
Online Assessment for Hands-On
Cyber Security Training in a Virtual Lab

Christian Willems and Christoph Meinel
Internet Technologies and Systems Group

Hasso Plattner Institute, University of Potsdam
Potsdam, Germany

{christian.willems, meinel}@hpi.uni-potsdam.de

Abstract—Online (self) assessment is an important functionality
e-learning courseware, especially if the system is intended for use
in distant learning courses. Precisely for hands-on exercises, the
implementation of effective and cheating-proof assessment tests
poses a great challenge. That is because of the static
characteristics of exercise scenarios in the laboratories: adopting
the environment for the provision of a “unique” hands-on
experience for every student in a manual manner is connected
with enormous maintenance efforts and thus not scalable to a
large number of students.

This work presents a software solution for the assessment of
practical exercises in an online lab based on virtual machine
technology. The basic idea is to formally parameterize the
exercise scenarios and implement a toolkit for the dynamic
reconfiguration of virtual machines in order to adopt the defined
parameters for the training environment. The actual values of
these parameters come to use again in the dynamic generation of
multiple-choice or free-text answer tests for a web-based e-
assessment environment.

Keywords-Virtual Machine, Remote Laboratory, Online
Assessment, Self Assessment, Cyber Security Training

I. INTRODUCTION
Traditional techniques of teaching (i.e. lectures or

literature) have turned out to be not sufficient for cyber security
training, because the trainee cannot apply the principles from
the academic approach to a realistic environment during the
course. In security training, gaining hands-on experience
through exercises is indispensable for consolidating the
knowledge. Besides this, only practical training is suitable to
efficiently illustrate the importance of details: a tiny flaw in a
service or firewall configuration may ruin all efforts to secure a
system or network.

Precisely the allocation of an environment for these
practical training sessions poses a challenge not only for
lecturers, but also for research and development. That is, since
students need privileged access rights (root/administrator-
account) on the training system to perform most of the
imaginable security exercises. With these privileges, students
might easily destroy a training system or even use it for
unintended, illegal attacks on other hosts on the campus
network or the Internet world.

Traditional means for practical cyber security training are
dedicated, isolated computer labs for security training. These
labs are expensive and demanding concerning creation and
maintenance. Especially for the training of network security
topics, a single student needs a workplace with three networked
computers (e.g. to experience a Man-in-the-Middle attack,
compare section III). Due to the drawbacks there is a trend
towards the provision of such laboratories using virtual
machine technology [3].

A comprehensive implementation of a computing
laboratory based on virtual machines is the Tele-Lab platform
(described in detail in section II). Tele-Lab platform combines
the virtual lab with a web-based training system and allows
remote lab access on the Internet, making the lab not only
suitable for local classes but also for self- and distance learning
approaches. Self-assessment is a crucial part as well as for local
students as for autonomous distance learners, but the
implementation of a suitable assessment framework is a
difficult task when it comes to hands-on exercises.

A very basic learning unit in Tele-Lab on Attacks on
Accounts and Passwords asks the student to experience how

Figure 1. Tele-Lab: Web-based Training System and Remote Desktop
of Virtual Machine for Hands-On Training

cwillems
Schreibmaschinentext

cwillems
Schreibmaschinentext

cwillems
Schreibmaschinentext

cwillems
Schreibmaschinentext

cwillems
Schreibmaschinentext
Christian Willems, Christoph Meinel:"Online Assessment for Hands-On Cybersecurity Training in a Virtual Lab"in Proceedings of the 3rd IEEE Global Engineering Education Conference (EDUCON 2012),IEEE Press, Marrakesh, Morocco, 2012. (to be published)

fast weak passwords can be cracked. On the training machine
(Windows XP) the user must dump the passwords to a file
using PwDump, and then reveal the plaintext passwords with
the well-known John-the-Ripper password recovery tool. In an
online assessment session on this learning unit the student is
asked, which passwords he could reveal on the training
machine. The knowledge of these passwords proves that the
student has completed the hands-on exercise successfully.

The basic problem with existing virtual and physical
laboratories and (automatic) e-assessment of the practical
training is the missing versatility of the exercise scenarios: the
virtual machines for the exercises are usually configured once
during the design phase of the exercise scenario, then deployed
to the (virtual) lab and recurrently used by students. Applied to
the context of the above example this means that every user
cracks the same passwords any time she performs the exercise.
While this way of assessment can be sufficient in one-shot tests
for autonomous learners (e.g. in a distant learning course),
there are a number of limitations for assessment in lab classes
or for the homework assignments in a university course.

In particular, the static characteristic of the assessment
makes the system prone to cheating attempts: students in lab
class could spy out the results – i.e. the cracked passwords –
from their bench neighbors, homework assignments would
have to be solved only by a single student who could then
distribute the solution amongst all other course members. The
original purpose of the assignment – getting hands-on
experience – would be completely undermined. Additionally,
the uniform end result of each learning unit cuts down the
motivation of (remote) students to repeat a once completed
assignment, even if they should practice the scenario
repeatedly.

The paper at hand presents an approach to overcome these
limitations with an enhancement to the Tele-Lab platform.
Section IV introduces a concept for a dynamic assessment
module for virtual labs, including a generic parameterization
scheme for the description of versatile exercise scenarios:
which values inside a virtual machine are seen as changeable
parameters, what is the range of parameter values, and how can
these values be deployed inside the virtual machine prior to a
training session?

Section V describes the implementation of the concept for
the Tele-Lab platform and presents a number of exercise
scenarios that have been parameterized.

Section VI summarizes the results and gives an outlook on
future work.

II. RELATED WORK
Laboratories for security experiments and cybersecurity

training exist in various manifestations. The traditional
approach is a dedicated computer lab for IT security training.
Such labs are exposed to a number of drawbacks: they can only
be accessed on campus, are expensive to purchase and maintain
and must be isolated from all other networks on the site. Of
course, students are not allowed to have Internet access on the
lab computers. Hands-on exercises on network security topics
demand to provide more than one machine to each student,

which have to be interconnected. An example for this kind of
isolated, dedicated lab is the “Network and Systems Security
Lab” at the Rochester Institute for Technology [14]. A benefit
of such labs is the ability to provide experience with real
hardware and experiments going down to the physical layer.

The Emulab/PlanetLab project at the University of Utah
[10] exposes a networking test bed as a remote laboratory. Real
hardware can be dynamically allocated, configured and
managed to provide remote access to a number of networking
experiments. This approach keeps up the benefit of dealing
with actual hardware, while automatic management and
allocation reduce the maintenance cost and remote access
allows more flexible usage scenarios compared to the
traditional approach.

There is a number of approaches describing the usage of
virtual machine technology in networking and systems security
courses, such as in [1], [2], [7] or [8]. The authors describe
slightly different implementations of the use of virtual machine
technology in local and remote lab classes. Considering
security education, all of the approaches differ from Tele-Lab
in the focus on a system administrators view on security
training. While these virtual labs provide experiments where
students should configure operating systems, networks and
security-relevant software packages such as firewalls or
intrusion detection systems, cyber security training in Tele-Lab
highlights the importance of experiencing the capabilities of
attackers, i.e. getting in touch with hacking tools and
performing live attacks.

Work on concepts for self assessment and (semi-)automatic
e-assessment in the context of hands-on exercise labs is still
quite rare. Among the related projects mentioned so far, only
the authors of [7] implemented a service that allows the
students to evaluate their practical work by means of a scripted
test procedure: if the assigned task was about configuring a
firewall to restrict the access on certain ports, the test script
would run a port scan against the student’s lab VM and then
parse the port scanner’s output for open and closed ports. The
student can trigger the test script from a web interface and is
notified, if the task was solved properly. The authors of [8]
follow a similar approach: the students configure intrusion
detection systems during the lab session and can trigger the
execution of attacks on their training system in order to
evaluate their work. While this procedure is suitable for
assignments following a defensive teaching methodology, there
are security considerations (discussed in section IV) that do not
allow implementing this concept for Tele-Lab.

III. TELE-LAB – A REMOTE VIRTUAL CYBERSECURITY
LABORATORY

The Tele-Lab platform (accessible at http://www.tele-lab.
org/, see fig. 1) was initially proposed as a standalone system
[4], later enhanced to a live DVD system introducing virtual
machines for the hands-on training [5], and then emerged to a
server system [6]. The Tele-Lab server basically consists of a
web-based tutoring system and a training environment built of
virtual machines. The tutoring system presents learning units
that do not only offer information in form of text or
multimedia, but also practical exercises. Students perform

those exercises on virtual machines (VM) on the server, which
they operate via remote desktop access. Virtual machine
technology allows easy deployment and recovery in case of
failure. Tele-Lab uses this feature to revert the virtual machines
to the original state after each usage.

With the release of the current iteration of Tele-Lab, the
platform was enhanced with dynamic assignment of more than
one virtual machine to a single user at the same time. Those
machines are connected within a virtual network (known as
team, see also in [1]) providing the possibility to perform basic
network attacks such as interaction with a virtual victim (e.g.
port scanning). A victim is the combination of a suitably
configured virtual machine running all needed services and
applications and a collection of scripts that simulate user
behavior or react to the attacker’s actions (see also exemplary
description of a learning unit below). A short overview of the
architecture of the Tele- Lab platform is given later in this
section.

A. Learning Units in Tele-Lab – an exemplary Walkthrough
Learning units follow a straightforward didactic path

beginning with general information on a security issue, getting
more concrete with the description of useful security tools (also
for attacking and exploiting) and culminating in a hands-on
assignment, where the student has to apply the learned
concepts in practice. Every learning unit concludes with hints
on how to prevent the just conducted attacks.

An exemplary Tele-Lab learning unit on eavesdropping
(described in more detail in [13]) starts off with academic
knowledge such as information on technologies for local area
networks (LAN), the difference between switches and hubs or
wireless networking. After that, various existing tools for

packet sniffing are presented, such as tcpdump or the well-
known Wireshark network protocol analyzer.

Following an offensive teaching approach, the user is asked
to take the attacker’s perspective – and hence is able to lively
experience possible threats to his personal security objectives.
The closing exercise for this learning unit is about
eavesdropping on network traffic between two virtual
communication partners, reveal credentials (username and
password) for services from the captured messages and use
these to steal private data from an FTP server.

Since the laboratory machines are connected on a virtual
hub-like device, the student is able to capture all messages on
the network – including the traffic between the two virtual
victims Alice and Bob. Bob runs a server with HTTP and FTP
services; Alice uses those services. The student has to use
wireshark and inspect the captured packets for the login data.
After that, he can log into Bob’s servers using Alice’s
username and password. On the FTP server is a file containing
secret information (a flag) that has to be stolen by the student.
The knowledge of this secret information proves the successful
completion of the assignment.

Such an exercise example underlines the need for the Tele-
Lab user to be provided with a team of interconnected virtual
machines: one machine is needed for attacking (all necessary
tools installed), one machine for Bobs services and a third one
for the client (Alice) that runs a set of scripts simulating access
to Bob’s server. Remote desktop access is only possible to the
attackers VM.

Other learning units are also available on, e.g., attacks on
accounts and passwords, wireless security, reconnaissance,
remote exploitation, malware, Man-in-the-Middle attacks etc.

Figure 2. Overview – Architecture of the Tele-Lab Platform

The system can easily be enhanced with new content and
exercise scenarios.

B. Architecture of the Tele-Lab Platform
The current architecture of the Tele-Lab server is a

refactored enhancement to the infrastructure presented in [11].
Basically it consists of the components illustrated in Fig. 2. The
following overview just explains the relevant components for
the proposed enhancement.

Virtual Machine Pool: The server is preconfigured with a set of
different virtual machines, which are needed for the exercise
scenarios – the VM pool. Those VMs are constantly up and
running to minimize the time, a user has to wait for a training
environment. The resources of the physical server limit the
maximum total number of VMs in the pool. In practice, a few
(3-5) machines of every kind are started up. If all teams for a
certain exercise scenario are in use, new instances can be
launched dynamically (again depending on the resources and
current load of the physical host). Those machines are
dynamically connected to teams and bound to a user on
request.

The current hypervisor solution used for providing the
virtual machines is KVM/Qemu [15], [16]. The libvirt package
[17] is used as a wrapper for the virtual machine control. LVM
(Linux Logical Volume Management) provides virtual hard
discs that are capable of copy-on-write-like differential storage.
Differential storage is important to save space on the physical
hard disc, because the Tele-Lab server holds so called VM
templates as master images (depicted in Fig. 2 as VM Template
Repository) and clones multiple instances of each template for
use within the exercise environment. VM templates also
contain configuration files defining hardware parameters like
memory, number of CPUs, and network interfaces.

For the network connections within the teams, Tele-Lab
uses the Virtual Distributed Ethernet (VDE) package [18].
VDE emulates all physical aspects of Ethernet LANs in
software. The Tele-Lab Control Services launch virtual
switches or hubs for each virtual network defined for a team of
VMs and connect the machines to the appropriate network
infrastructure. For the distribution of IP addresses in the virtual
networks, a DHCP server is attached to every network. After
sending out all leases, the DHCP server is killed due to security
considerations [13].

Tutoring Interface: A web application (implemented in
Grails) is the core of the Tele-Lab user interface for students. It
provides learning units available to a user that consists of text,
images and multimedia clips (screen casts, clips from recorded
lectures). The application guides students through the content
of a learning unit (presented as a sequence of chapters)
including the practical exercise assignments. These assignment
web pages (see Fig. 3) explain the students tasks (challenge),
render a control to request VM(s) for the hands-on training and
implement a questionnaire to verify the students response to
the challenge. The structure, the actual content of a learning
unit and the questionnaires are stored in the central database
and can be maintained from a custom content management
system (not depicted in Fig. 2). This CMS (actually called Tele-

Lab Web Admin Interface) also allows management and
monitoring of VM templates and pools.

The web application for tutoring also keeps track of the
users’ progress: it stores page visits and times the user spends
on each part of a learning unit, VMs that are requested and
assigned as well as questionnaire results.

Tele-Lab Control Services: Purpose of the central Tele-Lab
control services is bringing all the components illustrated in
Fig. 2 together. To realize an abstraction layer for the
encapsulation of the virtual machine monitor (or hypervisor)
and the remote desktop proxy, the system implements a suite of
lightweight XML-RPC web services: the vmService and the
remoteDesktopService. The vmService is used to control virtual
machines – start, stop or recover them, grouping teams or
assigning machines or teams to a user.

The remoteDesktopService is used to initialize, start,
monitor, and terminate remote desktop connections to
machines, which are assigned to students when they perform
exercises. The above-mentioned Grails applications (tutoring
environment and web admin) let the user and administrators
control the whole system using the Tele-Lab Control web
services suite.

Remote Desktop Access is implemented as a proxy based on
the open-source project noVNC, a client for the Virtual
Network Computing protocol based on HTML5 Canvas and
WebSockets [19]. On the client side, the user only needs a state-
of-the-art web browser. Actually, the current implementation
of the noVNC client does not even need an HTML5-capable
browser: for older browsers, HTML5 Canvas and/or the
WebSockets are emulated using Adobe Flash.

Figure 3. Screenshot of an Assignment Web Page

C. Virtual Machine Lifecycle
The virtual machines used for the Tele-Lab training

environment follow a circular lifecycle (see Fig. 4). When
creating a new learning unit, the author sets up one or more
fresh virtual machine templates (or clones existing ones), then
installs tools, services or scripts for the emulation of victim
activities (such as network communication or reaction or users’
activities) and finally connects the new VM templates to a team
template by defining virtual networking parameters (1).

For this new VM team template – representing a specific
exercise experiment – the author limits a minimum number of
instances running in the VM pool. The system fires up the
specified number of VM teams (2). Finally, the author must
connect the exercise scenario to the assignment section of the
new learning unit.

Once a student requests for a VM team from the pool for a
hands-on session, the Tele-Lab Control Services check for a
free team instantiated from the specified template, assigns it to
the user (3) and starts the Remote Desktop session. The student
performs the exercise tasks and closes the browser window for
the VNC client when finished. The control services shut down
the virtual machines from that team (4), rolls them back to the
original state (5) and starts them up again (2). The VM team is
now ready to be used in the next training session.

This VM lifecycle is not specific for the Tele-Lab platform.
Similar lifecycles are implemented in other computing labs
based on VM technology, with variance in the persistence of
VM states (not every lab is designed a roll back the experiment
after execution) and in the automation of the lifecycle
management (some labs platforms require user or administrator
actions to trigger the next phase of the lifecycle.

IV. AUTOMATIC ASSESSMENT FOR PARAMETERIZED
HANDS-ON EXERCISES

A general model for assessment in hands-on exercises
builds on the assertion of pre-conditions and the check of post-
conditions regarding the students exercise session (see Fig. 5).
This applies not only in the context of automatic assessment in
virtual laboratories, but also for traditional manual assessment
conducted by human tutors.

Let an exemplary assignment be the configuration of a
firewall in order to prevent access to certain ports. The tutor
sets up an experiment environment, i.e. by starting some
services that should be protected and removing any existing
firewall rules on the training system (assertion of pre-
conditions). After the student finished the hands-on session, the
tutor manually checks, if the student has completed his tasks,
i.e. configured a firewall properly (check of post-conditions).

Figure 5. Pre- and Post-Conditions for Hands-On Assessment

The semi-automatic assessment mode described in [7] and
already introduced in section II also matches this simple
scheme. The administrators of the system manually assert that
suitable virtual machines for hands-on sessions are running,
which would be the pre-condition. The test script that runs the
port scanner and parses it’s results automatically checks the
post-condition.

Concerning the assertion of pre-conditions, the automatic
lifecycle management in Tele-Lab ensures that every user gets
access to a fresh, unused VM team. If the author of the
respective learning unit assured the proper implementation of
the pre-conditions during the design of the experiment
(creation of the VM template), no further action is necessary on
the allocation of a concrete instance of the experiment. It has
already been mentioned in sections I and II that Tele-Lab takes
a different assessment approach when testing post-conditions:
the assignments are designed as challenges that require the
student to gain specific knowledge by performing hands-on
tasks inside the training environment. The student can respond
to the challenge by taking a quiz in the web-based tutoring
environment (multiple choice or free-text question answering).
If the student provides the correct answers, the post-condition
check is regarded as passed.

The assessment in Tele-Lab is – among other reasons –
realized in this manner due to security considerations.
Comparing to the approach presented by the authors of [7] and
[8], Tele-Lab does neither need any additional virtual machines
on the virtual network used for the student’s hands-on session,
nor does it need any shared resources (networking or shared
folders) between the lab machines and the physical host. Since
Tele-Lab requires the students to use tools for attacking that he
could also use to attack the physical host or virtual machines
assigned to other users, it is an important security constraint to
isolate the virtual network for a certain experiment from all
other (physical and virtual) resources [12].

Figure 4. Virtual Machine Lifecycle in Tele-Lab

When revising the VM lifecycle from Fig. 4, the major
limitation of this approach becomes obvious: since the virtual
machines are always being rolled back to the original state, the
secret knowledge to be gained to solve the assessment quiz is
the same for every student, who takes the challenge (and for
any repetition of an exercise). To transform this static
characteristic to a dynamic behavior, we propose an
enhancement to the presented lifecycle (and the underlying
architecture) that consists of the parameterization of exercise
scenarios and experiment setups, reconfiguration of virtual
machines implementing a concrete exercise and the dynamic
generation of quizzes for the student responses.

A. Parameterization of Exercise Scenarios
To be able to realize the deployment of exercise scenarios

in a dynamic manner, the variable parameters of a scenario
have to be defined by the author of a learning unit. For
assessment purposes, we basically consider the information to
be gained in the challenge as variable: these values should be
unique for each instance of the exercise scenario and thus for
each student and for any repetitive execution of the scenario.

For flexibility, we choose a straightforward and most
generic data structure to define the parameterization of a
scenario. Let a parameter definition be a data structure
containing an identifier (id) for the scenario to be
parameterized and a list of parameters. Each of the values in
the parameters list is again defined as data structure containing

• the name of the parameter

• a description of possible parameter values (can be a
range of numbers, a list of strings or list of key-value
pairs)

• an amount of parameter instances to be set dynamically
(value count)

• optional: a total amount of response options (valid and
invalid) to be used to generate a multiple choice quiz
(response count).

The dynamic parameters for the exercise scenario from the
learning unit on “Attacks on Accounts and Passwords” (see
section I) obviously are the user accounts and passwords inside
the virtual machine. A simple parameter definition (in human
readable XML format) for this scenario is defined as in Fig. 6
below:

<parameter-definition id="Password Security">

 <parameter name="useraccount">

 <values>

 <value key="user1">secret</value>

 <value key="user2">123456</value>

 <value key="user3">princess</value>

 <value key="user4">kitten</value>

 ...

 <value key="user100">password</value>

 </values>

 <value-count>4</value-count>

 <response-count>10</response-count>

 </param>

</parameter-definition>

Figure 6. Example Parameter Definition

The main part of this data structure is the list of value
elements containing key-value pairs with arbitrary usernames
and weak passwords chosen from a password list. The value-
count of 4 determines, that four random values will become
username and password of accounts inside the virtual machine.
Setting the response-count to 10 causes the system picking
another six random values that will not be used for accounts in
the virtual machine. These six values will serve as invalid
answers during the assessment.

The presented data structure is flexible enough to cover a
variety of different parameters. Examples for parameters
include but are not limited to:

• directives in Linux configuration files

• values of Windows registry keys

• network connections and IP addresses

• filenames and file contents

• running services

• commands to run applications or call programs on a
shell (bash, cmd.exe, Windows Power Shell)

A virtual laboratory implementing this parameterization
technique for experiments or exercise scenarios must provide
storage for the parameterization data. This can be a database
scheme or XML-based file storage.

For the convenience of learning unit authors, the system
should provide a user interface for parameter creation and
maintenance.

B. On-the-fly Reconfiguration of Virtual Machines
The second necessary component of the proposed dynamic

e-assessment enhancement to the virtual lab is an extensible
toolkit for the (re-)configuration of the virtual machines and
networks that build learning environment. The solution must
allow triggering reconfiguration activities for the guest
operating systems in the VMs from the outside (physical host).
Since the parameterization data is stored on the physical host,
the enhancement must also allow passing the parameter values
into the VM.

Additionally, the toolkit should be as independent as
possible from the hypervisor implementation (i.e. avoiding the
use of hypervisor API functionality) as well as from the guest
operating systems (platform independence). Therefore, we
suggest implementing the reconfiguration toolkit as a client-
server architecture, where the servers run inside the virtual
machines and the physical host uses a matching client to
initiate the reconfiguration.

The server component (parameterization server) of the
toolkit should be implemented modular and allow easy
extension with additional modules for different configuration

tasks. For security reasons, the parameterization server should
destruct itself and remove all traces after the reconfiguration
has been carried out. Modules for specific reconfiguration tasks
are identified by the name of the parameter in the parameter
definition (see Fig. 6).

An action sequence leading to the reconfiguration is
performed as follows:

1. The virtual lab management software randomly picks a
set of value-count parameter values.

2. The management software uses the parameterization
client to call the parameterization service on the virtual
machine that should be reconfigured and passes the
values as well as the parameter name.

3. The parameterization server in the virtual machine
calls the appropriate module (identified by the
parameter name) and passes on the values.

4. The module implements functionality (specific to the
configuration task) and thereby configures the virtual
machine according to the values.

5. If there is more than one parameter in the parameter
definition, the previous steps are executed repeatedly.

6. After the successful application of all parameter values
to the virtual machine, the parameterization server
calls its self-destruct method to shut down, remove
itself and the traces.

7. The virtual lab management software on the physical
host monitors the network connection to the
parameterization server. The connection breaks down
when the self-destruction is triggered. The host system
knows, that the procedure has been finished.

Continuing the example exercise scenario on “Password
Security” from Fig. 6, the lab management system picks four
key-value pairs representing usernames and passwords and
passes those to the parameterization server. The server
activates a module identified as “useraccount” (name of the
exemplary parameter), which implements the creation of user
accounts and setting the passwords specific to the operation
system of the virtual machine.

A concrete implementation of a parameterization server
and a corresponding client as well as of several modules is
described in section V.

C. Generation of Dynamic Multiple Choice Tests
The final missing component is the actual assessment

environment. Since the assignments are designed as challenge-
response tests, this component is a tool generating
questionnaires in form of multiple-choice or free-text
answering quizzes. Revising the parameter definition, the
realization of these dynamic quizzes is straightforward.

The challenge part is actually the assignment created by the
author of a learning unit and must not be generated in a
dynamic manner. Again referring to the “Password Security”
example, the challenge is phrased as “Which passwords could
you reveal with the password cracker?”. The author must also

define the type of the quiz for the response (multiple-choice or
free-text answering).

The answers of the response are the dynamic part of the
assessment. As the student must gain the necessary knowledge
through the hands-on tasks in the virtual machine, the quiz
must deal with the same data as the virtual machine does.
Speaking in terms of the “Password Security” exercise, the
quiz must recognize the passwords set in the virtual machine as
correct solutions.

The general procedure for the construction of quizzes can
be realized as a web application (from now on called quiz
service) that renders and delivers the questionnaires, checks
answers and gives feedback (e.g. scores). Quizzes can be multi-
staged: if an exercise scenario has more than one dynamic
parameter in the parameter definition, the assessment can
cover of more than one challenge. An example for an exercise
scenario with a multi-staged quiz is given later in section V
with the learning unit on “Reconnaissance”.

The virtual lab management software calls the quiz service,
when the parameterization of an exercise scenario is finished
(connection to parameterization server terminates). For each
parameter element from the parameter definition, the lab
management passes the following arguments to the quiz
service, that are necessary to generate the quiz:

• the value-count number of valid answers (i.e. the value
elements that have been passed to the parameterization
server and thus have been applied in a virtual machine)

• a (response-count – value-count) number of invalid
answers (value elements that have not been applied to
the virtual machine)

Additionally, the quiz service receives a unique session
identifier (i.e. the hash value of the VM identifier concatenated
with a timestamp). This identifier is needed to control the web
workflow of the assessment.

The quiz service provides three basic methods:

• generateQuiz(id, challenges[]) is called to initiate a
quiz session identified by id, receiving the valid and
invalid answers for each challenge of a multi-staged
quiz in the challenges array.

• challenge(id, num) renders and returns the HTML code
for the num-th question (in a multi-staged quiz) that is
associated to the session labeled with id.

• response(id, num, answerValues[]) checks the students
response on the num-th challenge (submitted in the
answerValues array) and renders HTML code for the
feedback.

The interaction between the lab management software and
the quiz service is meant to be realized as web service call (e.g.
XML-RPC request), while the integration of the HTML code
for questions and feedback (calls to challenge() and response()
methods) should be integrated with the assessment web page
via AJAX requests.

D. Adopted VM Lifecycle with Parameterized Exercises and
Quiz Service Integration
Summing up the proposed enhancements shows an

extended lifecycle for the training VMs with two additional
stages compared to the lifecycle presented in Fig. 4. The author
of a learning unit must provide a suitable parameter definition
after the creation of a VM template (1). In some cases, the
author must also implement a new module for the
parameterization service, if the intended reconfiguration can
not be realized with existing modules.

When a student requests for a virtual machine (3), the
assigned VM must be dynamically reconfigured before the lab
management system can provide remote access. At the same
time, the system must trigger the generation of the assessment
environment, i.e. call the quiz service and pass the parameter
values. The adopted lifecycle is illustrated in Fig. 7.

V. IMPLEMENTATION OF AUTOMATIC ASSESSMENT WITH
PARAMETERIZED EXERCISE SCENARIOS FOR TELE-LAB

Since the Tele-Lab management system is already
implemented as a service-based architecture (vmService and
remoteDesktopService) with XML-RPC web services, it was
the obvious solution to also implement the parameterization
system and the quiz service using this technology. The
quizService has actually been implemented in two parts: the
generateQuiz() XML-RPC method is a Python-based service
that writes the challenges (i.e. valid and invalid answers) into
the Tele-Lab database. The challenge() and response() methods
have been integrated into the Tele-Lab tutoring application as
Grails actions. The tutoring application can also access the
database.

The means for authors to provide and maintain the
parameter definition are implemented in the Tele-Lab Web
Administration Interface, which the author also uses for
learning unit content creation and the design of new VM

templates. The parameter definitions are also stored in the
central database.

The parameterization client has been integrated into the
vmService. When the student starts a request for a virtual
machine, the vmService randomly picks the parameter values
for the valid quiz answers as well as the invalid answers from
the database and calls the parameterization server on the
virtual machine that will be assigned to the requesting user.
When the parameterization server finishes the reconfiguration
tasks, the vmService calls the quizService and triggers the
generation of the challenge.

The parameterization server is also based on Python’s
XML-RPC server. The server implements a plugin
infrastructure for easy enhancement with configuration
modules. To avoid the need of a Python environment on the
virtual machines that shall be dynamically reconfigured, the
core parameterization server is packed with the PyInstaller
tool, which generates stand-alone executables out of Python
scripts. Specific modules (plugins) for the reconfiguration tasks
are loaded into the parameterization server at runtime. The
server is provided for Linux and Windows operating systems.
The parameterization server must not be integrated into virtual
machines at the design stage. The Tele-Lab system
automatically injects the server into the hard disk images of the
virtual machines prior to the first startup.

The modules for reconfiguration usually implement a
sequence of system calls. Coming back to the “Password
Security” example, the reconfiguration tasks are generating
user accounts and setting the corresponding passwords. A
module for performing these tasks in a Linux environment is
implemented as follows:
@export
def create_user(user, pass)
 cmd = "useradd '%s'" % user

 error = shell_with_error_handling(cmd)
 if(!error)

 error = set_password(pass)

 return error
create_user.supported_os("Linux")

Figure 8. Module for Adding a System User in Linux VMs

The equivalent module for setting the user’s password
(called as set_password in Fig. 8) is implemented using the
Pexpect library, since the Linux passwd-command requires
user interaction.

The same module for Windows is implemented analogous,
but since the Windows net command does not require
interaction, the password is set directly in the module:
@export

def create_user(user, passwd)

 cmd = "net user '%s' '%s'" % (user, passwd)

 return shell_with_error_handling(cmd)

create_user.supported_os("Windows")

Figure 9. Module for Adding a System User in Windows VMs Figure 7. Adopted Virtual Machine Lifecycle

Similar modules have been implemented for e.g.

• deleting users accounts

• adding and removing groups

• changing group membership of user accounts

• starting and stopping services

• changing IP and netmask addresses of network
interfaces

• creating files with specified content

• adding and removing lines from (configuration) files

• etc.

Continuing the example, the vmService connects to the
parameterization server of the virtual machine and
subsequently calls the create_user() method for each value
element given in the parameter definition in order to add new
user accounts and set the passwords. Finally, it calls the
destroy_self() method to cause the Python service to shutdown
and remove itself.

To illustrate the usage of the implementation of the
proposed system in the Tele-Lab platform, the following
sections present two additional learning units with
parameterized exercise scenarios.

A. Use Case: (Online) Reconnaissance Scenario
A learning unit on “(Online) Reconnaissance” is basically

about host discovery and service discovery (port scanning) in
the context of attack preparation. The student learns about the
general concept of ports and services and relevant techniques in
this domain, such as ping sweeping or ARP sweeping for host
discovery, a number of port scanning variants and the concept
of banner grabbing for service identification.

Subsequently, the learning unit presents a number of tools
that implement the introduced reconnaissance techniques, e.g.
thc-rut [20] for ARP sweeping, the nmap security scanner [21]
for ping sweeping and port scanning or telnet for service
identification.

The challenge issued in the exercise section of the learning
unit asks the student a) to find all hosts on the local network of
the virtual machine and b) to identify all services running on
the found machine(s). In fact, there are only two machines on
the virtual network: one for the student (Linux, equipped with
all necessary tools) and one as target for the scans (Linux, a
large number of different services – e.g. Apache, MySQL,
ProFTPd, etc. – are installed, but not running).

The quiz for the response to this challenge is multi-staged:
the first question asks for the IP addresses of the found hosts
(free-text answer), the second question is a multiple-choice
test, where the student has to check all found services.

Parameterization for this exercise scenario affects the IP
address of the target machine and the running services. When
initiating the parameterization, the vmService of Tele-Lab
selects four services from a list of all available services that are
started up via calls to the parameterization server. After that,

the last block of the target’s IP address is set to a random value
between 2 and 254 (1 is reserved for the attacker VM). Note,
that the change of the IP address must be the last
reconfiguration task, because the parameterization client will
loose the connection during reconfiguration. Changing the IP
address implicitly causes self-destruction of the
parameterization server.

The student has to perform host discovery to be able to
provide a valid response to the first stage of the assessment,
and port scanning as well as banner grabbing on the identified
open ports to be able to select the valid services in the second
assessment stage.

B. Use Case: Remote Exploitation Scenario
A learning unit on “Remote Exploitation” introduces the

student to the concept of buffer overflows and exploits that
utilize those, to provide a remote shell on the victim’s
computer.

The student learns about memory layout, vulnerabilities and
exploits, buffer overflows, shell code and NOP sleds and is
finally introduced to the Metasploit framework [22] and its
usage.

The exercise scenario for this learning unit again consists of
two virtual machines on a virtual network. The machine for the
student is a Backtrack Linux distribution [23] (a penetration
testing suite equipped with a large number of scanners and
attack tools). The virtual victim is a Windows XP system with
Internet Information Server, which is vulnerable to a stack
corruption in the SMB service described in CVE-2008-4250
and the IIS FTP Server NLST Response Overflow described in
CVE-2009-3023 [24].

The challenge issued for this exercise scenario is to find a
file called secret.txt on the victim’s machine and steal its
content. The valid response to this challenge is the stolen data.
In order to get access to the secret file, the student must scan
the local network for the IP address of the victim’s host, and
then use a port scanner or vulnerability scanner to find possible
vulnerable services and finally use Metasploit to exploit on of
the vulnerable services and gain remote access.

The parameter for this exercise scenario is the path and the
content of the secret file. The parameter definition holds a
number possible file names and random strings (as key-value
pairs). This secret file is often called a “flag” that has to be
captured. The student can only provide the knowledge of the
flag during assessment, if she had gained remote access to the
victim machine.

Such capture-the-flag challenges can be applied to various
exercise scenarios, e.g. in a learning unit on “Eavesdropping on
Network Traffic”.

VI. CONCLUSION AND FUTURE WORK
The paper at hand proposes a system for automatic (self)

assessment with hands-on exercises in virtual (remote)
computer laboratories. The presented architecture is
independent from the underlying hypervisor and from the guest
operating systems in the training machines. The system can be

applied for virtual laboratories with automatic lifecycle
management and web-based assessment with challenge-
response like exercise assignments.

The system has been successfully implemented for the
Tele-Lab platform; several exercise scenarios have been
adopted for dynamic parameterization.

An important part of future work on this topic will be the
extensive evaluation of the system as well as in supervised
classroom sessions as in self and distance learning usage.
Another future activity aims on detaching the implementation
of the assessment and parameterization components from the
Tele-Lab platform for easy integration into other virtual
laboratories.

REFERENCES
[1] C. Border. “The development and deployment of a multi-user, remote

access virtualization system for networking, security, and system admin-
istration classes”, SIGCSE Bulletin, 39(1): pp. 576–580, 2007.

[2] W. I. Bullers, Jr., S. Burd, A. F. Seazzu. “Virtual machines – an idea
whose time has returned: application to network, security, and database
courses”, Proc. 37th SIGCSE technical symposium on Computer science
education, Houston, Texas, USA, 2006.

[3] A. Gaspar, S. Langevin, and W. D. Armitage. “Virtualization
technologies in the undergraduate IT curriculum”, in IT Professional,
vol.9 (4), IEEE Computer Society, 2007, pp. 10–17.

[4] J. Hu, M. Schmitt, C. Willems, and C. Meinel. “A tutoring system for
IT-Security”, in Proceedings of the 3rd World Conference in
Information Security Education, p. 51–60, Monterey, USA, 2003.

[5] J. Hu and C. Meinel. “Tele-Lab IT-Security on CD: Portable, reliable
and safe IT security training”, Computers & Security, 23:282–289, 2004.

[6] J. Hu, D. Cordel, and C. Meinel. “A Virtual Machine Architecture for
Creating IT-Security Laboratories”, Technical report, Hasso-Plattner-
Institut, 2006.

[7] J. Keller and R. Naues. “A Collaborative Virtual Computer Security
Lab”, in Proc. 2nd IEEE International Conference on e-Sciece and Grid
Computing (e-Science ’06), IEEE Computer Society, Amsterdam,
Netherlands, 2006.

[8] H. A. Lahoud and X. Tang. “Information Security Labs in IDS/IPS for
Distance Education”, in Proc. 7th Conference on Information
Technology Education (SIGITE ’06), ACM Press, pp. 47–52, 2006.

[9] S. Roschke, C. Willems, and C. Meinel. “A Security Laboratory for CTF
Scenarios and Teaching IDS”, Proc. 2nd Intl. Conference on Education
Technology and Computer (ICETC 2010), IEEE Press, Shanghai, China
(2010), pp. 433-437.

[10] K. Webb, M. Hibler, R. Ricci, A. Clements, J. Lepreau. “Implementing
the Emulab-PlanetLab Portal: Experience and Lessons Learned” in
Workshop on Real, Large Distributed Systems (WORLDS), 2004.

[11] C. Willems and C. Meinel. “Tele-Lab IT Security: an Architecture for an
Online Virtual IT Security Lab”, in International Journal on Online
Engineering (iJOE), Vol. 4 No. 2 (2008), pp. 31-37.

[12] C. Willems, T. Klingbeil, W. Dawoud, and C. Meinel. “Security in Tele-
Lab – Protecting an Online Virtual Lab for Security Training”, in Proc.
2009 ELS workshop (in conjunction with 4th ICITST) on E-Learning
Security (ELS 2009), IEEE Press, London, UK, pp. 1-7, 2009.

[13] C. Willems and C. Meinel. “Practical Network Security Teaching in an
Online Virtual Laboratory”, Proc. 2011 Intl. Conference on Security &
Management (SAM 2011), CSREA Press, Las Vegas, Nevada, USA,
2011.

[14] Golisano College of Computing and Information Sciences. (2007)
Networking and Systems Security Laboratory website [Online].
Avaliable: http://nssa.rit.edu/?q=node/52, accessed: 2011-11-18

[15] F. Bellard. (2011) QEMU – Open Source Processor Emulater homepage.
[Online]. Available: http://www.qemu.org/, accessed: 2011-11-18

[16] Red Hat, Inc. (2011) Kernel-based Virtual Machine (KVM) homepage.
[Online]. Available: http://www.linux-kvm.org/, accessed: 2011-11-18

[17] The Libvirt Developers. (2011) libvirt – The virtualization API home-
page. [Online]. Available: http://libvirt.org/, accessed: 2011-11-18

[18] R. Davoli. (2011) Virtual Distributed Ethernet homepage. [Online].
Available: http://vde.sourceforge.com/, accessed: 2011-11-18

[19] J. Martin. (2011) noVNC project website. [Online]. Available:
http://kanaka.github.com/noVNC/, accessed: 2011-11-18

[20] The Hackers Choice. (2003) thc-rut website. [Online]. Available:
http://www.thc.org/thc-rut/, accessed: 2011-11-20

[21] Lyon, Gordon. (2011) Nmap security scanner website [Online].
Available: http://insecure.org/nmap/, accessed: 2011-11-20

[22] Rapid7. (2011) Metasploit Penetration Testing Software [Online].
Available: http://metasploit.com/, accessed: 2011-11-20

[23] The BackTrack Developers. (2011) BackTrack Linux – Penetration
Testing Distribution [Online]. Available: http://www.backtrack-
linux.org/, accessed: 2011-11-20

[24] Mitre Corporation. (1999) Common Vulnerabilities and Exposures
website [Online]. Available: http://cve.mitre.org/, accessed: 2011-11-20

