
Understanding asynchronous design work -
segmentation of digital whiteboard sessions

Lutz Gericke
Hasso-Plattner-Institut Potsdam

Prof. Dr. Helmert Str. 2-3
14482 Potsdam, Germany

Email: lutz.gericke@hpi.uni-potsdam.de

Christoph Meinel
Hasso-Plattner-Institut Potsdam

Prof. Dr. Helmert Str. 2-3
14482 Potsdam, Germany

Email: meinel@hpi.uni-potsdam.de

Abstract— Asynchronous work settings demand for certain
hand-over processes - often performed by documentation of
the work. This task is challenging especially for creative work,
because finding the right form of documentation - including
decisions that have been made and explanations how people
came to solutions - is non-trivial. Capturing the whole process
and replay it afterwards to distributed team members could
solve those problems, but is hardly realizable in terms of time
consumption. Our approach uses the complete capturing of a
session - exemplary implemented using a digital whiteboard
system - in order to find out phases of work. This enables us
to point out relations between different phases, which can tell
us what part was more important than another. We found out
that the definition of time slices consisting of certain parameters
describing the process can be aggregated into segments. Those
segments are classified using an SVM approach, which turns out
to give promising results. The overall contribution is an approach,
which can be generalized for a variety of captured parameters to
allow a precise classification of segments related to the respective
overall task.

Index Terms— asynchronous digital whiteboard, segmentation,
classification, design processes

I. INTRODUCTION

Communication over distances is still a problem many
collaborative work settings are suffering from. Synchronous
issues have been researched a lot and industry is developing
more and more sophisticated tools to built up an atmosphere
of togetherness. There is a large variety of those tools - from
human-scale video conferencing to instant messaging clients.

Other issues in companies day-to-day work are not sup-
ported that well. Looking at a typical software development
team which is distributed between multiple locations - let’s
say USA, Europe and Asia, simple problems such as time shift
issues demand for extensive coordination efforts. Oftentimes,
meeting minutes or other kinds of documentation items are
created. Although many (video) conferencing systems offer
recording functionality, usage of this feature is uncommon.
The main problem is that hardly anyone is willing to watch
many hours of video in order to understand the past, build up
on the findings and decisions of colleagues, and continue with
their own work. This is cumbersome, because there is a lack
of artifacts pointing out phases that are more important than
others.

That is why remote meetings will usually not focus on
working together and creating shared content, but more on

information exchange, such as updating on the latest devel-
opments, new strategies etc. More and more companies (not
only limited to IT industry) try out various methods, which
aim at bringing a new creative spirit into their companies.
One prominent method to do so is design thinking as a
toolset for creating empathy for the context (e.g. users of the
product or service) of the problem, being able to find creative
ideas, as well as rationally analyzing the problem domain.
There is a process model visualizing the different stages of
design thinking activity. In general, there is a combination
of divergent (widening the solution space) and convergent
(narrowing down the solution space) thinking. Creative activity
often lives from its unstructured nature and is thereby not easy
not analyze.

The concept of convergent and divergent activity can be
a good starting point for the definition of phases during the
creative process. The overall concept of segmentation that is
presented in this paper will be exemplary implemented within
the Tele-Board research project1. This is a platform which
supports people during their creative work and is optimized
for the use on digital whiteboard devices, but can also be used
on regular personal computers.

II. THE TELE-BOARD SYSTEM - A PLATFORM FOR
DIGITAL DESIGN THINKING

base location A base location B

input devices

workspace hub workspace hub

collaboration server

video
collaboration

synchronized 
design panel

input devices

Fig. 1. General setup of the Tele-Board system

Tele-Board is a software system that supports remote col-
laboration using electronic whiteboards. The interaction with

1http://tele-board.de

http://tele-board.de


the system is realized in a similar way to conventional white-
boards, i.e. writing, drawing, and erasing on the whiteboard
surface can be done in the usual way. Beyond that, it is
possible to create digital sticky notes using the whiteboard or
additional input devices such as Tablet-PCs, iPads or smart-
phones. At the whiteboard, users edit sticky notes, move,
resize, and generate clusters of the created content.

Remote collaboration is facilitated by connecting several
digital whiteboard devices at their corresponding locations
with the help of the Tele-Board system as shown in Figure
1. All of the actions are synchronized automatically and
propagated to the connected whiteboard clients. Every user
can manipulate all sticky notes and drawings, no matter who
created them. Furthermore, a videoconference feature is in-
cluded. The whiteboard content can be displayed transparently
on top of the full screen video of other team members. Local
team members can see the actions and pointing gestures of
the remote team members and vice versa, which facilitates an
easier and more interactive session. The flexible architecture of
the Tele-Board system makes it possible to start the whiteboard
software on every computer. Content created with Tele-Board
is organized based on Projects. A project can be used to
embrace all phases of a design process. During the course
of a traditional design project, a set of analog whiteboards is
filled with sticky notes and handwriting. In Tele-Board, the
digital counterpart of a physical whiteboard is called Panel.

A. Tele-Board Components

The functionality of the Tele-Board software system is
divided among different components, which are as follows:

• Web Portal: The web application serves as an administra-
tion interface enabling users to maintain their projects and
associated panels through a web browser. The whiteboard
client that allows editing of a panel is started from this
interface, what makes the web application the entry point
of the Tele-Board system.

• Whiteboard Client: The Tele-Board whiteboard client
is a platform-independent Java application. It facilitates
whiteboard interaction, e.g. writing with different colors,
erasing, and the creation of sticky notes. The client
software runs on the users computer, which can be
connected to an electronic whiteboard. The whiteboard
client interacts with the Tele-Board server component
by synchronizing with other clients started at a remote
location.

• Sticky Note Pad: This component can be used as a
dedicated input tool as shown in Figure 1. To increase
flexibility in terms of input variety, we created different
applications for writing sticky notes as an equivalent to
paper-based sticky note pads (running on iOS devices and
Android tablets).

• Server Component: The server component coordinates all
communication between the remote partners. All inter-
actions are transferred as XMPP messages to keep the
connected whiteboards synchronized. Storing and resum-
ing capabilities are implemented here using a central

relational database.

B. Tele-Board History

As we learned from user feedback and interviews, peo-
ple in remote teams often work asynchronously. To support
these working modes, we developed a solution helping team
members, who cannot be connected at the same time, to
understand what the others were doing and easily handover
their work. Easy navigation through different whiteboard states
and resuming work at any previous point in time is realized
by the Tele-Board History. A digital whiteboard solution can
also offer the possibility of extensive and partly automated
documentation. In traditional whiteboard settings it is time-
consuming and troublesome to take detailed photographs after
work is done. Written documentation for stakeholders and
customers has to be prepared additionally. Another argument
for the importance of implicit documentation is the statistical
relevance for people researching team behavior and how
design over distances and time differences is carried out.
The possibilities of the Tele-Board system in terms of the
traceability of remote work concerning researchers are shown
in [1].

Figure 2 shows an excerpt of the data stored within our
system. Every whiteboard event carries the event type, which
can be one of the basic operations NEW (element cre-
ation), CHANGE (element modification), DELETE (element
removal) as well as additional operations such as PICK (cut
functionality) or QUEUE (add element to queue of content
send by mobile devices). A timestamp annotated to each
event keeps the order of each event in its relation to all
other events. The XML-encoded description of the whiteboard
element itself controls the whiteboard element representation.
This data is used to build a segmentation model as described
in section 4.

id create time panelid opcode obj data
2 18:13:45 0 NEW <path id=”wb1@fb10dtools 2”

strokecolor=”0.0,0.0,0.0”
d=” M 3411.0 2536.0”
x=”3411.0” y=”2536.0”/>

2 18:13:46 0 CHANGE <path id=”wb1@fb10dtools 2”
strokecolor=”0.0,0.0,0.0”
d=” M 3411.0 2536.0 L 3409.0
2533.0”
x=”3411.0” y=”2536.0”/>

2 18:13:53 0 CHANGE <path id=”wb1@fb10dtools 2”
strokecolor=”0.0,0.0,0.0”
d=” M 3411.0 2536.0 L 3409.0
2533.0 L 3398.0 2520.0”
x=”3411.0” y=”2536.0”/>

2 18:13:57 0 DELETE <path id=”wb1@fb10dtools 2”
strokecolor=”0.0,0.0,0.0”
d=” M 3411.0 2536.0 L 3409.0
2533.0 L 3398.0 2520.0”
x=”3411.0” y=”2536.0”/>

.. .. .. .. ..

Fig. 2. Excerpt from whiteboard history table

III. UNDERSTANDING CREATIVE WORK - WHAT IS DESIGN
THINKING?

The term Design Thinking is now used for about two
decades. The Design Thinking Research Symposium, held first



in 1991 by Cross, Roozenburg and Kees, had a significant
influence on the formation of that term2. In the United States,
Design Thinking became know by the work of IDEO, which
is a design and innovation consultancy that was established as
a fusion of three design firms - David Kelley Design, ID Two
and Matrix Product Design3.

The phrase Design Thinking symbolizes a mindset, an atti-
tude towards certain problems and solving design challenges.
Design is meant as the process of coming from a need to an
elaborated idea that solves the users problem.

Often Design Thinking is expressed as a process model (see
Figure 3) to explain the different steps of understand - observe
- point-of-view - ideate - prototype - test. Several iteration
cycles are part of the framework, addressing the solution of
so-called design challenges (see [2]).

Fig. 3. Design Thinking Process model

Convergent and divergent thinking or activity is a cat-
egorization (see [3], [4]), which better describes the way
of working within distinct phases. While divergent thinking
widens the solution space, convergent thinking usually narrows
down the solution space and moves towards extraction of
concepts and the commitment to certain ideas.

IV. SEGMENTATION OF ARCHIVED WHITEBOARD SESSIONS

The overall objective is to find substantial changes in
working modes, to later be able to point out which part of
the process was more important than another. We want to
achieve and accuracy during the phase identification of around
30 seconds rather being exact to the second.

As we have shown, our system stores every single operation
on the whiteboard. That means every change to a whiteboard
element (e.g. a sticky note) will be archived in the database.
This granularity is much finer than we want to express it for
the phase distinction, but the sheer existence of multiple events
of one type can lead to conclusions of what kind of activity has
taken place during a time slice. We can configure the length
of a time slice. Typical values during our tests were between
30s and 2min and are constant within one analysis run.

A. Datasets

We applied our procedure to two different datasets. Dataset
A consists of 10 sessions (panels). Each of those sessions
lasts for 40-75 minutes. Overall there are 21674 events in the

2http://design.open.ac.uk/dtrs7/
3http://www.fundinguniverse.com/company-histories/

IDEO-Inc-Company-History.html

database for this experiment. The experiment setup was as
follows: two participants in each team work remotely (one
person at one location) to solve a logic grid puzzle were
they had to discuss on the given facts of the puzzle and their
conclusions from that. This experiment and early evaluations
on team performance are explained in [1].

Dataset B is derived from 19 different panels. These are
panels taken from 5 teams with 4 participants each working
in a co-located setting. There are 72725 events collected from
this experiment. The teams were asked to work on a design
thinking challenge for about 5 hours (plus a 1 hour lunch
break). They walked through the different stages of the design
thinking process, such as user research, information synthesis,
ideation, and prototyping.

As you can see from the pure number of events we have
a very fine-grained view on the people’s activity. Scenario A
and B have been very different in their ways of working:

In scenario A the participants worked less creative but on a
very specific task. From observations and feedbacks with the
participants we found out that they basically worked in three
different modes: exploration (reading, understanding, ordering
the given facts), fact-centric infilling (straightforward infilling
of facts into the grid), and deductive solving (infilling based
mainly on conclusions). We decided to use these three working
modes as classification labels.

Scenario B shows typical design thinking activity, where it
makes more sense to differentiate between divergent working
modes, where the solution spaces is broadened, and conver-
gent work, where people synthesize information created in
divergent phases in order to come up with concepts, such
as a point-of-view or a specific design (see [3]). We decided
to use the 2-label classification (divergent/convergent), due to
more selectivity compared to classifying the different design
thinking phases, which sometimes are hard to distinguish -
even for human beings.

B. Segmentation workflow

We define key parameters for every phase, which are
directly derived from the number of whiteboard events in the
database. Those parameters are defined as a combination of
whiteboard element type (sticky note, cluster, path, etc.) and
operation code (NEW, CHANGE, DELETE etc.). Counting
the number of the equal events within one time slice gives
the parameter value. The ratio of those n different parameters
forms specific characteristics for each time slice. Therefore we
define a time slice s by its parameters p:

si = (p0, p1, ..., pn)

A complete whiteboard session w is the ordered collection
of m time slices:

w = (s0, s1, ..., sm)

= ((p0,0, ...p0,n), (p1,0, ...p1,n), ..., (pm,0, ...pm,n))

This is the basis for a simplified understanding of the
working mode of the people interacting with the whiteboard.

http://design.open.ac.uk/dtrs7/
http://www.fundinguniverse.com/company-histories/IDEO-Inc-Company-History.html
http://www.fundinguniverse.com/company-histories/IDEO-Inc-Company-History.html


In our application we compare consecutive time slices with
each other, when the aim is to find out substantial working
mode changes. This approach is more valuable than cross-
comparing every time slice. For us it is more meaningful to
identify a significant change in working modes at a point in
time than identifying two equal working modes at completely
different stages in their work.

The general idea is to pairwise analyze different states
and group them by their similarity. This similarity measure
consists of two components: their similarity depending on
the parameters, but also on the temporal difference. If two
activities have very similar, but there was a break of some
hours in-between, it is a hint that those two time slice should
not belong into one phase. So the overall similarity measure
is the minimum of the similarity based on temporal aspects
and the similarity based on the parameters.

sim(sx, sy) = min(simt(sx, sy), simp(sx, sy))

While the temporal similarity is based on a simple linear
interpolation (larger difference between end and start of two
time slices means lower similarity) and can be configured in
its effect, the similarity measure for the parameter similarity
is based on the Pearson correlation distance:

simp = (1 + correlationPearson(sx, sy))/2

Based on the similarity values, there is a certain fixed
threshold (typically between 0.4 and 0.7), which helps to
decide if two time slices belong to one segment. The result of
the process is a list of segments, which consist of time slices,
each of them defined by a set of parameters. Below, you can
see the console output of the segmentation process:
Time slices:
...
2010-04-26 13:35:00.0, [2.0, 0.0, 0.0, 0.0]
2010-04-26 13:36:00.0, [1.0, 9.0, 0.0, 0.0]
2010-04-26 13:39:00.0, [0.0, 3.0, 0.0, 0.0]
2010-04-26 13:40:00.0, [31.0, 0.0, 0.0, 0.0]
2010-04-26 13:41:00.0, [2.0, 0.0, 0.0, 0.0]
2010-04-26 13:42:00.0, [38.0, 0.0, 0.0, 12.0]
2010-04-26 13:43:00.0, [18.0, 0.0, 6.0, 0.0]
2010-04-26 13:45:00.0, [0.0, 8.0, 0.0, 0.0]
...

Segments:
start=2010-04-26 13:36:00.0 end=2010-04-26 13:39:00.0 length=240 events=2 class=2
start=2010-04-26 13:40:00.0 end=2010-04-26 13:43:00.0 length=240 events=4 class=0

Only a small part of the overall data is listed here. It shows
the time slices for a dataset based on only four different
parameters (sticky note create, sticky note move, whiteboard
move, path draw), which were selected as the most descrip-
tive attributes for this session set. Other test sets use more
parameters from the database.

One can see that the correlation-based approach separates
between segments of significantly different characteristics.
One segment shows a high degree of whiteboard and sticky
note move operations and thereby is different from a slice
when paths have been drawn. Figure 4 illustrates the complete
process.

Ordered Whiteboard-Events

Temporal Segmentation and 
Assignment as Parameters

Aggregation into phases

Fig. 4. Processing steps: segmentation into time slices; merging into phases

V. EVALUATING PHASES

The segments that we got from the first processing step are
valuable in terms of which time slices belong together, where
have been similar actions taken place. In another step we want
to find out, what is the general meaning of these phases. As we
want to be as generic as possible, we base the classification
on the same parameters, as we use it for the segmentation.
Using this approach, we assume that other event streams can
be analyzed in a similar manner.

As a classification method, we use a support vector machine
(SVM) approach [5]. As we mentioned in section IV-A, there
are two different datasets. We used both to train a separate
SVM. Time slices and segments have the same parameters,
which would allow us for example to train the SVM with
the time slice parameters and apply the classification on the
segments. To evaluate, if our approach generates meaningful
classifications we first did a complete manual classification of
all segments.

A. Finding appropriate classes

Because tasks were different in both dataset scenarios, we
also defined different classes for both datasets. As we have
mentioned in section IV-A, there are specific classes for each
scenario:

Scenario A - logic grid puzzle:
• class 0 - exploration
• class 1 - fact-centric infilling
• class 2 - deductive solving
Scenario B - design thinking process:
• class 0 - diverging
• class 1 - converging
Why is it necessary to define different phase labels for

different scenarios? The way people are working with a
collaborative system such as the Tele-Board is as different
as the content as they are working on. We can abstract in a
way that for example in the logic grid experiment, it was not



necessary to create any sticky notes, so that we can better
adapt to the given task and thereby focus on drawing and
whiteboard and sticky move actions. Scenario B was much
wider in its scope, which lead us to consider each of the 14
archived parameters.

B. Training the SVM

Our implementation is based on Java using the libSVM
Implementation of Java-ML. From our dataset A we found
108 different segments. This equals an average segment length
of 5.76 minutes. Those segments where classified manually to
later train the SVM with that data. In this dataset we used 4
different parameters.

From dataset B we found 275 segments, which represents
an average segment length of 5.94 minutes. We adjusted the
parameters to almost match the average segment length in
order to enable better comparability. This dataset consisted
of 14 different parameters.

In order to evaluate the expressiveness of the classification
done by the trained SVM, we do cross-validation on each
dataset.

C. Cross-validation of phase classification

The overall goal is to find a fitting classifier for certain
situations, such as scenario A and B. Currently, we test it
with those two datasets, which are different in terms of what
is going to be classified. On the one hand we want to assess
convergent and divergent behavior, on the other hand it is
about the way of solving a logic grid puzzle. This does not
allow us to use the data from one experiment to train the
classifier and apply it on the other dataset. That is why we
used a cross-validation approach to validity of our data towards
classification using a support vector machine.

We applied a 10-fold cross validation on both scenarios.
It turns out that the error rates achieved using SVM tuning4

are quite promising. In scenario A we achieve an error rate
of 24.3%, whereas scenario B gives us an error rate of only
11.8%. It is important to mention that in scenario A the dataset
consists of about 2.5 times less instances (108 vs. 275) and -
potentially even more important - of three classes, whereas in
scenario B there are only two different classes. Additionally,
there are only four different parameters for A - even though
those are the most characteristic ones - and 14 parameters for
B. When merging classes 1 and 2 for scenario B (fact-centric
infilling and deductive solving combined as “solving”), we get
a error rate of about 13.7%.

VI. INTERFACES FOR PHASE-BASED NAVIGATION

The results of the cross-validation using the SVM as a
classifier encourages us to further elaborate on our approach.
Using the classified segments, a bunch of different options
are imaginable. We could enrich the datasets with further
parameters, which could give us even more conclusions on
the segment’s relevancy. This additional data could come from
different sources. First, we could use automatically gathered

4http://cran.r-project.org/web/packages/e1071/e1071.pdf

Fig. 5. Phase Evaluation - whiteboard session can be scrolled through and
markers are added to show the overall importance of phases

data, which could come from different sources: video analysis
of the capture video conferencing, sensor data attached to the
participants or feedback from people exploring the history of
a whiteboard session.

Last point is the most promising factor, because our idea
is to make use of the feedback for each of the recorded
sessions. That means, we gather feedback on the validity of our
segmentation and classification and use that feedback on future
session segmentation and classification. A first assumption is
that very short segments are almost irrelevant and can be left
out in the next step. This can be either direct feedback, when
the user actively evaluates the segment or it can be indirect
feedback, were we evaluate the segments value based on the
number and duration of people looking at it. Other factors can
also be taken into account. A possible interface is shown in
figure 5, whereas an interface to the exploration view is shown
in figure 6.

VII. OUTLOOK

Our approach creates the foundation for a tool allowing
remote teams to faster navigate through the history of col-
leagues’ work. It is easily adaptable to a wide range of input
data. Different sources could be combined into the time slices
and thereby more information will be taken into account when

http://cran.r-project.org/web/packages/e1071/e1071.pdf


Fig. 6. Combined and synchronized video and whiteboard content view (read-only view)

basically saying, this phase is important or not. The most
obvious idea could be to integrate sensor data into the system.
Other publications ([6], [7], [8]) have looked at different
sensors in order to infer the kind of activity a person is taking
out and found accelerometer data as the most significant source
of information. Beyond that, accelerometers are omnipresent
in smart phones, MP3 players etc. We are planing on further
experiments, which will combine this data with the whiteboard
archive.

There are elaborate approaches in research and practice
allowing us to automatically “understand” what has happened
in the video. One can think of basic analyses such as determine
an activity level at each scene or become more complex and
look at which people where involved and what kind of motions
did they execute.

To enrich the segmentation and classification data, we
think of two different kinds of feedback: direct and indirect
feedback. Direct feedback would ask the use to rate what he
has seen, e.g. a phase that was suggested to be important could
be rated as helpful or not. Indirect feedback would look at how
people browse the history of a panel. Points on the timeline
when many people looked at are potentially more important
than others which many users ignored. A combination of
both kinds of feedback suggests to be a valuable model for
enriching analysis results.

Summing up, we found a way of defining a structure within
unstructured design processes and propose a way of analyzing

those processes. It is hard to say, if we ever completely
comprehend what happened during one of these processes,
but we are giving assistance to easier navigate through historic
work.

ACKNOWLEDGMENT

The authors would like to thank the support of the HPI-
Stanford Design Thinking Research Program.

REFERENCES

[1] L. Gericke, R. Gumienny, and C. Meinel, “Analyzing distributed white-
board interactions,” in CollaborateCom 2011, 2011.

[2] T. Brown, “Design Thinking,” Harvard Business Review, Jun. 2008.
[3] T. Lindberg, R. Gumienny, B. Jobst, and C. Meinel, “Is there a need for

a Design thinking Process?” in Design Thinking Research Symposium
DTRS8, 2010, pp. 243–254.

[4] D. S. Kerr and U. S. Murthy, “Divergent and Convergent Idea Genera-
tion in Teams: A Comparison of Computer-Mediated and Face-to-Face
Communication,” Group Decision and Negotiation, vol. 13, no. 4, pp.
381–399, 2004.

[5] V. Vapnik and A. Chervonenkis, Theory of Pattern Recognition, 1974.
[6] P. H. Veltink, H. B. Bussmann, W. de Vries, W. L. Martens, and R. C.

Van Lummel, “Detection of static and dynamic activities using uniaxial
accelerometers.” IEEE transactions on rehabilitation engineering : a
publication of the IEEE Engineering in Medicine and Biology Society,
vol. 4, no. 4, pp. 375–85, Dec. 1996.

[7] A. R. Doherty, A. F. Smeaton, K. Lee, and D. P. W. Ellis, “Multimodal
Segmentation of Lifelog Data,” no. 2006, 2007.

[8] U. Maurer, A. Smailagic, D. Siewiorek, and M. Deisher, “Activity
Recognition and Monitoring Using Multiple Sensors on Different Body
Positions,” International Workshop on Wearable and Implantable Body
Sensor Networks (BSN’06), pp. 113–116.


	Introduction
	The Tele-Board System - a platform for digital design thinking
	Tele-Board Components
	Tele-Board History

	Understanding creative work - What is Design Thinking?
	Segmentation of archived whiteboard sessions
	Datasets
	Segmentation workflow

	Evaluating phases
	Finding appropriate classes
	Training the SVM
	Cross-validation of phase classification

	Interfaces for phase-based navigation
	Outlook
	References

