
Increasing Spot instances reliability using dynamic scalability

Wesam Dawoud

Hasso Plattner Institute
Potsdam University
Potsdam, Germany

wesam.dawoud@hpi.uni-potsdam.de

Ibrahim Takouna

Hasso Plattner Institute
Potsdam University
Potsdam, Germany

ibrahim.takouna@hpi.uni-potsdam.de

Christoph Meinel

Hasso Plattner Institute
Potsdam University
Potsdam, Germany

christoph.meinel@hpi.uni-potsdam.de

Abstract—Traditionally, Infrastructure as a Service (IaaS)
providers deliver their services as Reserved or On-Demand
instances. Spot Instances (SIs) is a complementary service that
allows customers to bid on the free capacity at the provider data
centers. Therefore, the decrease in the free capacity may result
in terminating instances abruptly. To ensure fair trading, the
provider does not charge customers for the interrupted partial
hours. However, SIs price history traces analysis shows that
uncharged time could rise up to 30% of the instance total run
time, which means a reduction in the provider’s profit.

In this paper, we propose Elastic Spot Instances (ESIs)
approach. It is a trade-off between the price and the total
run time, where instead of abruptly terminating the SIs,
the provider scales down their capacity proportionally to the
increase in the price. Our approach delegates the task of
interrupting the instances into the customers, but at the same
time keeps the control on the provider side to isolate SIs’
impact on the other services at overloaded time. Our approach
doesn’t imply an additional overhead or complex modification
to current IaaS, while it consumes interfaces that are available
by most of nowadays virtualization technologies.

Keywords-IaaS; Spot Instances; Reliability; Elasticity;

I. INTRODUCTION

Amazon is the first cloud provider to come up with SIs

[1] purchasing system to sell the spare capacity. The price

of SIs changes dynamically according to free capacity and

actual demand. Requests with bid price higher than or equal

the current spot price will be served. On the other hand,

if the current prices exceeded the user bid, provider will

terminate out-of-bid instances abruptly. SIs reduce the prices

from %38 to %44 of the On-Demand prices [2]. However,

SIs customers are supposed to modify their applications to

manage the abrupt termination of SIs.

To manage SIs termination, customers can implement

fault tolerant architectures like MapReduce, Grid, Queue-

Based, and Checkpointing [1]. The first three architectures

imply major modification to customers’ applications. On

the other hand, Checkpointing is a simple traditional fault

tolerant technique. It keeps application execution progress

by storing the current state (i.e., snapshot) of the running

instance into a persistent storage. Nevertheless, bad Check-

pointing strategies could impact the performance drastically

[3]. For instance, frequent Checkpointing results in a high

cumulative overhead (i.e., computation is paused at check-

pointing time). On the other hand, infrequent checkpointing

results in a high overhead caused by the high recovery time

(i.e., much computation should be repeated again).

The main goal of this paper is to reduce the Check-

pointing overhead in SIs environment. This is motivated by

the following facts: first, Checkpointing is a simple fault

tolerant technique that does not require major modifications

to customers’ applications. Second, Checkpointing could be

integrated to the other fault tolerant architectures to increase

their reliability. Finally and most importantly, if customers

have the control to get checkpoints exactly before terminat-

ing VMs instances (i.e., Optimum Checkpointing), then the

provider can eliminate the concept of unpaid partial running

hours, which on consequently increases the provider profit.

In this paper, we investigate Amazon EC2 SIs. However,

our approach is generic and increases the chance of the new

cloud providers to compete in the market of cloud computing

infrastructure.

In the next section, we study Amazon EC2 SIs imple-

mentation. In section III, we discuss our proposed ESIs

approach. In section IV, we show the preliminary steps that

are necessary to evaluate our approach. In section V, we

present related work done to improve the trade-off between

price, reliability, and total run time of applications on SIs.

Finally, in section VI, we conclude and point out to our

future work.

II. AMAZON EC2 SIS

Amazon EC2 infrastructure is distributed into Regions.

Each Region is separated into many Availability Zones

to prevent failure propagation. This infrastructure mainly

delivers Reserved and On-Demand Instances. The spare

capacity is sold as SIs. The SIs, as well as the Reserved
and On-Demand instance, could be one of many types

depending on resources capacity (e.g., High-CPU Medium

Instance “c1.medium”, High-Memory Extra Large Instance

“m2.xlarge”, etc...).

Spot Instance price is determined by the type, the Region,

and the operating system. Unlike Zhang et al.’s [4] assump-

tion, in our approach we assume that a physical machine

hosts only instances of the same type and operating system.

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.58

959

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.58

959

We support our assumption by observing CPU architecture

of each EC2 instance type.

III. ELASTIC SPOT INSTANCES (ESIS)

Current SIs implementation reacts with the increase de-

mand on On-Demand and Reserved instances by increasing

the SIs price. As a result, out-of-bid SIs are terminated

abruptly. A simple solution is to apply high bids strategy

and accept a higher total price. However, monitoring spot

instances price history traces shows that even such a tech-

nique don not guarantee continues running of SIs.

Our propose ESIs approach is a trade-off between the

price and the total running time. For instance, user can

keep running instance few minutes more, even with a higher

price, to finish a specific job within a deadline. At the same

time, ESIs user can decide about the limit of the price after

which he/she will terminate the VM instance safely (i.e.,

Checkpointing or planned terminating). The strength of our

approach lies in delegating VM instances termination into

the user without influencing the other services (i.e., Reserved
and On-Demand instances) performance.

Implementing our approach requires the following modi-

fications to current SIs purchasing algorithm: first, provider

should determine min and max price for each instance type.

Second, instead of terminating out-of-bid SIs, the provider

scales down instances’ capacity to a value proportional to

the increase in the SIs price. Third, running instances will

be charged per second, while terminating VM instances, at

our approach, is the user decision. On the light of these

modifications, algorithm calculates VM capacity according

to user bid and current SI price.

Algorithm 1 ESIs’s purchasing algorithm

Input: max price, min price, current price, min cap, and

user bid

Output: VM capacity

// Calculate the scaling step size

scale step← 100/(1000 ∗ (max price−min price)+
1)
// Calculate next capacity of VM

if user bid ≥ current price then
VM capacity ← 100

else
if user bid < current price then

VM capacity ← 100 − scale step ∗ 1000 ∗
(current price− user bid)

end if
//To prevent VM from starving

if VM capacity < min cap then
VM capacity ← min cap

end if
end if

In addition to user bid and current price, the algorithm

considers max and min price of SI’s type. According to [2],

the price history of most SIs types, except for some types

in US-East data center, could be modeled as a Mixture of

Gaussian distributions with three or four components with a

high fit. This gives the impression that SIs already have soft

minimum and maximum price thresholds for each instance

type. Moreover, to prevent VM instances from starving, we

propose having a minimum capacity of the VM resources.

Actually, this value should be carefully calculated. In our

extended research, we intend to study calculating this value

depending on the individual physical hosts’ utilization. This

can exploit the free capacity of physical hosts within a high

price zone.

Algorithm 1 shows that the provider will not have the

control to terminate the SIs. At first glance, it may seem

that customers will be complacent and can simply use a

very low bid strategy to guarantee a continued run with a

low price. However, if we take the example of “US-West,

Linux, High-CPU Medium” instance, the probability density

function shows that 99.8% of the prices fall between 0.076

and 0.084. Therefore, scale step value in algorithm 1 is

calculated as 100/(1000 ∗ (0.084 − 0.076) + 1) = 11.11,

which means that whenever the Spot Price surpasses user

bid with 0.001, the capacity of the instances will scale down

to (100 − 11.11) ≈ 89. If a user submitted a low bid, for

example 0.077, he will be charged 0.077 per hour for a full

capacity instance (i.e., 100%). However, when the market

price jump to 0.081, the instance capacity will be scaled

down to 100 − 11.11 ∗ (0.081 − 0.077) ≈ 56%. In spite

of the fact that the instance still being charged 0.077 per

hour, its capacity is scaled to almost 60%. By this concept,

at some value of the SI price, even users with low bids

have to decide between keeping VM instances running or

terminating them safely.

IV. ESIS MODELING

To evaluate our approach, we have to model the VM

instance performance with different values of resources

capacities. In this section, we model a VM instance runs

on Xen 4.1 hypervisor. The physical server has 2.8 GHz

Intel Quad Core i7 Processor and 8GB of physical memory.

The workload is CPU-intensive workload generated by EP

Embarrassing Parallel, which is one of NAS Parallel Bench-

marks (NPB) [5]. The throughput is measured by Million

Operations Per second (MOPs).

At the beginning, the VM instance runs with its full

capacity (i.e., 100%). As seen in figure 1, the throughput

is 37.92 MOPs and the execution time is 56.6 seconds.

The same workload is run many times but for different

capacities of the VM’s CPU. In our experiment, we use

Xen Credit Scheduler as an actuator for setting the CPU

capacity limit of the VM. The Credit Scheduler has a non

work-conserving mode, which prevents an overloaded VM

960960

from consuming the whole CPU capacity of the host and

consequently degrading the other VMs performance. For

each CPU capacity, we recorded both the MOPs number

and the total execution times.

t = 8916.8x-1.097
R² = 0.999

y = 0.2415x1.0958
R² = 0.999

0

5

10

15

20

25

30

35

40

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70 80 90 100

M
O

Ps

Ex
cu

tio
n

tim
e

(s
ec

o
n
d
s)

Excution time (seconds) MOPs

Power (Excution time (seconds)) Power (MOPs)

CPU capacity (%)

Figure 1. VM’s model against CPU-intensive workload

As seen in figure 1 the instance’s throughput changes

linearly with the virtual CPU (vCPU) capacity according

to the following equation:

0.2415 ∗ x1.0958 (1)

Where x is the vCPU capacity. A similar model should be

built for each VM instance type. These models will be fed

to our intended simulation.

V. RELATED WORK

Towards improving the trades off between the total price

and the total run time of SIs, Andrzejak et al. [6] have

proposed probabilistic decision model that considers user

bid, budget, and the job deadline. However, it has been

shown by Mazzucco et al. [7] that there is no correlation

between Spot prices and the time. Moreover, the artifact

changes in the SIs price [8] make it difficult to build

consistent models that describe the SIs market behavior for

the long run.

Yi et al. [3] employed Checkpointing and migration as

fault tolerance techniques. They examined many Check-

pointing strategies on the light of normalized Price×T ime
for different bid values and different types of instances.

Moreover, after each instance’s interruption, their approach

decides the new type, location, and price that reduce the

total running time.

In addition to Checkpointing and migration techniques,

Voorsluys et al. [9] integrated job duplication technique.

This integration increases the probability that jobs finish

within their deadlines. However, as concluded by authors,

job duplication yields much higher costs.

VI. CONCLUSION & FUTURE WORK

The proposed ESIs architecture does not require many

modifications to the current Cloud Computing Infrastructure.

However, it has benefits for both of the provider and the

customer. On the provider side, our approach increases

the provider’s revenue where it eliminates the concept of

the partial hours. For the customer, the proposed approach

boosts the Checkpointing strategy to the optimum level.

In this paper, we concentrate on CPU-intensive appli-

cations, where the CPU is the real player in power con-

sumption. However, in the future, we will consider other

resources and different combinations of the real workload.

Our approach introduces new spot instances market, which

should be clearly explained to the clients. Currently, we

are implementing a simulator that validates our approach

and help explaining the potential modification to current

bidding strategies. Moreover, we study the impact of the

ESIs approach on the other hosted services in the cloud

infrastructure.

REFERENCES

[1] “Amazon EC2 Spot Instances.” [Online]. Available:
http://aws.amazon.com/ec2/spot-instances/

[2] B. Javadi and R. Buyya, “Comprehensive Statistical Analysis
and Modeling of Spot Instances in Public Cloud Environ-
ments,” The University of Melbourne, Melbourne, Tech. Rep.,
2011.

[3] S. Yi, A. Andrzejak, and D. Kondo, “Monetary Cost-Aware
Checkpointing and Migration on Amazon Cloud Spot In-
stances,” IEEE Transactions on Services Computing, Jul. 2011.

[4] Q. Zhang, E. Gürses, R. Boutaba, and J. Xiao, “Dynamic
resource allocation for spot markets in clouds,” p. 1, Mar. 2011.

[5] NASA, “NAS Parallel Benchmarks (NPB).” [Online]. Avail-
able: http://www.nas.nasa.gov/Resources/Software/npb.html

[6] A. Andrzejak, D. Kondo, and S. Yi, “Decision Model for Cloud
Computing under SLA Constraints,” in 2010 IEEE Interna-
tional Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems. IEEE, Aug. 2010,
pp. 257–266.

[7] M. Mazzucco and M. Dumas, “Achieving Performance and
Availability Guarantees with Spot Instances,” in 13th Inter-
national Conference on High Performance Computing and
Communications (HPCC-2011), Banff (Canada).

[8] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and T. Dan,
“Deconstructing Amazon EC2 Spot Instance Pricing,” Tech-
nion Israel Institute of Technology, Haifa, Tech. Rep., 2011.

[9] W. Voorsluys and R. Buyya, “Reliable Provisioning of Spot
Instances for Compute-intensive Applications,” Computing Re-
search Repository, vol. abs/1110.5, 2011.

961961

