborative tagging has become a popular functionality in video portals. Some approaches, as
e.g., Kim [10], Sack et al. [15] and Moritz et al. [5] apply manual video tagging to generate text-based metadata for
efficient context-based video retrieval. The user tagging-based approaches work well for the recently recorded lecture
videos. However, for videos which were created more than 10 years ago, there is no manually generated metadata
available. And it is hard to attract the user’s interest to annotate the outdated videos. Furthermore, regarding the
quantitative aspect, the automated analysis is more suitable than the user annotation for large amounts of video data.
ASR (Automated Speech Recognition) is able to provide text transcripts of spoken language. Some approaches, as
e.g., [20], [8] and [14] use the ASR output for lecture video retrieval. But often poor recording quality, speaker’s
dialects, or interfering noise lowers the quality of the achieved ASR results beyond further usefulness.
Text detection is one of the most important processing step of a video OCR framework. Most of proposed text
detection methods make use of texture, edge, color, motion and some other text representative features (as e.g., stroke
width feature) to discriminate text from background.
Texture features such as DCT (Discrete Cosine Transform) coefficients of grayscale images have been applied for text
detection [13, 21]. DCT feature based approaches are well suited for JPEG encoded images as well as for MPEG
encoded videos. However, in practice this feature is not robust enough to distinguish text from text similar textured
objects such as, e.g., bushes, or other vegetation. For this reason DCT-based approaches are not suitable to handle text
detection tasks in complex natural scenes.
Zhao et al. [22] introduced a classification approach for text detection in images using sparse representation with dis-
criminative dictionaries. They applied wavelet transform to create an edge map and performed a block-wise classifica-
tion to distinguish text and non-text regions by using two learned discriminative dictionaries. The obtained candidate
text regions were further refined by projection profile analysis. However, the traditional machine learning-based veri-
fication can only deliver a binary decision and thus might not be robust enough to decide for the candidate bounding
boxes that contain both text as well as non-text objects. Anthimopoulos et al. [2] have improved this drawback with a
refinement process, which enables the machine learning classifier to refine the boundaries of the text images. This pro-
cess enhanced the precision and the overall detection performance as well. But the evaluation results of the processing
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Figure 3: Slide content distribution. Title and content act as indicators for actual slide transitions and are thus analyzed
in the second step.

Frames

Canny Edge Map Creation

Differential Image Creation

CC Analysis

Thresholding Process

Slide Content Distribution

Key Frames

Content
Region

Analysis

Title Region
Analysis

Step 1
Step 2

extracted frames from step 1

Figure 4: Segmentation workflow. (Step 1) Adjacent frames are compared with each other by applying Connected
Components Analysis on their differential edge maps. (Step 2) Title and content region analysis ensure that only actual
slide transitions are captured.

time reported in their work shows that the system was 6 times slower by applying this refinement algorithm.
Epshtein et al. propose a text detection method using SWT for nature scene images [4]. For each pixel, their algorithm
computes the width of the most probable stroke containing the pixel. The output of the operator is a feature map
having the same size as the input image while each pixel represents the corresponding stroke width value. We have
extended the method in order to make it more efficient and suitable for our approach (cf. section 4).

3 Video Segmentation

By decomposing the video into a set of representative key frames, we are able to index the video. These selected
frames will be processed in other steps later, since they capture and encapsulate the entire video content. In the next
subsection, we will discuss our slide-video segmentation method.

3.1 Slide Video Segmentation

Regarding the characteristics of lecture videos, we can see that the retrieval of video contents can be achieved through
the extraction of text information from slide videos: Fig. 1 shows an example lecture video that consists of two video
streams showing the speaker and the current slide respectively. In such kind of videos, each part of the video can be
associated to a corresponding slide. Hence, we carry out the analysis of the slide video stream in our study.
The segmentation process can be achieved by using frame differencing metrics which take both image structure and
color distribution into account. The global pixel difference metric has commonly been used for determining slide
segments. One deficiency of this method is that the high-frequency image noise within video frames can still degrade
the segmentation accuracy.
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Figure 5. Segmentation results from the first step

Observing the slide video stream, we can see that video contents such as texts, figures, tables etc. can all be considered
as a collection of CC (Connected Component). Therefore, the difference between two frames can be determined by
calculating the difference of the amount of CCs. In this way, we are able to control the valid size of CCs so that the
image noise can be removed from the comparison. We have investigated several CC algorithms and finally chose the
most efficient one according to [3].
Our segmentation algorithm consists of two steps (cf. Fig. 4): in the first step, the entire slide video is analyzed. For
reasons of efficiency, we do not perform the analysis on every video frame; instead, we established a time interval of
one second. Therefore, our video segmenter considers only one frame per second (fps).
Subsequently, we create the pixel-based differential image from canny edge maps of two adjacent frames and perform
the connected component analysis on the differential image. In this way, the number of differencing CCs are captured.
In order to ensure that each newly emerging knowledge point or newly added figure within a slide can be detected,
we have identified the segmentation threshold value Ts1 . This means that a new segment is captured if the number
of CCs from the differential edge image exceeds Ts1 . Fig. 6 depicts the workflow of CC-based image differencing
metric. The result of the first segmentation step is too redundant for indexing, since there are many changes within the

Frame second i

Frame second i+1

thresholding
 processCanny map second i

Canny map second i+1

Differential map

CC analysis

Thresholding result

Figure 6. CC-based image differencing metric

same slide (cf. Fig. 5). Hence, the segmentation process continues with the second step that aims to find the actual
slide page transition based on the frames detected in the first step.
After a statistical analysis of large amounts of slide videos, we defined the content distribution of the most commonly
used slide style (cf. Fig. 3). Let Rt and Rc denote the title and the content regions in Fig. 3 which account for 23%
and 70% of the entire frame height respectively. Then, we apply the same CC-based differencing metric for Rt . If the
amount of CCs in the differential edge image for Rt exceeds the threshold value 1, a slide page transition is captured.
This is because that any changes within the title region may result the slide transition. For instance, two slide titles
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Figure 7: We detect the first text line top-down and bottom-up in Rc of current video frame and perform the CC
differencing analysis on those text line sequences from adjacent frames. In frame (a) and (b), a same text line (top) can
be found; Whereas in frame (b) and (c), the CC differences of both text lines will exceed the Ts2. A slide transition is
therefore captured between frame (b) and (c).

might only differ from each other in a single chapter number. If no change from the title regions can be detected, we
then detect the first and the last text lines in Rc respectively, and perform the corresponding CC-based differencing
metric on these text line regions from two adjacent frames (cf. Fig. 7). If both of the two difference values exceed
a threshold Ts2 , a slide page transition is also captured. In general, the Ts1 is defined to measure the CC-based
differencing of the whole slide frame and the Ts2 is defined for the single text line. In our study, Ts1 = 20 and Ts2 =
5 have proven to serve best for our training data, respectively.
Since our slide segmentation method is not suitable for videos with varying genres that were embedded in slides or
are played during the presentation, we have improved the method with a SVM classifier. This will be presented in the
next section.

3.2 Video Frame Classification

Regarding slide images, we can see that their content consists of texts, tables, figures etc., and comes with homo-
geneous background, which strongly differs to other video genres. In order to train an efficient classifier we have
evaluated two features:

Histogram of Oriented Gradient (HOG) feature has been widely used in object genre classification domain [11]. To
create HOG feature, first, the gradient vector of each image pixel within a local region is calculated. A histogram
for all gradient vectors with n directions is subsequently created. In order to avoid sensitivity of HOG feature to
illumination, the feature values are often normalized [11]. Hence, the distribution of gradients of slide images
could be distinguishable from other video genres.

Image Intensity Histogram is a simple feature that describes the image complexity and grayscale distribution. We
have also used this feature to train the SVM classifier comparing to HOG feature.

We have applied the commonly used segmentation method by calculating image histogram difference to extract key
frames for non-slide video images. The evaluation results of two features are provided in section 9.
Fig. 8 shows the extracted video slides in the video player for navigation within lecture videos in our lecture video
portal [18]. In order to give the user a visual guideline for the navigation, the slides are visualized in the form of a time
bar. When sliding a mouse over the small squares, they are scaled up to a larger preview of the slide. By clicking the
preview image the player will jump to the corresponding position in the video.

Journal of Multimedia Processing and Technologies 6



Figure 8: Visualisation of the segmented lecture slides and extracted lecture outlines (lecture structure) underneath the
video player

4 Text Detection

Text detection is the first task performed for video OCR. Our approach determines whether a single frame of a video
file contains text lines, for which it returns a tight bounding box eventually. For reasons of efficiency, text detection is
only executed on the key frames we obtained during the video segmentation process.
In order to manage detected text lines efficiently, we have defined a class text object with the following properties:
bounding box location (the top-left corner position) and size, start time, end time, text content, and average stroke
width. If a text line has successfully been detected in a frame, a text object is created. The occurrence duration of each
text object is determined by reading the time information of the corresponding segment. After the first round of text
detection, a text object verification procedure ensures the validity of our results in order to reduce false alarms. The
output of this text detection system is an XML-encoded list serving as input for the text recognition and slide structure
anlysis that we discuss in section 5 and 6.

4.1 Text Localization

To localize text, we firstly produce a horizontal and a vertical edge map for an input image using the Sobel filter [17].
Then, we adopt two morphological dilation operators to extend the vertical edges horizontally and the horizontal edges
vertically. Let MinW and MinH denote the detected minimal text line width and minimal character height. We define
two rectangle kernels:1×MinW and 6× MinH

2 for vertical and horizontal dilation operators respectively. Since video
texts with a height smaller than 5 pixels are hard to read for both, human and OCR engines, we assume that the minimal
height MinH of the recognizable text is 5 pixels for the original scale of the image. Furthermore, each detected text
line has to contain at least 2 characters. Thus, MinW is calculated by MinW = 2 ×MinH .
Subsequently, we apply Otsu thresholding to binarize the dilation maps [12]. Due to the connectivity of horizontal and
vertical character edges in text-like regions, a new image is created by covering the intersected regions of both binary
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Figure 9: Workflow of the edge based text detection. (b) (c) Vertical and horizontal edge maps. (d) (e) Dilation maps
of corresponding edge images. (f) Intersected image of binarized dilation maps. (g) After projection profiles. (h)
Detection results without verification.

maps. Ultimately, the initial bounding boxes are generated after performing CC analysis (cf. Fig. 9 (a)-(f)).

4.2 Text Region Refinement

Although the text detection process from the previous step has a very high detection rate, the initial bounding boxes
are still not accurate enough for OCR engines and also some false alarms may be produced. To reject such falsely
detected regions, we apply a refinement procedure based on projection profiles.
We firstly process the horizontal projection on the edge maps of input images. A horizontal line is discarded when its
projection value is lower than a given threshold; in this way, the multi-line bounding boxes are segmented to single
lines. Subsequently, we relocate the bounding boxes. Then, we perform the vertical projection in a similar way; yet
it might split text lines into single characters. Thus, we have to merge neighboring characters—having a neighbor
distance less than the MinH of this text line—horizontally together. We execute this refinement process iteratively
until the bounding box list remains unchanged (cf. Fig. 9 (g)-(h)).
Due to the refinement process, we obtain more precise bounding boxes, and false regions which have a low edge
density have been rejected successfully. However, there may still remain few false objects, such as human faces,
foliage, barriers etc., which are often confused with text patterns. In order to remove them, the process continues with
a text verification procedure.

4.3 Text Verification

We apply a verification method based on SWT analysis. Epshtein et al. [4] have proven in their work that the stroke
width feature is robust enough to distinguish text from other complicated image elements such as vegetation. Per pixel,
the algorithm computes the width of the most likely stroke containing this pixel. The output of SWT is a feature map
where each pixel contains the potential stroke width value of input image pixels (cf. Fig. 10).
In order to use the method for our approach, we have extended it in following manners: first, Epshtein et al. describe
that the SWT analysis depends on the edge gradient direction [4]. In oder to accommodate both bright text on dark
background and vice-versa, the analysis process has to be applied twice to cover each gradient direction, which leads
to a loss of performance. In general, it is difficult to determine the correct gradient direction for the whole image.
However, our two-stage analysis approach solves this issue: In the first stage, we have detected the single-line text
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bounding boxes already. Subsequently, a corresponding subimage is created for each bounding box. We then only
apply SWT on the subimages.
Hence, it is relatively easy to determine the gradient direction for subimages of slide frames: first of all, we convert the
subimage to a grayscale map and binarize it subsequently using Otsu thresholding method. Then, we could obtain the
text gradient direction by calculating the ratio of black and white pixels, where we assume that the background pixel
number is more than the text pixel number.
We use the following constrains to verify the bounding boxes. A box is discarded if:
• its stroke width variance exceeds a threshold range MinVar and MaxVar ,
• its mean stroke width exceeds a threshold range MinStroke and MaxStroke.

2
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Figure 10. An exemplary SWT image for character w.

For some boxes with a size larger than MaxH—which may contain both text lines and other image objects—we
apply the detection algorithm proposed by Epshtein et al. [4] on them. In this way, the detection recall can in turn be
increased during the verification process. In our study, MinVar and MaxVar have been set to 100 and 500, while
MinStroke and MaxStroke have been set to 1 and 10, respectively. These values were also learned from our training
data. Fig. 11 shows the results after verification which are the final output of the text detection.

Figure 11: Refined bounding boxes from text detection. The results are automatically verified in order to remove false
alarms.
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Figure 12: Exemplary resulting images of dynamic contrast/brightness adaption. Contrary to the originals, the revised
images are suitable for being processed by OCR engines, as the background has been removed.

5 Text Recognition

The detected text objects from the previous step serve as the input for the text recognition. Usually, texts in video
frames have poor resolution, and often, the image background is of heterogeneous complexity. However, common
OCR engines are designed for high-resolution scans of printed texts having a homogeneous plain background.
To enable an efficient way of processing the detected texts, the text images have to be further refined in an image quality
enhancement process. To resolve the problem of having low-resolution images, we enlarge text line images with fonts
smaller than 40 pixels text height using cubic interpolation. Then, the texts will be segmented and recognized by a
subsequent multi-hypotheses framework.

5.1 Text Segmentation

The global thresholding methods use a single threshold for the entire document and local thresholding methods which
assign a threshold for each small local region of the processed document. We employ three methods in order to
segment texts: the Otsu (global) thresholding algorithm, Gaussian-based adaptive (local) thresholding [7] and our
adaptive image contrast and brightness adjustment.
By applying the dynamic contrast and brightness adjustment, the grayscale text line images are converted to an image
showing black font on almost plain white background or vice-versa. The workflow of the algorithm is depicted in
Fig. 14, where m and sd denote the median and standard deviation of the image histogram, with Ts as the threshold
value for sd. First, the image contrast is adapted until m equals 255 or 0. Subsequently, sd is adapted until it reaches
its threshold Ts. If sd exceeds Ts, the image’s brightness is gradually increased—otherwise, its contrast is increased
until sd reaches Ts. When the image contrast reaches its maximum while sd is still smaller than Ts, we increase the
image brightness until sd reaches its maximum.
In order to achieve the best recognition accuracy, we have optimized the threshold Ts by using our training dataset.
The training set consists of video text frames with varying genre and resolutions. The correctly recognized character
rate has been applied to indicate the recognition performance. Fig. 13 shows the evaluation results. For our purpose,
we chose a fixed value of 120 for the standard deviation threshold Ts.
Fig. 12 shows several result images from our trials. The adapted text line images will be recognized using OCR
software.

5.2 Recognition and Spell Analysis

After the segmentation process, we generate three OCR results for each text line image by using a standard OCR
engine. Then, we apply spell checking on every OCR string. In order to adapt the spell checker to our data more
accurrately, we extend its standard dictionary with technical terms from our working domain. The spell-checking and
result-merging processes are based on the following constraints:
• First, a OCR hypothesis will be selected as the final result if it contains the major amount of correct words.
• Second, if two or more hypotheses have the same amount of correct words, the one having the lower word count

will be selected.
• If the hypotheses have the same amount of correct words and also the same word count, then all correct words

will be merged in the final result according to their indices.
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Figure 13. Evaluation results of threshold Ts of the dynamic adaptive contrast and brightness adjustment algorithm

Our experimental results show that the multi-hypotheses framework improved the word recognition rate of about 5%
in contrast with the using of single segmentation method for our lecture video test set.
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Figure 14: Workflow of the dynamic adaptive contrast and brightness adjustment. After applying the algorithm, the
text appears black on a plain white background or vice-versa. m and sd denote the median and standard deviation of
the image histogram, Ts is the threshold value for sd.

6 Slide-Content Structure Analysis

Observing the slide frames, we can realize that the title and subtitle texts are more significant than the body of the
slide—they summarize each slide, whereas bold texts in the slide body are often conclusions or key points.
On the one hand, a classified (structured) OCR transcript enables a more flexible search algorithm, and on the other
hand we are able to extract the lecture structure so that an automatically generated lecture outline can be provided for
the students further. A timed lecture outline allows the user in turn to explore the video content on the video portal. In
this section, we will discuss our title identification, text object classification, and lecture outline extraction methods .

6.1 Title Identification

The title recognition procedure is intended to identify potential title text lines within the key frames. It is based on the
detected text objects’ geometrical information. A potential title object is identified if:
• it is in the upper third of the image,
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• its width is larger than the minimal word width,
• the x position of its top-left corner is lower than a threshold MaxX , which has been set to frameWidth ∗ 0 .77 ,
• it is one of the three highest bounding boxes and has the uppermost position,
• the text line has more than three characters.

If a text object satisfies the above conditions, it will be labeled as a title line. The process repeats these steps for the
remaining text objects in order to find the next potential title lines; however, title lines within the same frame must
have similar height and stroke width. For our purpose, we allow up to three title lines for each slide frame.

6.2 Text Object Classification

After the title identification, the remaining text objects are classified into three classes: subtitle/key point (bold fonts),
normal content and footline. The classification is based on the stroke width st and the height ht of text objects.
Let smean and hmean denote the average stroke width and the average height of text objects within a slide frame
respectively. The classification is processed as follows:

subtitle/key point if st > smean ∧ ht > hmean

footline if st < smean ∧ ht < hmean ∧ y = ymax

normal content otherwise

6.3 Lecture Outline Extraction

The lecture outline can be both utilized for manual navigation and to provide indexable metadata for search engine.
Our lecture outline extraction algorithm begins with the text line objects which have been obtained from the previous
text object classification step that have a text line type of title or subtitle-key point. We first sort out unsuitable text
objects by applying a spell checking procedure. A valid text object must consist out of more than three characters, in
which at least one of them must be noun.
After the filtering processes, all title lines within the same slide are merged together by using their coordination posi-
tions. The subtitle-key points will be assigned to the corresponding title object subsequently. Slide frames that have a
similar title will be merged in order to avoid the redundancy, which might affect the indexing process. The similarity
measure is determined by using the word- and text line-edit distance. Finally, a structured lecture outline is extracted
according to their time occurrences. Fig. 8 shows an example of extracted lecture outlines underneath the video
player. All extracted titles and subtitle-key points with their corresponding timestamps are provided. Timestamps
serve as links to jump to the associated position in the lecture video.

7 Automated Analysis Framework for Lecture Video Portal

In the last section we have discussed our video OCR framework. In this section, we will further present how have
integrated the automated video analysis framework into the lecture video portal.

7.1 Framework Overview

The major components of the framework are the analysis management engine, video analysis engine, and result stor-
age/visualization engine. The analysis management and result storage/visualization engines are associated with the
video portal server, while the video analysis engine is associated with the multimedia analysis server. Fig. 15 shows
the framework architecture.

7.2 An Automated Analysis Workflow

The analysis management engine handles the start of the analysis and reports the processing status. As shown in
Fig. 16, we can start both, the OCR and ASR analysis for each video in the staff page of the lecture video portal.
In order to manage each analysis request efficiently, we have defined a class "analysis job object" with the following
properties: media id, date time, media URL, analysis type and language. Once the analysis for a lecture video is
started, a job object will be created and encoded in the XML format. The XML request will then be sent to the
analysis engine on the multimedia analysis server.
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Figure 15. Architecture of the multimedia analysis framework

The analysis engine manages four major processes: media download, video transcoding, video analysis for each
request, and analysis result transmission to the video portal server. The analysis engine is designed fully configurable.
Furthermore, it is suitable to be extended and work with a multi-process workflow.
Once a video is downloaded, a transcoder will convert it to a predefined format with a suitable visual quality which is
most appropriate for the video segmentation and OCR analysis.
We have also applied ASR (Automated Speech Recognition) analysis for the lecture video. We extract the audio
track from lecture videos with a format of 16KHz and 16 Bit which meets the requirements of the speech recognition
software.
After the analysis, the results will be automatically sent to the destination place on the portal server. Subsequently,
we send HTTP-POST requests for saving the corresponding results to the portal database. The GUI (Graphic User
Interface) elements of the slide segments and lecture outlines have been developed based on the plugin architecture in
the video portal platform. Therefore, once the analysis result data is saved, the corresponding GUI elements will be
created automatically by refreshing the web page.
For our purpose, we apply this framework to analyze the lecture videos from our institute. However, using it for the
videos from other sources (e.g., YouTube1, Berkeley-Webcast2 etc.), we would only need to adapt the configuration
file of the analysis engine.

8 Keyword Extraction

Keywords can briefly summarize a document and are widely used for information retrieval in digital libraries. How-
ever, manually keyword annotation of multimedia data such as videos, is very time-consuming and expensive when
considering costs. Therefore, the development of an automated method for extracting keywords from lecture videos is
highly desirable and especially meaningful for a lecture video portal. In this section we will discuss the conception of
the keyword extraction workflow in our video analysis framework.

8.1 Keyword Extraction From OCR and ASR Data

In our framework, the keywords are extracted from OCR and ASR transcripts. In the first step, all OCR and ASR
words will be arranged to an appropriate video segment. This enables us to efficiently calculate the weight factor for

1http://www.youtube.com
2http://webcast.berkeley.edu
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Figure 16. Management page of the lecture video portal for the multimedia analysis

each keyword in the later stage. Since our system only considers nouns as the keyword, we thus capture nouns from
the transcripts by applying Stanford POS Tagger (Stanford Log-linear Part-Of-Speech Tagger) [19] secondly.
Subsequently, we use the stemming algorithm to capture words with variant forms but a common meaning. This
process leads to improve recall rate of the retrieval.
Since the OCR transcript might contain spelling mistakes, we have to perform a dictionary-based filtering for sorting
out the error words. In order to avoid the out-of-vocabulary issue, the standard dictionary will be extended by adding
technical terms of our lectures.
Then, the weight factor of each remaining word is calculated by TFIDF (Term Frequency Inverse Document Fre-
quency) scores [16], which is described as following:

Term Frequency represents the appearance frequency of a given term in the given document. In our case, each video
segment is considered as a local context. Therefore, the OCR and ASR transcripts of each video segment will
be considered as one document. The term frequency is then calculated by dividing the total word count of a
segment document by the term appearance count.

Inverse Document Frequency measures whether a term is common or rare across all documents. To our purpose,
the IDF is calculated by using the total number of segments and the number of segments containing the term.

TFIDF ranks candidate keywords according to their statistical frequencies, which dose not reflect the location infor-
mation of the keyword, while the location might be important for ranking keywords extracted from the web pages or
lecture slides. In our framework, the OCR text line objects have been classified into several classes (cf. section 6).
Therefore, we are able to apply the classified text line types to improve the keyword weighting result.

8.2 Utility of Extracted Keywords

The segmented key frames can help to guide the users with navigation within the video, while they summarize each
video. The extracted keywords from each segment can further provide a more abstract information to the users. This
enables the user to get the orientation about which lecture segment within the video he is interested in, efficiently.
To enrich the web page with more meta data, for example for better indexing of the web site or better accessibility, we
can also use the keywords. The top 100–150 keywords could be illustrated for each video segment according to their
weights. The users are able to click on the keyword labels, and the distribution of the corresponding keyword in the
video could be illustrated subsequently. This feature can serve as visual guideline for the user to navigate through a
lecture video. Furthermore, more meta data can be provided for the web search engine crawlers so that the video can
be found easier.
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Table 1. Experimental Results of Video Segmentation

Video URL 1 Detected slides count Slides count in ground truth Correctly detected slides
.../5410/ 56 51 49

.../5365/ 41 36 36

.../5478/ 23 24 22

.../4619/ 49 48 48

.../4884/ 54 51 51

.../5082/ 70 66 66

.../5131/ 78 77 77

.../4479/ 27 26 26

.../4913/ 21 20 19

.../4468/ 72 78 72

.../5314/ 51 59 51

.../4207/ 18 18 18

.../4586/ 31 29 28

.../4490/ 40 39 39

.../5281/ 27 25 24

.../5318/ 34 30 30

.../5327/ 18 17 17

.../4713/ 70 65 65

.../4206/ 20 18 18

.../4847/ 60 60 60

Recall Precision F1 Measure
Total 0.975 0.948 0.964

1 http://www.tele-task.de/archive/lecture/overview...

9 Evaluation and Experimental Results

To evaluate our system’s performance, we restricted on testing the efficiency of the video segmentation, text detection,
text recognition algorithms. Furthermore, a SVM classifier has been trained and evaluated with HOG and image
intensity histogram features. We also evaluated the lecture outline extraction method by using test data.
Our test dataset consists of lecture videos and video frames from the tele-TASK project [18]. We randomly chose 20
lecture videos with varying layouts and font styles for the estimation of our segmentation algorithm, as illustrated in
Fig. 17; in order to evaluate the text detection and recognition procedures, we used 180 video test frames including
respective manual text annotations. The test data is available at 3.
All experiments were executed on a Mac OS X, 2.4 GHz platform. Our system is implemented in C++. Overall,
our test dataset contains 2997 text lines, 12533 words, and 76099 characters. The video frame sizes vary between
640× 480 and 1024× 768 pixels.

9.1 Evaluation of Video Segmentation

The overall number of detected segments is 860, of which 816 were detected by our segmenter correctly. The achieved
segmentation recall and precision are 98% and 95% respectively. The detailed evaluation data for each video is shown
in Table 1. Since this experiment is defined to evaluate our slide segmentation method, videos embedded within slides
are not considered in our evaluation.

9.2 Evaluation of Text Detection

In order to evaluate our text detection methods, we selected 180 key frames from the segmentation results. Then,
we applied the following, commonly used evaluation methodology: We distinguish between a pixel-based evaluation,
where the percentage of overlapping pixels in the ground truth and the experimental results are used to determine recall
and precision, and an evaluation based on text bounding boxes. For the latter one, a bounding box is deemed to be a

3http://www.yanghaojin.com/research/videoOCR.html
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Table 2. Text Detection Results
Recall Precision F1 Measure

Pixel-based 0.977 0.996 0.986
Bounding-box-based 0.963 0.925 0.943

Table 3. Text Detection Comparison Results Based on Bounding-Box-Based Evaluation Method
Recall Precision F1 Measure seconds per frame

Method in [4] 0.9 0.93 0.915 2.82

Our method 0.963 0.925 0.943 0.47

correct match if the overlap with the ground truth exceeds 80%. Table 2 shows the text detection results of our video
test data set.
Furthermore, we compared our text detection algorithm with the method proposed in [4] by using our data set (cf.
Table 3). Although the achieved precision of our method is slightly lower compared to [4], we could achieve a more
significant improvement in recall and processing time.

9.3 Evaluation of Text Recognition

We applied the open-source OCR engine tesseract-ocr4 for the text recognition. The recognition evaluation is based
on the results of our preceding text detection, using test frames containing English texts.
Overall, we achieve recognizing 92% of all characters and 85% of all words correctly. To some extent, this is due to
some text passages are set in special graphical and artistic fonts and are therefore difficult to read by standard OCR
libraries.

Figure 17: Exemplary frames of our test videos which have varying layouts and font styles for the estimation of our
segmentation algorithm.

9.4 Evaluation of The SVM Classifier

For the evaluation of the slide frame classifier 2597 slide frames and 5224 none-slide frames have been collected in
total to train the SVM classifier. All slide frames are selected from a large amount of lecture videos. To create a
none-slide frame set, which has varying image genres, we have selected additional 3000 images from 5. In addition,
about 2000 none-slide video frames have been used, which are extracted from the lecture video database. The test set
is build from 240 slide frames and 233 none-slide frames, which differ from the training set.

4http://code.google.com/p/tesseract-ocr/
5http://www.flickr.com
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Table 4. Feature Comparison Results
Recall Precision F1 Measure

HOG feature 0.996 0.648 0.785

Image intensity histogram feature 0.91 0.93 0.92

In our experiment, we have used RBF (Radial Basis Function) as kernel for the SVM classifier. Parameters have been
determined by cross-validation function. We have used the HOG feature with 8 gradient directions, whereas the local
region size has been set to 64×64. For calculating an image intensity histogram, 256 histogram bins have been created
corresponding to 256 image grayscale values. Then, the normalized histogram values have been applied to train the
SVM classifier. We have evaluated the normalization factor (cf. Fig. 18), which has proven to serve best when set to
1000.

Figure 18. Evaluation results of the normalization factor of image intensity histogram feature

The results of HOG and image intensity histogram features are illustrated in Table 4. Both of two features achieve a
good recall rate for slide frame recognition. However, comparing with HOG feature, the intensity histogram feature
can achieve a significant improvement in precision. Moreover, the processing speed is also much faster.

9.5 Evaluation of Lecture Outline Extraction Method

We have also used the randomly selected 180 unique slide frames for the evaluation of lecture outline extraction
method. The percentage of correctly retrieved outline words in the experimental results and the ground truth are used
to calculate the recall and precision rate.
To evaluate the outline extraction method, we determine not only whether the outline type is correctly distinguished by
slide structure analysis. We also calculate the word accuracy for each detected outline object. Therefore, the accuracy
of our outline extraction algorithm is based on the OCR recognition rate.
We have defined recall and precision metrics for the evaluation as follows:

Recall = number of correctly retrieved outline words
number of all outline words in ground truth

Precision = number of correctly retrieved outline words
number of retrieved outline words

Table 5 shows the experimental results. We have performed the evaluation for the title and subtitle-key point, respec-
tively. The results of subtitle-key point extraction method still have a significant improvement space. This is due to
that some key points are written in the different color and do not have geometrical differences to the normal text font.
Moreover, some subtitles have event a lower height than normal texts.
However, the extracted titles are already robust for lecture video exploring. As the upcoming improvement, using a
better OCR engine and/or enhancing the text segmentation results will further improve both, the text recognition and
outline extraction results.
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Table 5. Evaluation of Lecture Outline Extraction Method
Recall Precision F1 Measure

Title 0.86 0.95 0.9

Subtitle-key point 0.61 0.77 0.68

10 Conclusion and Future Work

In this paper, we have presented an effective, robust system for indexing and analyzing lecture videos. We have
developed and evaluated a novel slide video segmenter and a text localization and verification scheme. Furthermore,
we have proposed a new method for extraction of timed lecture outlines using the geometrical information and stroke
width of detected text lines. The video exploring and indexing can be performed by using both, slide shots (visual
information) and extracted lecture outlines (textual information).
For our lecture video test set, the achieved segmentation accuracy is 96%. Furthermore, more than 94% of all text
regions and 96% of all slide title locations are correctly detected. 85% of all words are recognized accurately.
As an upcoming improvement, implementing context- and dictionary-based post-processing will improve the text
recognition rate. The slide text classification method can be further improved by using font color features.
Since it is desired that the segmented slide shots and extracted lecture outlines become frequently used functionalities
within our tele-teaching portal, the usability and utility need to be evaluated within a user study.
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