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Abstract—Recently, the advance of cloud computing services
has attracted many customers to host their Internet applica-
tions in the cloud. Infrastructure as a Service (IaaS) is on top of
these services where it gives more control over the provisioned
resources. The control is based on online monitoring of specific
metrics (e.g., CPU, Memory, and Network). Despite the fact
that these metrics guide resources provisioning, the lack of
understanding application behavior can lead to wrong deci-
sions. Moreover, current monitored metrics alone do not help
in resources contention prediction, which is very common in
shared infrastructures like IaaS. Nevertheless, the architecture
of Internet applications, as multi-tier systems, makes contention
prediction more complex while its influence can migrate from
one tier to another.

In this paper, we propose a pro-active global controller not
only for dynamic resources provisioning, but also for predicting
and eliminating contentions in multi-tier applications. Our
technique combines monitored metrics, which are provided by
current IaaS providers, with models that are built depending on
the Internet applications profiling. The fitness of the monitored
metrics to the application model is used for contention pre-
diction. We examined our technique using RUBiS benchmark.
The results express the efficiency of the developed algorithms in
maintaining Internet applications performance even in shared
infrastructures.

Keywords-Public IaaS; Cloud computing; Contention predic-
tion; Dynamic scalability; Application profiling.

I. INTRODUCTION

Typically, Internet applications are implemented using
multi-tier architecture as seen in Fig. 1(a). Each tier provides
a particular functionality. However, the type of incoming
request determines the participating tiers in the request
handling. For example, a request for a static page can be
handled by a web tier only. On the other hand, a search
for items in an online retail store will result in interactions
between all tiers including web tier, application tier, and
database tier [1].

So, to cope with the incoming workload variation, applica-
tion at each tier may be replicated into many servers. To keep
load balancing, the incoming workload will be distributed
among replicas using a dispatcher. The emergence of pay-as-
you-go concept in the cloud environment allows customers
to specify the number of replicas that cope with workload

demand while keeping the total cost to the minimum. To
control the number of replicas, IaaS providers (e.g., Amazon
EC2) offer the customers an online monitoring of specific
metrics utilization (e.g., CPU, Memory, and Network). A
simple approach is to determine a static upper threshold
(e.g., 70% CPU utilization) as a trigger for increasing
the number of Virtual Machines (VM) instances at high
workload, and another static lower threshold (e.g., 30% CPU
utilization) as a trigger for decreasing the number of VM
instances at low workload demand.

In fact, the static threshold approach, without knowl-
edge of application behavior, has many limitations. First,
applications are usually exposed to a concurrency limit,
so whenever this limit is approached, some requests are
dropped [2], [3], which keeps the monitored metrics within
a specific limit that does not really reflect the real demand.
Second, in a virtualized shared infrastructure, many VMs
of different customers can compete on the same physical
host resources. This competition leads to resource contention
that cannot be expressed by the available monitored metrics,
even though contention is often measured as a reduction
in resources utilization. We will see this in Section III.
Third, according to multi-tier architecture, the influence of
contention at one tier can migrate to the other tiers [4], which
increases the complexity of system management.

Our contributions in this paper are summarized as follows:
First, we built models that describe resources utilization ac-
cording to workload type and requests rate variation. Second,
we designed controllers that employ these models, besides
the online monitoring of resources, to dynamically provision
resources as well as predict and eliminate contentions in IaaS
environments. Finally, we evaluated our approach practically
using RUBiS benchmark.

In next section, we present our proposed solution includ-
ing system architecture, methodology, and models identifi-
cation. Next, in Section III, we evaluate our system using
RUBiS benchmark. In Section IV we give a literature review.
Finally, in Section V, we conclude our work and present the
intended future work.
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II. PROPOSED SYSTEM

In this section, we start with an overview of current appli-
cation scalability architecture at IaaS, and then we discuss
the potential limitations followed by our proposed solution.
Afterwards, we provide a detailed description of each com-
ponent of our system and the running algorithms. Then, we
show extraction and evaluation of utilization models. At the
end of the section, we discuss some of the technical issues
that emerged during our system development.

A. System architecture

Our system assumes that an Internet application is hosted
in a public IaaS environment and deployed using multi-tier
architecture. A typical multi-tier architecture is illustrated
at the upper part of Fig. 1. The rounded rectangles show
the running instances at each tier. Whenever the customer
submits a request for an instance, the provider finds the best
host according to instance type and workload on the hosts.
The same host can run instances of different customers with
different demands. The number of these instances should be
increased or decreased according to workload’s variation.
Typically, Service Level Agreement (SLA) of IaaS provider
describes only the annual up time of the instances, but it
does not discuss potential performance degradation caused
by contention for resources.
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Figure 1. System architecture

IaaS providers delegate the control on the number of
instances at each tier to their customers. For this goal,
customers are equipped with services which enable them
to monitor resources and determine triggers for increasing
or decreasing the number of instances at each tier. How-
ever, scalability depending on static thresholds of each tier
without knowledge of the application model and the real
incoming workload is inefficient according to [2] and [3].
Therefore, we propose a global controller that employs the
application model to proactively control tiers capacity and
resolve application performance anomalies that are caused
by contention for resources.

B. Methodology

The architecture of our proposed solution is shown in
Fig. 1(b) and explained in details in Fig. 2. It integrates the
utilization monitoring with requests logging. Our proposed
system is comprised of the following phases: monitoring,
sampling, model building and running.
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Figure 2. Our proposed system

1) Monitoring phase: Besides the monitored resources
that are provided by current IaaS providers we consider the
log files that describe the transactions handled by Internet
application. Typically, these logs locate at a single point
where all traffic passes (e.g., load balancer). However, to
avoid single point of failure, some providers offer hardware
load balancers or Elastic Load balancers [5] as we will
discuss in Section III-C. Even in such cases, the logs
collected by different web servers can be synchronized to
one log file that describes the demand on the whole Internet
application. The access log file can be configured to log
access time, response time, and the request URL.

2) Sampling phase: As the transactions continuously
arrive to the system, we consider a sampling window that
describes the transactions’ behavior at specific period of
time. Within the sampling window, we classify the trans-
actions into categories, and then determine the rate of each
category. The categories are determined depending on the
URL. In fact, types of requests depending on URL can be
very large in a real Internet application. However, classifying
these requests to coarse grained categories: cacheable, non-
cacheable, and demanding [6] reduces the number of the
categories that really have an impact on the system uti-
lization. For example, Zhang et al. [7] showed that using
only 20 types of a requests with a system of total 756
types of requests could lead to accurate resources utilization
prediction. In our experiments, we consider 18 types of
requests using RUBiS benchmark and ignore the cacheable
requests (i.e., static pages and images), while they show
a negligible impact on web tier performance. The output
of the sampling phase for the sampling period k is a
vector describing the number of requests of each category
(k[u1, u2, ..., un]). These sampled vectors are used for both
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training and running the system.
3) Modeling phase: In the modeling phase, to avoid any

influence from the other tiers, we run plenty of replica
instances in all tiers except the modeled one. For instance,
to model a web tier, we run a single VM instance at the web
tier but many replicas at both application and database tier.
The collected traces are CPU utilization, Memory allocation,
Network IN/OUT rate, and Disk read/write rate. Afterwards,
we synchronize the collected traces with the access logs that
are collected in the sampling phase. The rate of each request
category vector is an input of our models, while the output
is one measured performance metric at a time (e.g. CPU
utilization).

4) Running phase: This phase depends on the extracted
models in the training phase. These models are employed to
do two integrated functions: First, managing the scalability
of the system. Second, predict and eliminate contention for
resources.

At running time, the sampling module, seen in Fig. 2,
continuously extracts a raw vector of requests’ rate for each
sampling period k. The requests vector k[u1, u2, , un] is
passed to the models to predict ŷk, which represents the
expected utilization of a resource calculated by models. The
online measure utilization yk, the average of the measured
utilization y, as well as the modeled utilization ŷk are used
in equation 1 to calculate F , which describes the fitness of
the measured to the modeled values of resources utilization
of VMs instances at each tier.

F = 1−
√√√√∑N

k=1 |yk − ŷk|2∑N
k=1 |yk − yk|2

(1)

Actually, equation 1 is applied for each resource r of
the VM instance n, which runs at tier m. To formalize
it, we consider M tiers. Each tier runs N VM instances,
while each VM instance has R resources. Practically, we
implemented ŷk, ŷk−1, yk, and yk using ArrayList object,
while each tier can have a different number of instances. To
simplify arrays representation, we represent them as three
dimensional arrays.

In addition to yk, ŷk, and yk, the inputs of contention
prediction algorithm include ConfWindow. An integer
value determines a threshold value of the acceptable negative
fitness occurrence. It is used to increase the system stability.
So, before adding a VM into VMs[ ] for replacement, the
algorithm allows many occurrence of low fitness. However,
if the low fitness occurrence number went higher than the
determined Confwindow for a VM instance, the algorithm
add that VM to VMs[ ] vector for replacement.

Parallel to the contention prediction algorithm, the provi-
sioning algorithm continuously checks the contented VMs
list VMs[ ]. The first step to eliminate a contented VM is
to run a new VM instance in the same tier. Afterwards, the
algorithm continues its run looking for any tier m with a

Algorithm 1 Contention prediction algorithm
Input: yk[M ][N ][R], ŷk[M ][N ][R], yk[M ][N ][R], and
ConfWindow
Output: VMs[ ]
Initialization: temp VMs[ ] ← null (Local vector con-
tains candidate VMs for replacement)
loop

// Find VMs with potential contention
for m = 1 to M do

for n = 1 to N do

for r = 1 to R do

//Calculate F at equation 1 for each resource r
if F < 0 then

insert VM id into temp VMs[ ]
end if

end for

end for

end for

if count(VM id in temp VMs[ ]) > ConfWindow
then

insert VM id into VMs[ ]
remove VM ids from temp VMs[ ]
pass VMs[ ] to Provisioning controller

end if

end loop

bottleneck. The minimum and maximum thresholds of each
resource r at tier m are described by system administrator
as min[m][r] and max[m][r], respectively. The bottleneck is
determined by comparing predicted utilization ŷk−1[m][n][r]
with predetermined maximum thresholds max[m][r]. To be
sure that each tier is scaled up once per a control loop,
we keep a tag array called scale up[m] for each tier m.
Similarly we have scale down[m] tags array for scaling
down. At scaling down, the algorithm gives the priority for
terminating VMs instances which are tagged as contended
instances. However, if a tier does not contain any contended
instance, the algorithm picks up a VM instance randomly to
terminate.

In our algorithms we assume that each load balancer, seen
in Fig.1, routes the same amount of traffic for each replica.
In other words, to calculate ŷk and ˆyk−1, the model should
divide the input vector [u1, u2, , un] by number of replicas.
We will validate this assumption at section III.

C. Models identification

In this section, we start with a single-input, single-
output (SISO) AutoRegressive model with eXogenous inputs
(ARX) to learn a linear relationship between input u and
output y as y = f(u). Later, we will extend the SISO model
to a multiple-input, single-output (MISO) model, which is
used to model the relation between the multiple inputs (i.e.,
the rate of each requests category) and a single output (i.e.,
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Algorithm 2 Provisioning algorithm
Input: ŷk−1[M ][N ][R], max[M ][R], min[M ][R],
Current[M ], and VMs[ ]
Output: Next[M ]
Initialization: scale up[M ] is initialized with false;
scale down[M ] is initialized with false
loop

for m = 1 to M do

if VMs[ ] �= null then

// Add new VM instances sibling to contented
VMs

end if

for n = 1 to N do

for r = 1 to R do

// Check if scaling up is required
if ŷk−1[m][n][r] >= max[m][r] and

scale up[m] �= true then

// Add new VM instance to tier m
Next[m] ← Current[m] + 1
scale up[m] ← true

end if

// Check if scaling down is possible
if ŷk−1[m][n][r] < min[m][r] and

scale up[m] �= true and scale down[m] �=
true then

// Turn off a VM instance at tier m
if VMs[ ] �= null then

// Schedule terminating the contented VM
else

// pickup any VM for scheduled termina-
tion

end if

Next[m] ← Current[m]− 1
scale down[m] ← true

end if

end for

end for

end for

end loop

CPU utilization, Memory utilization, Network input/output
traffic rate, etc...). The input u and output y are sampled
at time k as uk and yk respectively. The input-output
relationship can be represented by the following difference
equation:

yk + a1yk−1+...+ ana
yk−na

= b1uk−nk
+ ...+ bnb

uk−nk−nb+1 + εk
(2)

The parameters na and nb reflect how strongly previous
steps affect the current output, while nk represents the delay

between the effective input uk and output yk. For instance,
nk = 0 means a direct coupling between input and output.
A compact way to write the difference equation is:

A(q)yk = B(q)uk + εk (3)

If we consider q as a delay operator, we can interpret
A(q) and B(q) as follows:

A(q) = 1 + a1q
−1 + ...+ ana

q−na (4)

B(q) = b1q
−nk + ...+ bnb

q−nk−nb+1 (5)

The white noise term εk is usually small for a model
with high fitness score, so we can extract the adjustable
parameters to the following:

θ = [ a1 a2 .... ana
b1 b2 ... bnb

]
T (6)

If we define a column ϕk as follows:

ϕk =
[ −yk−1 .... − yk−nan

uk−nk
... uk−nk−nb+1

]T
(7)

Then, the estimator ŷk of yk can be calculated as follows:

ŷk = ϕT
k θ (8)

If we have N measurements of input uk and output yk,
then the goal is to find θ that results in the lowest quadratic
error:

ε =
1

N

N∑
k=1

(ŷk − yk)
2 (9)

Using Least Squares Method (LSM) for θ, we can find
θ̂k that minimizes the estimated error ε as follows:

θ̂k =

[
1

N

N∑
k=1

(
ϕkϕ

T
k

)]−1

f (N) (10)

where:

f (N) =
1

N

N∑
k=1

ϕkyk (11)

The SISO model shown in equation 2 could be extended to
the MISO model, which considers C categories of requests.
Each category rate results in a different consumption of
resources. If we refer to category i of requests as ui, then we
should derive the new relationship y = f(u1, u2, ..., uC). In
this case, the coefficients of request i could be presented as[
bi1 bi2 ... binb

]
. The equation 2 will be updated to consider

multiple inputs as follows:

yk + a1yk−1+...+ ana
yk−na

= b11u
1
k−nk

+ ...+ b1nb
u1
k−nk−nb+1

+ ...

+ bC1 u
C
k−nk

+ ...+ bCnb
uC
k−nk−nb+1 (12)
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Accordingly, new values of θ and ϕ that consider multiple
inputs are as follows:

θ =
[
a1 a2 .... ana b11 b12 ... b1nb

...... bC1 bC2 ... bCnb

]T
(13)

ϕk = [ −yk−1 .... − yk−nan
u1
k−nk

... u1
k−nk−nb+1

......

uC
k−nk

... uC
k−nk−nb+1 ]T

(14)

After extracting θ parameter and defining ϕk for multiple
inputs model, we can use equations 8 to 11 of SISO model
to find θ̂k that minimizes the estimated error ε of MISO
model.

In our experiments, we observed that setting na = 2
and nb = 2 could reduce the parameters search space
without degrading model’s accuracy. Moreover, we did not
consider any time delay by setting nk value to zero while
the sampling window size is 20 seconds, which is long
enough to hide small delays of request impact on each tier.
Typically, common least square algorithms have polynomial
time complexity O(u3v) when solving v equations with u
variables [7]. However, we solve these equations once at
off-line time for each resource. At run time, we calculate ŷk
with a linear complexity O(n), where n = na + nb ∗ C.

III. EVALUATION

Our approach is evaluated using RUBiS benchmark [8].
It is an online auction site developed at Rice University
to model basic functions of ebay.com system. RUBiS is
implemented using several Enterprise JavaBeans (EJB) con-
tainer configurations in order to measure their scalability.
The original implementation of RUBiS uses a variety of
open source software products including JBoss, JOnAS,
Tomcat, and Apache. In this paper we consider a multi-tier
system comprised of Apache as a web server, Tomcat as an
application server, and MySql as a database.

Our physical infrastructure consists of three Dell OptiPlex
980 servers with Intel Core i5-2400 CPU @ 3.10GHz.
Memory size was 8 GB on all machines. These machines
are connected using a Gigabit-Ethernet switch. The installed
hypervisor is VMware ESX 4.1. To monitor VMs utilization,
we implemented a java-based client that consumes the web
services of each VMware server to get online measurements
of VMs resources utilization. We implemented each tier into
a different physical host. Moreover, we depend on the vCPU
affinity to isolate performance.

A. Models extraction and validation

To cover a variety of workload intensity, we ran RUBiS
client with different values of number of clients that range
from 100 to 1200. Moreover, we ran RUBiS default traffic,

which includes both browsing and updating requests. The
online measurements are merged and synchronized with the
sampled logs from load balancer to build a model for each
monitored resource. These models will be used later for
contention prediction and system scalability.

For validation, we run the experiment again but with
different steps that range from 150 to 1250 to avoid using the
same traces of training data. In this experiment we intend to
validate extracted models and at the same time measure the
scalability impact on models fitness. Therefore, we ran two
replicas in both web and application tiers. Figure 3 shows
the cumulative distribution function (CDF) of absolute error
of CPU utilization of web1, app1, and database. We do not
show CDF of web2 and app2 while they are very close to
CDF of web1 and app2. The figure shows that 90% of the
measured absolute errors are less than or equal 2 for web and
application replicas. On the other hand, 90% of the measured
absolute errors are less than or equal 4.5 for database. In
addition to CDF, we calculate the fitness F , using equation
1, for each VM instance participated in the experiment run.
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Figure 3. CDF of absolute error of CPU utilization of web1, app1, and
database instances

Table I
FITNESS OF CPU UTILIZATION MODEL FOR TWO WEB REPLICAS, TWO

APPLICATION REPLICAS, AND A DATABASE CALCULATED BY EQUATION
1

Instance: web1 web2 app1 app2 db
Fitness (%): 95.60 95.75 94.67 94.09 86.85

The fitness values shown at table I, in addition to CDFs
at Fig. 3, prove that dividing the measured rate of requests,
at equation 14, by the number of replicas results in high
accurate models for replicas. Practically, session-based load
balancing can result in non-equally distributed traffic to the
replicas. However, in all our experiments, even though sticky
sessions are enabled at load balancers, the fitness of the
models is still high. This confirms the statement of Zhang
et al. [4]: “a multi-tier system with a complex session-based
workload can be modeled with a transaction-based mix”.
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Figure 4. Predicting and eliminating contention that affected web2 VM instance

Another interesting observation was that among many
experiments on different system structures, we noticed that
the fitness of CPU utilization model of web and application
instances is always higher than that of the database. For
instance, the fitness of web and application tiers ranges
from 90% to 95%, while it ranges from 85% to 90% for
the database tier. Zhang et al. [4] and Ahmad et al. [9]
have the same observation. Therefore, [9] applied a heuristic
approach to increase a model’s accuracy. The heuristic
approach ignores the difference between the predicted and
measured values if it does not have an impact on the system
performance. According to [9] experiments, their approach
decreases the mean error of CPU model from 12.83 to
11.10. During our experiments, we observed that the rate of
miss/hit of database query cache had an impact on measured
CPU utilization. Therefore, we are studying the possibility
of including cache miss/hit rate into our regression models.
However, instead of running additional sensors within each
database, we are considering extracting this information
from the sequence of the requests. For instance, if “read
only ” query is followed by “modify” query, then we are
quite sure that next instance of any read only query will not
hit the cache due to cache invalidation. An example of such
database engines is MySql database, which invalidate cache
entries for any modified table.

B. Contention prediction
In this section, we demonstrate the system ability to pre-

dict and eliminate contention of resources. First we consider
running RUBiS client with 1000 simultaneous clients. The
experiment run time is divided into four epochs. Each epoch
describes a different performance state: epoch1 (0 to 140),
epoch2 (140 to 1100), epoch3 (1100 to 1500), and epoch4
(1500 to the end of experiment). Figure 4 shows that both
web1 and web2 VMs were able to utilize around 48%
of the physical core capacity until the end of epoch1. At
that moment, a VM called stress started competing on the

physical core with web2. Stress is a VM mapped to same
physical core with web2 VM. It runs the command: “stress
–cpu 10 –io 8 –vm 2 –vm-bytes 256M”. As seen in Fig. 4,
stress VM has an impact on the whole system performance:
First, the response time jumped to 1400 ms second at the
moment of starting stress VM and stabilized along time
interval (380 to 1100 seconds) to be 369 ms, which is
230% higher than the expected response time (i.e., 160
ms). Second, the contention caused by stress also influenced
balancer. Even though they are mapped to different physical
CPUs, we noticed a slight decrease in the CPU utilization of
balancer VM. This decrease is due to the overhead increase
at the web tier, which decreased the ability of the multi-tier
system to accept more requests. Third, the contention had
the most impact on web2, where the average CPU utilization
dropped down to 35% instead of 48%.
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Figure 5. CPU utilization of web tier replicas

Using equation 1, the controller predicts degradation in
web2 performance and starts resolving it at epoch3. As
seen in algorithm 2, the first step is to run another replica
web3 to replace web2. At that moment, the model of the
web tier instances is updated to predict 3 replicas at web
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tier, as seen in Fig. 5. Also, the fitness is calculated using
equation 1 to insure that web3 has no contention with the
other VMs on the physical host. Afterwards, the provisioning
controller schedules the contended VM (i.e., web2) termina-
tion and keeps running web1 and web3. This brings down
the response time to 160 ms as it was at the beginning of
experiment running at epoch1. Finally, we should note that at
epoch3, even thought the system has three web replicas, the
VM with contention has influence on response time while a
portion of the traffic is still routed to web2.

Figure 5 shows both the measured and predicted CPU
utilization of each web instance. Epoch 1 and 4 show
that the measured CPU utilization closely fits the modeled
utilization. However, at Epoch 2, according to contention at
web2, the balancer routes more traffic to web1, which results
in an increase in measured CPU utilization compared with
the modeled CPU utilization. According to model adaptation
based on the number of replicas, the average measured
values yk in equation 1 is not valid along the whole run
of a VM instance. Therefore, at running time of our system,
we calculate yk along a specific measurement window (i.e.,
last 5 measurements). The specified window also helps the
contention predictor, seen in Fig. 2, to cope rapidly with
contentions. Figure 6 shows the fitness of each web instance
model. Epoch 4 shows that after replacing the contended
instance (i.e., web2) the fitness of web1 and web3 CPU
utilization models go again closer to one.

C. Technical discussion

In this section, we discuss some of the technical details
that were confronted during our system implementation.

First, nginx shows much better performance compared
with Apache as a load balancer. During our experiments, we
noticed that Apache performance degrades drastically at a
high rate of traffic. Moreover, as a process- or thread-driven
application, Apache consumes much memory to spawn more
processes or threads. On the other hand, as an event-
driven application, nginx was able to outperform Apache
performance even with few processes.

Second, in an IaaS environment, running a new VM
instance implies assigning a new IP address to the new
instance, which is unknown to load balancer. This requires
updating the load balancer with the new IP addresses online.
In fact, both Apache and nginx enable online reloading con-
figuration file, which contains replications details. However,
nginx shows no degradation in performance compared with
Apache, which interrupts the service temporarily by killing
current processes and creating them again.

Third, we implemented our prototype into local infrastruc-
ture to have more control over resources during experiments.
However, Amazon EC2 [5] has all the tools that support
implementing our approach. For example, using Amazon
AWS client, a user can monitor, provision, and terminate
instances remotely. For load balancing, a customer can either
use static load balancers, as seen in our experiments, or a
combination of many static balancers and one Elastic Load
Balancer [10]. Elastic Load Balancer is a service available
at Amazon EC2 to increase Internet applications reliability.
It has many advantages while it allows distributing load
among different zones. Moreover, the provider is responsible
for its reliability and dynamic scalability to cope with
workload demand. Currently, using Amazon CloudWatch,
clients can get the number of requests that are manipulated
by Elastic Load Balancer and the response time of each
request. However, there is no information about the request’s
URL. We hope that Amazon considers such a metric in
their development. Until then, our approach remains valid
using static load balancer or by collecting and synchronizing
access logs from web tier instances.

IV. RELATED WORK

Performance evaluation and capacity planning of Internet
application have been intensively studied along the last
years. To manage applications performance dynamically,
systems administrators need models that describe application
performance under different workload. In this section, we
review two commonly used techniques for modeling Internet
applications:

A. Modeling as queues

Queuing theory has been a widely used methodology for
modeling system behavior and capacity planning. An early
work by Villela et al. [11] only examined the application tier.
Each server at application tier is modeled as M/G/1/PS
queuing system. Similarly, [12] proposed a G/G/1 queuing
model for replicated single-tier applications (e.g., clustered
web servers). Also [13] modeled the Java application tier of
an e-commerce application with N servers as a G/G/N
queuing system. Practically speaking, modeling one tier
could be useful for specific scenarios, but in reality it
neglects crucial features of multi-tier Internet application
like caching, bottlenecks shift, and bottlenecks oscillating
[3]. This fact limits the ability of single-tier models to
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manage capacity and performance of multi-tier systems. To
go over these limitations, Urgaonkar et al. [1] proposed
modeling multi-tier system as a closed network of queues,
where each queue represents a different tier. Moreover, they
consider caching effects and application concurrency limits
in their models. Their system is able to predict response
time with 95% confidence. However, because they consider
a single queue per a tier, their system is able to capture a
single resource bottleneck at a time (e.g., CPU utilization
or network bandwidth). Furthermore, implementing their
approach requires estimating many model parameters such
as: arrival rate, service times at each tier, and other pa-
rameters related to congestion effects [14]. On the other
hand, Stewart, et al. [14] modeled a server as a network of
queues representing multiple resources (i.e., CPU, Network,
and Disk). This enabled their technique to predict different
resources bottlenecks, unlike [1] approach. However, [14]
implementation modeled multi-tier system as an open net-
work queue that neglects user thinking time, which is an
unrealistic assumption in Internet applications [15], [2], and
[1]. Moreover, their approach does not consider the caching
effect or application concurrency limit.

B. Statistical modeling

Stewart et al. [16] profiled applications to predict demand
on underlying components of online services. Their models
account for inter-component communication and placement.
The infeasibility of their approach lies in the need for in-
tensive calibration. For instance, to model N components of
the system, they should run O(N2) benchmarks. Moreover,
they assume a prior knowledge about components’ structure.
A later work by Stewart et al. [14] exploits non-stationary
workload to obtain the same performance profiles that are
extracted in [16] using only lightweight passive measure-
ments (e.g., login, browse, add-to-cart, and checkout rates).
Moreover, their improved approach assumes no required
knowledge of an internal application structure. Zhang et al.
[17] argued that simple categorization approaches, which
depend on transaction type to categorize workload [14] [4],
result in a fair but not very high accuracy. Therefore, they
suggested improving the models’ accuracy by iteratively
splitting and merging the categories depending on estimated
resource usage. Their approach is inspired by [18] approach.
The Sharma et al. [18] approach successfully discovered 2
workload categories of PetShop benchmark using a machine
learning technique called Independent Component Analysis
(ICA). The approach does not require any information about
requests URL. Nevertheless, the ICA approach limits the
possible number of categories to the number of measurable
resources. Zhang et al. [17] overcome this restriction by
proposing transaction ICA. So, instead of using ICA solely,
[17] start initial categorization of requests using URL, then
improve it iteratively by merging homogeneous categories
and splitting heterogeneous categories. Ghanbari et al. [19]

suggest classifying requests depending on the response time.
They validated their approach on two tier system (i.e., web
and database server). We are interested in examining the
efficiency of such an approach on shared environment where
the consolidation can have a strong impact on response time.
Sheikh et al. [20] presented an experiment-driven for predict-
ing database response time using Gaussian Process models.
A key feature in their approach is its online adaptability to
workload change and machine configuration. Currently, their
approach targeted databases. However, it is interesting to see
it handling http requests of Internet applications, as well as
database queries. Jiang et al. [21] profiled services at multi-
tier systems looking for constant pair-wise relations between
components. These relations (i.e., system invariants) are used
for capacity planning and resource optimization. However,
authors considered low level metrics (e.g., CPU soft IRQ
time and used heap memory size), which increase the system
monitoring complexity without crucial contribution to the
model accuracy, as we observed in our experiments.

In the light of related work, we can summarize the
features of our approach as follows: First, our system
is classified as a statistical modeling, while we profiled
each application according to incoming requests and the
measured resources utilization. Second, unlike [16] and
[21] who modeled many components of the system; we
modeled only the components that showed high impact on
the system’s performance to simplify system implementation
without decreasing the accuracy. Third, while Urgaonkar
et al. [1] consider one resource at a time, we are able to
build a model for many resources. Fourth, our approach
is considered lightweight while it requires neither internal
monitoring as in [12] and [1] nor special knowledge of
system components as in [16]. Fifth, just as [14], [16] and [1]
we used RUBiS benchmark to build and evaluate our system.
Finally, we categorized requests depending on URL and
employed prior coarse-grain classification (i.e., cacheable,
non-cacheable) to express caching effect on the system
performance. Our observations show that prior coarse-grain
classification and a careful selection of queries that should
be considered in model generation have much impact on
model’s accuracy. However, we intend to evaluate iterative
categorizing techniques suggested by [17] and [19] to exploit
the trade-off between the accuracy and the additional implied
computation.

V. CONCLUSION & FUTURE WORK

In this paper, we proposed a lightweight approach to
control system scalability and predict the contention in a
shared IaaS environment. Our approach profiles application
behavior at each tier of Internet application. We used RUBiS
benchmark to build and validate our approach. The extracted
models of CPU utilization showed fitness ranges from 90%
to 95% for web and application tier, and fitness ranges
from 85% to 90% for database tier. Moreover, experiments
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showed the ability of our approach to predict and eliminate
the impact of resources contention at shared infrastructure.

Our immediate future work is to improve database tier
models and to study the trades-off between the cost of
the improvement and the models accuracy. Also, we are
going to study the effect of database aging on model’s
accuracy. Moreover, we plan to develop techniques for
automatically categorizing incoming requests. Finally, in our
extended research we will consider heterogeneous types of
replicas and will examine our approach using more Internet
applications.
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