
Puplished as: Nuhad Shaabani and Christoph Meinel, SOA-GTDS Framework - GTDS Architecture, Proceedings of XX
Winter Course of the CATAI (CATAI 2012), Canary Islands, Spain 2012

 CATAI Editions 2012

1

Abstract— The GTDS is a system for use as a clinical cancer

register and in the follow-up care of cancer patients. Much has
been implemented in this system in the way of specialized
medical knowledge, making it a valuable and comprehensive
system for the documentation of cancer data. From the
technical side, however, GTDS is not easily adaptable, user-
unfriendly, dependent on a particular older platform, and
therefore not very efficient when viewed in the light of present-
day requirements. In this article, a modern architecture for the
re-design of GTDS is conceptually introduced. One of the most
important properties of this architecture is the service layer,
which can be considered a milestone in the identification of
web service in the SOA-GTDS framework.

Index Terms – GTDS, SOA-GTDS, Web Service, Quality
Control, Software Architecture

I. INTRODUCTION

The Gießener Tumor Documentation System (GTDS)
[1] is a system that was implemented with Oracle
Forms technology. Many of the Oracle Form-based
applications, however, are candidates for redesign.
There are a variety of reasons for this, from the expiry
of client/server architecture, to new requirements on the
user interface, or a new strategic alignment of SOA.
Therefore, the need to modernize GTDS architecture
exists in terms of maintenance costs, ergonomics and
future security. This last aspect is in one respect
important because the system is the most widespread
clinical tumor documentation system in Germany, used
in approximately 60 clinics and tumor centers. In
another respect, the modernized GTDS architecture can
be exploited as the foundation or milestone toward the
implementation of the SOA-GTDS framework [2].

Manuscript received January 27, 2012.
N. Shaabani is a PhD student at Hasso-Plattner-Institute at Potsdam

University, Germany (e-mail: Nuhad.Shaabani@hpi.uni-potsdam.de)
C. Meinel is the CEO of Hasso-Plattner-Institute for IT-Systems

Engineering and full professor for computer science of Potsdam University,
Germany (e-mail: christoph.meinel@hpi.uni-potsdam.de)

 Current GTDS Architecture and Oracle Forms

a. What is Oracle Forms?

If the Gießener Tumor Documentation System is
viewed from a technical perspective, Oracle Forms
may be described as a development and runtime
environment on the basis of procedural SQL-
expansion PL/SQL for OLPT-based (Online
Transaction Processing) applications. Since the
beginning of the 90’s, the development of screen
dialogs or dialog windows, on the basis of
Windows or OSF Motif, is possible with Oracle
Forms. Here, the run-time environment provides a
powerful basis function that supports the fast
execution of data-driven applications. Since the
end of the 90’s, the architecture of Oracle Forms
applications has been a classic client/server
architecture with Java applet-based presentation
layer (see Fig. 1). Forms applications can now be
installed directly in the “Oracle Application
Server.” The representation of the Forms mask is
carried out via a Java applet in the user’s browser
[4].

Proceedings for XX Winter Course
On the Way to the SOA-GTDS Framework:

Modernization of the GTDS Architecture

Nuhad Shaabani, Prof. Dr. Christoph Meinel

Hasso-Plattner-Institute, University of Potsdam, Germany

Puplished as: Nuhad Shaabani and Christoph Meinel, SOA-GTDS Framework - GTDS Architecture, Proceedings of XX
Winter Course of the CATAI (CATAI 2012), Canary Islands, Spain 2012

 CATAI Editions 2012

2

 Fig. 1: The client/server application architecture of Oracle Forms

b. Reasons for the Modernization of the

GTDS Architecture

Vendor Lock-In: The classic client/server architecture was
no longer supported by Oracle. Support for the last
client/server version (6i) expired on 31 January 2008 [3].

Maintenance and Extensibility: Oracle Forms is naturally
not object-oriented. It does not have logical layer separation,
and a separation of presentation and business logic is only
possible in a limited scope. Furthermore, in Oracle Forms
projects, areas such as test automation or continuous
integration are markedly more difficult to implement than,
for example, in Java application development. These are a
few reasons why the middle-term and long-term
maintenance costs for such applications are often relatively
high [4, 5].

Usability: There have been few changes to the principle
elements of the user interface in recent years and versions.
For example, there is not an up-to-date table display in
which the user can enlarge column width or change column
order. Also, the size of a window where a Forms mask is
represented is inflexible and does not adapt to a client’s
altered screen resolution. Numerous users find the standard
Forms interfaces to be antiquated, which means they often
fail to conform to expectations [4, 5].

Fig. 2: Multi-tier architecture for the GTDS

II. Requirements for the New Design of the GTDS
Architecture

In Forms applications there does not exist a clear separation
between business functions and cross-section functionality
(infrastructure of the application). The new re-design of the
GTDS architecture must offer the following components:

Configuration: Standardized storage and management of
configuration data.

Error and Exception Handling: Standard processing of
errors and their logging.

Multilgualism: Support of different languages by the user.

Rules and Validation: Centralization of the validation
logic and use on all levels of the architecture.

Workflow: Integration of the central work list of a user and,
consequently, related data.

Security: Management of identity, verification of access
rights and encryption of data.

Puplished as: Nuhad Shaabani and Christoph Meinel, SOA-GTDS Framework - GTDS Architecture, Proceedings of XX
Winter Course of the CATAI (CATAI 2012), Canary Islands, Spain 2012

 CATAI Editions 2012

3

III. The New Proposed Architecture

In the new architecture the system is divided into
different layers, which subsequently carry out
clearly defined responsibilities. This architecture is
designated a multi-tier application and allows for
the further development of individual aspects of the
application, or its adaption to new environments --
without having to worry about unfortunate side
effects affecting other applications (see Fig. 2).
This is achieved by the encapsulation principle.
This principle refers to hiding the actual
implementation behind a layer, which only
provides an interface to the layer on top of it.
Therefore, every layer virtually consists of an
interface and its implementation. The interface
defines what functionalities the layer makes
available to the one on top of it, while its
implementation defines how the functionalities of
the layer are realized. This design facilitates the
exchange of individual implementation details
without the rest of the application being affected.
For example, the entire application does not have
to be reprogrammed just to enable use of another
database, such as Oracle database. Another design
principle in this architecture defines the
communication between the layers: a lower layer
does not know the layers on top of it and therefore
cannot use their functionalities.

a. Data Access Layer

The Data Access Layer is responsible for the
permanent storage of data, and, for example,
accesses tables and stored procedures of a
relational database [6]. It provides data to the
layers above it in a form independent of the data
structure of the storage type, for example in the
form of Java objects. In this way, it cannot be
recognized whether the momentary storage is
implemented over a relational database or based on
a file. The database objects on this layer, such as
tables or views, are represented on objects
(entities) of the chosen programming language (see
Fig. 3). An entity simply reflects the schema of the
represented database object. Each one of its

instances stands for a record from the respectively
represented database object.
The entities therefore serve as data holders and
normally do not contain any logic.
In the DAO objects (see Fig. 3), requests to the
database are formulated and the results delivered to
the calling service. The delivered results in the
most cases take the form of entity instances.

 Fig. 3: Data Access Layer (Data Access Objects)

b. Service Layer

The service layer on top of the data access layer
contains the business logic of the system. Each
service forms a self-contained unit intended to
represent related professional applications [6]. A
service can access several data access objects
(DAOs), to provide its services to the controllers
from the representation layer (see Fig. 4). The
transactional behavior of the system and the
rollback mechanism are defined on this layer. In
other words, every service is carried out as a
transaction.

c. Presentation Layer

The user works exclusively with an optimal
presentation layer for his environment, which
prepares the data of the system graphically. The
separation of representation and application makes
it possible to offer different surfaces for different
environments. The presentation layer of the new
GTDS architecture follows the MVC pattern
(Model- View- Controller- Pattern) [6]. Shown in
simplified form, the presentation layer is divided
into (see Fig.2)

Model: Data container without further logic
functions (e.g., HashMap)

Puplished as: Nuhad Shaabani and Christoph Meinel, SOA-GTDS Framework - GTDS Architecture, Proceedings of XX
Winter Course of the CATAI (CATAI 2012), Canary Islands, Spain 2012

 CATAI Editions 2012

4

View: Shows the data from the model on a
GUI surface (e.g., per JSP for the web
browser)
Controller: Controls the sequence, generates
and processes the data of the model and starts
the view. By making use of multiple services,
a controller receives the necessary data for his
model.

Fig. 4: Service Layer

III. Approach and Challenges

a. Extracting Knowledge from Oracle
Forms

In the GTDS, a part of the specialist medical knowledge is
implemented in the database in the form of “stored
procedures” and triggers. This can simply be used further by
the data access layer. The other part is manifested in Oracle
Forms in many attributes, triggers and program blocks.
From these, the relevant medical knowledge to extract and
outsource in the database, or to implement in the chosen
programming language is provided[4].
Another challenge, in addition to the extraction of
specialized knowledge from Oracle Forms, is the extraction
of the validation logic and the identification of the workflow
of the masks for each use case. The validation logic and the
workflow should then be outsourced in the presentation
layer or implemented [5].

b. Development Team

In addition to mastering a modern programming language,
e.g., Java for the implementation of the new design, the
development team must also be competent in the area of

PL/SQL programming and Oracle Forms development. It is
not easy to find developers who are able to master both
programming paradigms (the object-oriented paradigm and
Oracle Forms programming) [4]. What makes this more
likely is the fact that the Oracle Form technology is
relatively old, and therefore the difference between the
Oracle Form developer generation and the generation who is
knowledge about a modern object-oriented programming is
fairly large. A solution to this problem can be training the
team in Oracle Forms development. From this solution, the
following questions arise: how is it possible to interest team
members in an old technology or to motivate them? When
and how is the training effective to the point that the
extracting of the professional logic from the Forms can be
carried out correctly and efficiently in view of the effort
expended?

c. Effort Estimation:

A multiple layer procedure can be very helpful for
estimating effort. First, it is possible to select
several use cases and to implement them in the new
architecture. The created prototype is then provided
to users of the system to ascertain their level of
acceptance and satisfaction. The prototype helps,
for example, to check whether the team selected
has sufficient knowledge in PL/SQL and Oracle
database. It could be necessary to add experienced
Oracle Forms developers to the team in cases
where a simple training in Oracle Forms
programming is not sufficient. Despite prototyping
and the formation of a team, the effort estimation
remains problematic for a number of reasons. One
of these reasons is that the demands on the new
system are themselves defined by the existing
solution, meaning by the existence of GTDS. It is
very difficult in a limited time period to examine
hundreds of binary modules (Oracle Forms). This
investigation proves all the more difficult when the
team lacks an experienced Oracle Forms developer.
Another reason for the difficulty of the estimation
is that Oracle Forms applications have many
automatically delivered detail functions (e.g., in the
Search). To offer a suitable substitute for all the
functions makes a realization very complex [4].

d. Selection of the Framework

A modern object-oriented programming language,
such as Java, is suitable for the implementation of
the new architecture The Java framework, „Spring“
[7] offers many components (Spring-Core, Spring-
MVC, Spring-Security), which are very well suited
to fulfill the requirements posed. The ORM Java

Puplished as: Nuhad Shaabani and Christoph Meinel, SOA-GTDS Framework - GTDS Architecture, Proceedings of XX
Winter Course of the CATAI (CATAI 2012), Canary Islands, Spain 2012

 CATAI Editions 2012

5

framework „Hibernate“[8] is particularly suited for
the representation of database objects on Java
objects.

e. Test

An especially important aspect in the
implementation is testing, which should
accompany all phases of development. An
automatic test demands that appropriate medical
data is prepared and made available for every use
case. Another possibility for testing is
implementing specific use cases in defined time
intervals (cycles), and making this so-called
documentation available to experienced GTDS
users. These users will then manually test those use
cases implemented in the respective cycle and
report on errors and areas for improvements. The
errors and suggestions for improvement are then
eliminated, or taken into account in the next
development cycle. Therefore working together
and constant cooperation is required by the
responsible parties.

III. Summary

The Gießener Tumor Documentation System is an
Oracle Forms application. This technology is based
on the client/server architecture paradigm and is
subject to vendor lock-in. This makes the system
user-unfriendly, and not well adaptable or
extensible. Among other things, these technical
properties justify the need to redesign the
architecture of the system. In this article, we have
conceptually presented a new architecture for the
GTDS and discussed its properties. In addition, we
have broadly discussed an approach for the
implementation of the new design and the
challenges connected with it. A special component
of this architecture in regard to the SOA-GTDS is
the service layer. This can help in the identification
and realization of web services in SOA-GTDS.

REFERENCES

[1] http://www.med.uni-giessen.de/akkk/gtds/

[2] Y. Li, Ch. Meinel: The Framework of SOA-GTDS. In
Proceedings of XIX Winter Course of the CATAI (CATAI
2011) Canary Islands, Spain, 3, 2011
[3] Oracle, Orcale Forms – Oracle Reports – Oracle
Designer, Oracle Statement of Direction, 2005.
 www.oracle.com/technology/products/forms/pdf
/10g/ToolsSOD.pdf
 [4] M. Bertelmeier: Altsystem im neuen Kleid: Migration
von Oracle-Forms nach Java. Objektspektrum (05/2007)
[5] S. Price, G. waite: Oracle Forms to SOA: A Case Study
in Modernization. An Oracle Forms Community Whilte
Paper. (06/2008).
http://www.oracle.com/technetwork/developer-
tools/jdev/griffithswaite-129182.pdf
[6] M. Fowler: Patterns of Enterprise Application
Architecture. Addison- Wesley (2003)
[7] http://www.springsource.org/
[8] http://www.hibernate.org/

Nuhad Shaabani is a researcher in the
Internet Technologies and Systems
group at Hasso-Plattner-Institute for IT-
Systems Engineering (HPI) at the
University of Potsdam, Germany.
His main research interests are
applying semantic and intelligent
methods in telemedicine and software
architecture.

Prof. Dr. sc. nat. Christoph Meinel
is President and CEO of the Hasso-
Plattner-Institut for IT-Systems
Engineering (HPI) and full professor
(C4) for computer science at the
University of Potsdam.
His research field is Internet and Web
Technologies and Systems

(www.hpi.uni-potsdam.de/meinel).
Beside he is a teacher at the HPI

School of Design Thinking, a visiting professor at the
Computer Science School of the Technical University of
Beijing (China) and a research fellow of the
interdisciplinary center SnT at the University of
Luxembourg. Since 2008 he is program director of the HPI–
Stanford Design Thinking Research Program. Since 2010 he
chairs the Steering Committee of the HPI Future SOC lab.
Christoph Meinel is author or co-author of 12 text books
and monographs and of various conference proceedings. He
has published more than 380 peer-reviewed scientific papers
in highly recognised international scientific journals and
conferences. His high-security solution Lock-Keeper is
international patented and licensed by Siemens AG. His
tele-TASK system provides an innovative mobile system for
recording and Internet broadcasting lectures and
presentations used in many universities all-over the world.
The virtual tele-lab for Internet Security provides the
possibility to get hands-on experiences in practical issues of

Puplished as: Nuhad Shaabani and Christoph Meinel, SOA-GTDS Framework - GTDS Architecture, Proceedings of XX
Winter Course of the CATAI (CATAI 2012), Canary Islands, Spain 2012

 CATAI Editions 2012

6

internet and information security. The recently developed
Tele-Board supports remote work of creative teams.

Furthermore, Christoph Meinel is chairman of the
German IPv6 council, and chairs the advisory board of UTD
Meraka in South Africa. In 2006, he hosted together with
Hasso Plattner the first German “National IT-Summit” of
the German Federal Chancellor Dr. Angela Merkel. From
1998 to 2002 he was the founder and CEO of the Research
Lab “Institute for Telematics” in Trier. Christoph Meinel is
chief editor of the scientific electronic journals “ECCC –
Electronic Colloquium on Computational Complexity" and
“ECDTR – Electronic Colloquium on Design Thinking
Research”, the “IT-Gipfelblog”, and the “tele-TASK”-
archive.

