
Handwriting Recognition for a Digital Whiteboard
Collaboration Platform

Lutz Gericke, Matthias Wenzel, Raja Gumienny, Christian Willems, and Christoph Meinel
Hasso Plattner Institute Potsdam

Prof. Dr. Helmert Str. 2-3, Potsdam, Germany
Email: {firstname.lastname}@hpi.uni-potsdam.de

Abstract—The research presented in this paper addresses
challenges at the intersection of two disciplines: web based collab-
oration using digital whiteboards and handwriting recognition.
The main focus is on the handwriting recognition in order to
enable asynchronous usage of the whiteboard content beyond
the existing web portal.

We present a way to analyze unstructured whiteboard content
including drawings, sketches and handwritten text. Our approach
uses a recursive extension of the DBSCAN algorithm in order to
transfer smaller portions of content to the recognition engine
and achieve an appropriate spatial clustering of the content.
The adjustment of the configuration parameters, as well as the
development of a break condition for the recursion, are shown in
detail. We show that it is possible to use an online handwriting
recognition engine with offline data and still achieve meaningful
results. The presented architecture on the one hand, and the
combination of online and offline recognition on the other, ease
asynchronous modes of interaction using digital whiteboards.

Keywords—remote collaboration; handwriting recognition;
digital whiteboard; DBSCAN

I. INTRODUCTION

In the beginning, we developed Tele-Board, which is a
digital whiteboard system, supporting different modes of work
within the same tool - asynchronous and synchronous as
well as co-located and distributed settings (cf. [3]). To make
asynchronous working modes more convenient and enable
reuse of the produced data, we wanted to find ways of better
documenting and computationally “understand” the content.
Based on the data that is already archived in our system,
we evaluated different approaches in the field of handwriting
recognition and their applicability for unstructured whiteboard
notes. Applications for the recognized texts are searches
on the whiteboard content or reuse in text-applications, e.g.
spreadsheets or presentations.

Handwriting recognition has been a major field of interest
for researchers in machine learning applications. Recently,
some very advanced solutions have emerged on the mar-
ket. While some solutions use Optical Character Recognition
(OCR) to analyze scanned documents, others deal with hand-
written text from, e.g., a Tablet PC, usually with the help of
an online handwriting recognition using vector data. Typically,
these online handwriting recognition systems have a higher
recognition rate than offline recognition systems [9], since they
can use more features of the writing (e.g., order, pressure or
drawing velocity).

Recognition of handwriting is a complex task [10] and
therefore, results will not be available to the users instantly.
Nevertheless, for collaboration tasks, it is often not a good
idea to run an online recognition, because interaction with
the user (e.g., choosing recognition alternatives) would capture
too much attention. In our application domain - handwriting
recognition on a digital whiteboard system - distractions of
any kind are not welcome since people are focused on the
creative teamwork.

The data we use in the Tele-Board system - which is
the underlying application framework for the development
described in this article - is vector data. This means that
the representation of handwritten texts, drawings, etc., is not
only stored as an image but as line strokes consisting of
point coordinates. This way, we can benefit from two different
fields: an offline recognition that does not distract users
and a recognition quality as good as an online handwriting
recognition system equipped with more context information.
However, we also need an efficient way to analyze the data that
has been archived before the introduction of the handwriting
recognition within the Tele-Board.

Figure 1. Digitally archived image representation of mixed writing/sketching
on a whiteboard

Our approach is an offline handwriting recognition using
an existing online handwriting system with very good results
even for low-quality writing and different writers. In order to
realize this procedure, we have to overcome some problems.
The stroke data has to be transferred to the recognition engine



and somehow be replayed there as if it were a live drawing.
The problem proves to be even more complex when we go
into the details. Whereas in an online handwriting recognition
system the input field is often a small area on the screen where
single words or phrases can be written, a whole whiteboard as
an input field is a much more complex construct (see figure
1). We have to find an automated solution to build clusters
of content which can be passed to the recognition engine.
Another problem that has to be solved by our presented clus-
tering algorithm is the temporal order, which is not necessarily
equivalent to the spatial order of the single strokes.

Towards an understanding of the project’s context, we give
an architectural overview of the Tele-Board system in the
following section. Following, we describe related work in the
field of digital whiteboards, offline and online handwriting
recognition, as well as clustering algorithms. We then show the
clustering algorithm and the details of triggering recognition as
well as an evaluation of the recognition results. A conclusion
will summarize this article and give an outlook on further
research activity.

II. ARCHITECTURAL OVERVIEW OF THE TELE-BOARD
SYSTEM

base location A base location B

input devices

workspace hub workspace hub

collaboration server

video
collaboration

synchronized 
design panel

input devices

Figure 2. Tele-Board system’s overall setup: two locations are connected
via a collaboration server, several input devices are used to create content,
the whiteboard hardware is used to interact with the whiteboard surface

This section outlines the general architecture of Tele-Board.
As shown in figure 2, there are multiple locations (in this case
only two) that are connected via a communication server. This
server synchronizes whiteboard content between the boards. A
touch-sensitive whiteboard input device is used to interact with
the content. Several mobile input devices (iPad/iPod/Tablet
PC) are used to create content such as handwritten sticky
notes or keyboard typed notes from a laptop computer. The
communication relies on the open Extensible Messaging and
Presence Protocol (XMPP) and whiteboard element data is
encoded as XML format. Due to this client server infras-
tructure, we are able to capture every single synchronization
command between the clients and store the data in a database.
This allows us to reconstruct every single point in time
of the whiteboard content history. For more details on this
infrastructure, see [2].

Whiteboards are organized with the help of projects and
panels. A panel describes one whiteboard session with its

timeline of events (p = (e1, e2, e3, ...)), whereas an event
can be a NEW, CHANGE or DELETE action on a single
whiteboard element (path, sticky note, cluster, etc.). A strict
temporal order makes it possible to retrace every element’s
timeline and its state at a given time. A project is a set of
panels (pro = {p1, p2, ...}) used to organize the different
sessions and equip them with a set of permissions [2].
4 Struktureller Entwurf der Handschrifterkennungskomponente 31

<postit bgimage="" farbe="yellow" sizex="150" sizey="100" tag="
" textcontent="" uid="7804:5" x="1050" y="1329">

<postitpath color="black" d=" M 30.900002 30.900002 L
30.900002 30.900002 ..."/>

</postit>

Abbildung 4.3: PostIt Darstellung auf dem Whiteboard und dessen XML Repräsentation

Attribute, die das Element beschreiben. Die Attribute x und y legen bspw. die Position
des Mittelpunktes des PostIts auf dem Whiteboard fest. Das Attribut textcontent kann
einen Unicode-Text-String enthalten, der innerhalb des PostIts dargestellt wird, sofern
ein solcher mittels einer Tastatur angegeben wurde. Der Kindknoten postitpath enthält
innerhalb seines Attributs d einen Zeichenpfad in SVG14 Notation, wobei ausschließ-
lich die SVG-Pfad Kommandos moveto (M) und lineto (L) verwendet werden, welche
eine Positionsänderung bzw. das Zeichnen einer Linie bewirken. Dieser Pfad stellt so-
mit eine etwaige Schriftrepräsentation dar und ist damit die Quelle für die zukünftige
Handschrifterkennung.

Ein weiteres Whiteboard-Element ist das Skribble. Es handelt sich dabei um einen ein-
zelnen Zeichenpfad, welcher direkt auf dem Whiteboard erstellt wird. Das bedeutet, dass
ein Skribble durch unterbrechungsfreies Zeichnen mittels Stift oder Maus zwischen Auf-
setzen und Absetzen des Stifts (bei einer Maus entsprechend das Drücken und Loslassen
der Maustaste) definiert wird. In Abbildung 4.4 sind die Darstellung auf dem White-
board und die Repräsenation durch XML visualisiert. Genau genommen handelt es sich
bei der Abbildung auf dem Whiteboard um eine Ansammlung mehrerer Skribbles, da
die Zeichnung und der Text durch mehrfaches Auf- und Absetzen eines Stiftes entstan-
den ist. Die XML-Repräsentation eines Skribbles besteht aus einem Knoten mit dem
Attribut d, das wie bei einem PostIt einen SVG-Zeichenpfad enthält. Der Unterschied
dabei ist allerdings, dass bei einem Skribble immer nur ein M-Kommando am Anfang
des Pfades vorkommt. PostIts enthalten somit alle Zeichenpfade in zusammengefasster
Form.

Das Element Cluster dient ausschließlich der Gruppierung und stellt damit eine Menge
von inhaltlich zusammengehörigen Elementen dar, was durch eine Umrandung auf dem
Whiteboard hervorgehoben wird. Das Cluster-Element in Abbildung 4.5 beinhaltet ein
PostIt und mehrere Skribbles, welche das Wort “Cluster” repräsentieren. Ein Cluster
14http://www.w3.org/TR/SVG/paths.html

Figure 3. Graphical and XML representation of a sticky note whiteboard
element

For the hand writing recognition (HWR) explained here,
a path-based representation of each drawn element on the
whiteboard is important. Figure 3 shows the representation
of a sticky note. It uses SVG-notation to express drawn paths
on the sticky note. For sketches directly drawn on the white
surface of the board, a similar representation is used. Thus, the
input for the handwriting recognition is a list of whiteboard
elements describing the state of a panel. A preprocessing step
extracts paths from the whiteboard elements while keeping the
connection between a single path and the whiteboard element
it belongs to.

III. RELATED WORK

A. Digital Whiteboard Systems

Although whiteboard systems - mostly image or video based
- have been in the focus of research for over twenty years (e.g.,
[8], [11], [12], [17], [18]), teams rarely use these systems in
corporate or research environments [5]. One reason for this
may be that it is still hard to reuse content in office applica-
tions, e.g., search within the written content, or otherwise use
the full potential of digitalizing the communication data.

The first tools to support creative collaboration of spatially
separated teams were VideoDraw [19], VideoWhiteboard [18]
and Clearboard [6], each developed in the early nineties.
VideoDraw and Clearboard combine synchronous drawing and
the ability to observe remote partners at the same time. A
desktop-like setup combined with cameras is used to reproduce
drawings from one side on the other. A major drawback
of almost all these systems is the often missing archiving
functionality. One existing system, which also archives the
history of a whiteboard, is, e.g., the system by Klemmer et al.
[8]. In this example, however, only an image representation of
the content is used on an on-request basis.

B. Handwriting Recognition

Research and industry have been working on the problem
of handwriting recognition since the 1960s. In the beginning,
systems were not powerful enough. In the following years,
when research did not focus much on this area [15], Guy
Lorette [10] stated in 1999:



[...] the problem of handwriting recognition was
initially considered as being very easy to solve, but
has later proved to be very difficult.

From the nineties until now, some significant improvements
have been achieved, resulting in some systems on the market
that can be used in professional environments.

A digitalization of handwriting can be realized by scanning
a sheet of paper or by capturing strokes directly during the
writing process using a special input device. The online HWR
typically uses a continuous stream of coordinates sent from
the hardware showing the development of the writing, whereas
the offline approach uses a fixed representation of the written
content without any temporal information [14], [15]. Our
definition of offline data does not necessarily use an image
representation of content. From our point of view, the property
“offline” represents the fact that the data is somehow archived
and the recognition will not be performed during writing.

As research has shown, it is extremely complex to build
a full-fledged handwriting recognition system. Therefore, our
idea is to use one of the most elaborate solutions, use the
content we produce with the Tele-Board system, process the
data, and prepare it for further applications. We evaluated
some of the most common handwriting recognition tools. A
comparison can be found in table I.

TABLE I
COMPARISON OF EVALUATION RESULTS FOR EXISTING HAND WRITING

RECOGNITION SYSTEMS

System Cursive
handwriting Recognition Writer

independence

MyScript Builder yes very high yes

Microsoft Ink yes very high yes

CellWriter no very high no

Lipi Toolkit (Standard
Recognizer) no unknown no

Liwicki et al. [9] present an approach for online handwriting
recognition on digital whiteboards. The authors have devel-
oped a HWR system with a recognition rate that is still too low
to be practically useful. It takes huge training sets to optimize
such a system, which can often only be done by commercial
applications.

The criteria of having a whiteboard solution for a poten-
tially large group of different users who are not willing to
complete an hour-long training in handwriting recognition, led
to the constraint that the used HWR system must be writer-
independent. It also has to be ensured that under difficult
settings (whiteboard surface, different hardware that is used
with the system) the recognition rate still produces good
results.

As a result of our evaluation, we chose the Microsoft
Ink API. Using an online handwriting recognition system
with offline data leads to the problem of transforming the
archived whiteboard content into data that can be passed to
the recognition engine. Due to the high structural diversity

and complexity of the whiteboard content (see figure 1), it is
necessary to separate smaller areas on the whiteboard surface
to pass to the recognition engine. Further details are explained
in section IV.

C. Clustering Algorithms

This problem led us to the evaluation of clustering algo-
rithms. Clustering algorithms can be distinguished in terms
of clustering methodology. Typical categories are: partitional
clustering, hierarchical clustering and density-based cluster-
ing [4].

Partitional clustering algorithms try to directly decompose
the data set into a set of disjoint clusters. K-Means is an
example of a partitional algorithm that attempts to find a user-
specified number k of clusters that are represented by their
center points (centroid) [16]. Problems are the necessity to
specify k, the number of desired output clusters in advance
[7] and the discovery of clusters with non-convex shapes [4].

Hierarchical algorithms generate a hierarchical decompo-
sition of the data set and do not require the number of
clusters to be created. There are two approaches of hierar-
chical clustering. Agglomerative clustering uses a bottom-up
methodology for creating clusters. It starts with all data as
individual clusters. The closest pair of clusters is merged at
each step until only one cluster or a fixed number of clusters
are left. A top-down approach is used by divisive hierarchical
clustering. At the beginning, one cluster contains all data. The
cluster is then split into sub-clusters. This operation is applied
in a recursive manner until each cluster contains a point or
there is a fixed number of clusters left [16]. In both cases, it
is difficult to determine the point when clusters should stop
being merged or split.

Density-based algorithms generate clusters with the help
of connectivity and density functions [4]. They are based on
the observation that the density of data inside a cluster is
considerably higher than outside the cluster [1]. The DBSCAN
(Density-Based Spatial Clustering of Applications with Noise)
algorithm creates disjoint clusters of arbitrary shape. The
number of clusters to be created is determined by the algorithm
itself based of the given data. Data located in a region of low
density is marked as noise and is not assigned to a cluster [1].

IV. IMPLEMENTATION AND INTEGRATION OF THE
CLUSTERING ALGORITHMS

A. Integrating the Hand Writing Component as a Web Service

As mentioned earlier, we decided on using Microsoft Ink as
a recognition engine. This system is included in the Microsoft
Windows operating system (since Windows Vista) [13]. Due to
the demand of platform independence, we chose a web service
interface to be implemented on a Windows virtual machine
running the recognition. The interrelations between the several
components of the overall system are shown in figure 4.
The Windows server will be accessed via a web service call
from the server component, passing all whiteboard data from
a specific whiteboard. The recognition plug-in deployed in
the XMPP communication server is triggered every time a



client session ends to reanalyze the whole whiteboard. The
results, which are returned from the service, are stored in the
respective database interlinked with the whiteboard content in
order to preserve the relation between original content and
recognized results.

RecognitionTele-Board
History

Recognition 
Plugin

Tele-Board 
Plugin:

Packet Interceptor

XMPP Server

Clustering
Webservice

IIS Web 
Server

Web portal

Whiteboard 
Client

Sticky Note 
Pad

start

start

send

synchronize

persist persist use

Recognition 
API

call

run

Server Component Recognition Component
(Windows 7 Enterprise)

log on

Figure 4. Main recognition components (black) and their interrelation with
existing components (gray) of the Tele-Board system architecture

B. Clustering Whiteboard Content

In the case of very large writing areas such as whiteboards,
which contain a lot of content such as handwritten text,
sketches or drawings, the recognition engine has to overcome
limitations. The typical use of the Microsoft Ink system is
limited to a small box in which users can write with a tablet
PC. A whiteboard surface is much larger and the content
much more complex. By processing a complete whiteboard
in the recognition system, we encountered various problems
and determined that the recognition rate is close to zero.

Besides the volume of data of such a large area, another
problem is the effect of temporal discontinuity, meaning that
parts belonging together spatially, are not necessarily in a
temporal order. In a typical online recognition, this problem
does not arise. However, using offline data in an online system
demands for the reconstruction of the temporal order.

The content of a whiteboard panel which is archived in the
Tele-Board system is typically very diverse and complex. To
solve this problem, we want to extract smaller content parts
on which to run the recognition, since the smaller the writing
area, the more probable it is that handwritten text in this area is
written without interruption. These clustered areas also allow
for a better relation between recognized text and the area
on the whiteboard. A starting point for this clustering is the
density of drawn points per whiteboard area. The closer these
points are, the higher the probability of a spatial connection
between the points and the paths they belong to. Therefore,
we need an adequate clustering algorithm.

The requirements for a suitable clustering algorithm can be
defined as follows:

• spatial, two-dimensional clustering based on the distance
of coordinates

• classification into disjoint clusters
• no fixed definition of a number of resulting clusters
• clusters of an arbitrary shape

1) Naı̈ve Clustering: As a suitable clustering algorithm, we
decided to use DBSCAN. Density-based clustering algorithms
such as DBSCAN have the advantage that they can identify
clusters of an arbitrary shape, but the results heavily depend
on the configuration parameters: the minimal number of points
to build a cluster num and the maximum distance eps of two
points within a cluster. For instance, choosing a small value
of eps typically results in a higher number of clusters.

Using this algorithm with fixed parameters in only one run
revealed limitations within the whiteboard domain. As shown
in figure 1, very different font sizes may exist, making it
difficult to find universal parameters (e.g., larger fonts demand
for a larger maximum distance than smaller fonts).

Figure 5 shows what may happen when using the plain
clustering algorithm on the existing data (topmost image). The
parameters cannot be optimized locally but have to be defined
on a global level. This means that the maximum distance
parameter can be good for, e.g., a written heading, but is not
well suited for standard text. A compatible solution for the
whole panel cannot be found in the majority of cases.

We found out that applying this algorithm recursively is
an elegant way of dealing with the diversity of the content.
It is a solution based on the combination of a density-based
DBSCAN algorithm with a divisive hierarchical clustering.
This new method is implemented with the web service as
shown in section IV-A.

With a recursive approach, the question of an appropriate
break condition arises. Our first idea was to start with high eps
values on higher levels of the recursion and lower this value
until it falls below a certain threshold. The result of this simple
break condition can be seen in the second image of figure
5. The recognition results are much better compared to the
naı̈ve clustering and the clusters are much more fine-grained
and better match the content. For an application such as a
search engine that should be able to display the exact position
of content found on the panel, this is a major improvement.
However, there is still room for enhancement: Some phrases
that have been written consecutively are not represented within
one cluster but often split over multiple. To address this
problem, we came up with a more specialized break condition.

MilhouseM

i l

h

u s

o e

Cluster

ClusterCluster Cluster

Text="Milhouse"

ClusterCluster Cluster ClusterCluster

Text="M" Text="i" Text="l" Text="h" Text="o" Text="u" Text="s" Text="e"

"Milhouse" == "M"+"i"+"l"+"h"+"o"+"u"+"s"+"e"

Figure 6. Recursion steps for the clustering algorithm using the advanced
break condition

2) Advanced Clustering: As we have seen, results of the
recognition will be much more precise if they are recursively
clustered and therefore more fine-grained. This recursive ap-



non-recursive clustering recursive clustering with simple break condition recursive clustering with advanced break condition

Figure 5. Comparison of three different clustering methods (from top to bottom): simple clustering algorithm without recursion, recursive clustering with a
simple parameter-based break condition, and advanced clustering with an adaptive break condition; boxes display the resulting clusters, gray tags in the boxes
show the recognition result

proach can better adapt to variations of size and positioning
within a whiteboard panel. The break condition has to adapt
to the content as well. A fixed threshold parameter cannot be
found for every kind of content. The definition of a break
condition is difficult because the automatic measurement and
evaluation of the quality of a cluster are only partially possible
due to missing contextual knowledge. The cluster’s quality
depends on the quality of the recognition results.

function cluster(Cluster, eps) : cluster_list
// fallback break condition

if thresholdeps >= eps
return [Cluster]

// run recognition on Cluster
result = recognize(Cluster)

// lowering maximum distance (eps)
decrease(eps)

// cluster based on maximum distance threshold
cluster_list = cluster(Cluster, eps)
recognition_list = []

// concat recognized results from child clusters
for i in cluster_list

recognition_list.add(recognize(i));
child_recognition = concat(recognition_list)

// decision based on comparison child/parent recognition
if matches(child_recognition, result)

return [Cluster]
else

return cluster_list

Figure 7. Pseudo-code of the advanced break condition

The final approach we came up with is a break condition
which uses the recognition results. Figure 6 shows an example.
After the recognition of the word Milhouse, another recursion
step follows that recognizes every single letter of the word
(”M“, ”i“, ”l“, ...). The break condition for this area can then
be determined as follows: if the concatenated recognition result
of the child recursion level is equal or a subset of the parent
recursion level, the clustering can stop for this local branch
(cf. figure 7). The concatenation runs from left to right, which

works for most languages, but it could also be configured for
different languages supported within the Microsoft Ink API.

To ensure that the algorithm does not loop endlessly, a fixed
threshold for eps is also applied as a fallback break condition.
Figure 5 shows the difference to the previous approaches.
The optimization for the recognition of phrases can be seen
here. The header text, for example, will be recognized as
one cluster. This is an optimal result for a search application
because the context of the search term is given instead of just
a single word. Another example for improved results can be
observed in figure 5 for the phrase collaboration environments:
in the simple break condition (fig. 5, second picture), the
system recognizes the words cold, aboration, environm and
ents. A search for collaboration or environment would not
lead to a result. In the advanced break condition, the words
are recognized as one block and thus can be found by a search
engine. The matching between the concatenation of the parts
in the deeper recursion level and those on the higher can be
fuzzy, but in general we also had good result with simple
string comparison. Depending on the respective texts and
handwriting, the differences between the clustering algorithms
may vary.

A runtime log of the clustering algorithm running on 10
different panels reveals the percentage of how many recur-
sions hit the advanced break condition and the simple break
condition respectively. The results show that this advanced
break condition not only improves results in certain situations,
but it will be hit oftentimes. In an average of 61.2% of the
times, the advanced break condition will be used, whereas in
38.8% the fallback break condition (eps threshold) will be
used. Summing up, the advanced break condition turns out to
be very valuable. Its impact on the recognition rate will be
shown in the next section.



Figure 8. Example panel of one evaluation participant - left (condition 1): mixed notes and drawings; right (condition 2): plain text paragraph

V. EVALUATION

To put our implementation in relation to other implemen-
tations, but also to reveal the limitations of our approach, we
conducted an evaluation of the system’s performance. As other
approaches in this field do, we measure performance by pre-
cision and recall of the recognition. The test scenario consists
of two problem domains. Both of them are combined into one
whiteboard panel. Condition 1 (left half of Figure 8) mixes
handwritten notes together with drawings, which are placed
within the text. This makes it difficult for the recognition
engine to differentiate between text and drawing and thereby
demands a sophisticated clustering algorithm. Condition 2
(right half of Figure 8) is much easier for the recognition
system, as content only consists of handwritten text which is
typically structured as a well-arranged paragraph.

We asked ten participants to sketch a given whiteboard
printout using their typical handwriting and level of detail
(especially for the drawings). The textual content of the
whiteboard was given as typed text. People were completely
free in how to arrange it on the board. They were equipped
with a SMARTBoard Interactive Whiteboard1 as an input
device to draw and write.

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

Recall"

Precision"

Figure 9. Precision/Recall of recognition results for mixed whiteboard
content (condition 1)

1SMART Board 600 series interactive whiteboard, http://smarttech.com

Because we had the textual representation of the given
content, we could easily compute precision and recall in both
cases. For the first condition (see Figure 9), we got an average
recall of 73.8% while the precision was 73.3%. This computes
to an f-measure of 73.6%. On the other hand, the results of
the second condition (see Figure 10) are even better. With
an average recall of 91.1%, a precision of 92.8%, and an f-
measure of 92.9%, the recognition produces very good results.

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

Recall"

Precision"

Figure 10. Precision/Recall of recognition results for plain text whiteboard
content (condition 2)

Looking at the failures in recognition, it turns out that
the second condition could be hardly any better, even with
a perfect recognizer: In some cases, people wrote different
words (e.g. they mixed up singular and plural). The first
condition also showed some particular problems. The head-
lines had bold printed first letters, which turned out to be
unrecognizable in most cases, e.g. in Figure 8 the writer
shaded those letters. Secondly, skewed text is also a problem
for the recognition engine, e.g. with the phrase “arranging
cards”. We also did not expect the people to include the
dashes in the headline showing “C-O-L-L-A-B-O-R-A-T-I-O-
N”, which produced differing results. Nevertheless, the process
of extracting certain areas of content, which is the main goal
of our algorithm, turns out to work properly.

In certain cases, the clustering algorithm returned areas of

http://smarttech.com


whiteboard content with multiple lines of handwritten text
one below the other. This sometimes confused the recognition
engine so that we came up with another optimization. Within
the clusters we generate histograms vertically to find out the
text lines within one of the clusters (see Figure 11). Using
that information we can split up and translate the stroke data
in order to pass it to the recognition engine. For those multiple-
lines clusters this optimization gave us significantly better
results without influencing the clustering and keeping good
results for standard clusters.

Figure 11. Histogram visualization of multi-line cluster content; green:
cluster extents, gray/orange: baseline/topline approximation; gray shading:
vertical histogram of stroke points

Comparing our system to the approach presented in [9],
we achieve a higher recognition rate. This could be explained
by different factors. The recognition in [9] uses image rep-
resentations of the written text, although a Luidia eBeam
device is used to capture the strokes made on the board.
This hardware can also be used with Tele-Board. Just like the
SMARTBoard, it produces pointer values from drawing events.
The term “offline data” tends to be used almost synonymously
with image representation. In this paper, we call the usage
of line stroke data from an offline source (e.g. a database)
also “offline data”, but manage to be more efficient in terms
of storage and flexibility. Image representations can easily be
rendered from the path data, as we also do it in the history
browser of our system’s management interface (cf. [2]). This
architectural decision allows us to achieve better results with
less storage capacity used as well as a granularity and accuracy
that is difficult to be realized with only the content’s image
representation.

VI. SUMMARY AND OUTLOOK

We presented a novel approach that enables us to benefit
from the quality of an online handwriting recognition tool
while dealing with offline data. This combination proved to
be a very adequate way of dealing with archived whiteboard
writing and makes it usable beyond the visual representation
(e.g., in search functions).

Figure 12 shows the search results for the term “tool
within the Tele-Board web portal. The results include every
kind of textual information within the system: a keyboard-
typed sticky note, a sticky note with handwritten text and
a handwritten text directly on the whiteboard surface. The
choice of Microsoft Ink as a handwriting recognition engine
turned out to be adequate due to its writer independence and
the strong recognition of even poor-quality handwriting (e.g.,
figure 12 second result).

We tackled a problem many whiteboard systems experience.
People use these systems over long distances to communicate
synchronously, but it is still cumbersome to document the
progress they make. The history solution we presented in [2] is
a step towards automated documentation while the handwriting
recognition adds even more value to it. People may want
to reuse what they created in whiteboard sessions in other
documents (e.g., office applications such as PDF files, text
documents or tables). So far, this has only been possible using
image representations, often only as photographs taken from
whiteboards.

Figure 12. Search result view within web portal

In the future, we have to put more effort into the filtering of
the recognition results. In the current state, sketches are treated
as regular text and thereby transferred to the recognition
engine. The result is often a random character sequence. In a
search application, these results do not matter because usually
nobody searches for these sequences, but for a final document
these parts have to be erased.

What we showed is a promising solution for analyzing
recorded whiteboard data and extracting meaning out of the
handwritten text, which then can be used in search engine ap-
plications. The approach of combining an online handwriting
system with archived non-live data benefits from the best of
both worlds. It shows the accuracy of online recognition and
can be applied with the independence of an offline recognition
system without using the client’s resources.

ACKNOWLEDGMENT

We would like to thank the HPI-Stanford Design Thinking
Research Program for funding and supporting this project.



REFERENCES

[1] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proc. of
2nd International Conference on Knowledge Discovery and Data Mining
(KDD), pages 226–231, 1996.

[2] L. Gericke, R. Gumienny, and C. Meinel. Message Capturing as a
Paradigm for Asynchronous Digital Whiteboard Interaction. In 6th In-
ternational ICST Conference on Collaborative Computing: Networking,
Applications and Worksharing, 2010.

[3] R. Gumienny, L. Gericke, M. Quasthoff, C. Willems, and C. Meinel.
Tele-Board : Enabling Efficient Collaboration In Digital Design Spaces.
In CSCWD ’11, 2011.

[4] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2000.

[5] E. M. Huang, E. D. Mynatt, D. M. Russell, and A. E. Sue. Secrets
to Success and Fatal Flaws: The Design of Large-Display Groupware.
IEEE Computer Graphics and Applications, 26(1), 2006.

[6] H. Ishii and M. Kobayashi. ClearBoard: a seamless medium for shared
drawing and conversation with eye contact. Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 525–532,
1992.

[7] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review.
ACM Computing Surveys, 31:264–323, September 1999.

[8] S. R. Klemmer, K. Everitt, and J. Landay. Integrating Physical and
Digital Interactions on Walls for Fluid Design Collaboration. Human-
Computer Interaction, 23(2):138–213, Apr. 2008.

[9] M. Liwicki and H. Bunke. Handwriting Recognition of Whiteboard
Notes. 2005.

[10] G. Lorette. Handwriting recognition or reading? What is the situation
at the dawn of the 3rd millenium? IJDAR, 2(1):2–12, 1999.

[11] E. D. Mynatt, T. Igarashi, W. K. Edwards, and A. LaMarca. Flatland:
new dimensions in office whiteboards. Conference on Human Factors
in Computing Systems, 1999.

[12] E. R. Pedersen, K. McCall, T. P. Moran, and F. G. Halasz. Tivoli: an
electronic whiteboard for informal workgroup meetings. Conference on
Human Factors in Computing Systems, 1993.

[13] J. A. Pittman. Handwriting Recognition: Tablet PC Text Input. Com-
puter, 40:49–54, 2007.

[14] R. Plamondon and S. N. Srihari. On-line and off-line handwriting
recognition: A comprehensive survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22:63–84, 2000.

[15] J. R. Prasad and U. Kulkarni. Trends in handwriting recognition. Inter-
national Conference on Emerging Trends in Engineering & Technology,
0:491–495, 2010.

[16] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining,
(First Edition). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2005.

[17] A. Tang, C. Neustaedter, and S. Greenberg. VideoArms: Embodiments
for Mixed Presence Groupware, pages 85–102. Springer London,
London, 2007.

[18] J. C. Tang and S. Minneman. VideoWhiteboard: video shadows to
support remote collaboration. In Proceedings of the SIGCHI conference
on Human factors in computing systems: Reaching through technology,
pages 315–322. ACM New York, NY, USA, 1991.

[19] J. C. Tang and S. L. Minneman. Videodraw: a video interface for
collaborative drawing. ACM Trans. Inf. Syst., 9:170–184, 1991.


	Introduction
	Architectural Overview of the Tele-Board System
	Related Work
	Digital Whiteboard Systems
	Handwriting Recognition
	Clustering Algorithms

	Implementation and Integration of the Clustering Algorithms
	Integrating the Hand Writing Component as a Web Service
	Clustering Whiteboard Content
	Naïve Clustering
	Advanced Clustering


	Evaluation
	Summary and Outlook
	References

