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ABSTRACT

6LoWPAN is a protocol stack for seamlessly integrating 802.15.4-
based wireless sensor networks with IPv6 networks. The secu-
rity of 6LoWPAN widely depends on the 802.15.4 security sub-
layer. This sublayer also supports pairwise keys so as to mitigate
node compromises. Currently, the establishment of pairwise keys is
however unspecified. Moreover, broadcast keys are shared among
multiple nodes, which is not compromise resilient. In this paper, we
propose two energy-efficient and DoS-resilient 802.15.4 add-ons to
fill these gaps: First, a pairwise key establishment scheme, which
is adaptable to different 6LoWPAN networks and threat models.
Second, an easy-to-implement and compromise-resilient protocol
for authenticating broadcast frames. Together, our add-ons contain
the effects of node compromises and provide a basis for detecting
compromised nodes autonomously. We implemented both add-ons
in Contiki and tested them on TelosB motes.

Categories and Subject Descriptors

C.2.1. [Network Architecture and Design]: Wireless communi-
cation; D.4.6. [Security and Protection]: Cryptographic controls

Keywords

Internet of things, sensor network security, link layer security, key
management, broadcast authentication, DoS attacks.

1. INTRODUCTION

6LoWPAN stands for “IPv6 over Low-power Wireless Personal
Area Networks”. Low-power Wireless Personal Area Networks
(LoWPANS) are much like wireless sensor networks (WSNs). Both
consist of battery-powered and computationally-restricted nodes.
The deciding difference between them is that LoWPANSs use the
802.15.4[1] radio standard per definition, whereas WSNs use any
wireless communication standard. 6LoWPAN, in turn, refers to a
protocol stack, which enables LOWPAN nodes, or nodes for short,
to communicate with each other or remote hosts using IPv6. 6LoW-
PAN is envisioned to be adopted in diverse application areas, such

as smart cities, industrial monitoring, and precision agriculture [19].
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Many 6LoWPAN protocols[15, 31, 26] depend on the 802.15.4
security sublayer to filter out injected or replayed 802.15.4 frames.
The 802.15.4 security sublayer serves this purpose by adding both a
Message Integrity Code (MIC) and a frame counter to each frame.
Currently, the establishment of 802.15.4 keys is however unspeci-
fied.

Preloading each node with a network-wide shared key is not a
good solution. This is because 6LoWPAN networks run unattended
in hostile environments, which makes these networks susceptible
to node compromises. In a node compromise attack, an attacker
physically tampers with a node so as to extract its cryptographic
material. Tamper-resistant hardware is often proposed as a preven-
tive measure [5], but is expensive and may still be vulnerable[4].
Once an attacker has obtained the network-wide key, the attacker
can inject arbitrary frames anywhere at any time. Moreover, the
attacker can then add unauthorized nodes to the victim 6LoWPAN
network since upper-layer protocols[31, 26] rely on the 802.15.4
security sublayer.

Another straightforward scheme is the fully pairwise keys
scheme, where each node is preloaded with a pairwise key for com-
munication with any other node [9]. This is more compromise re-
silient, but three problems remain:

1. First, the fully pairwise keys scheme may be too memory-
consuming for large-scale 6LOWPAN networks. For instance,
when using 128-bit keys in a network of 32,768 nodes, each
node has to store S00KB(~ 32, 767 x 16 bytes) of pairwise
keys. This is already half of the total amount of external flash
memory on a TelosB[23] mote - a typical node. Moreover,
to support the addition of new nodes at runtime, each node
needs to store a pairwise key for communication with each
not-yet-deployed node in addition. Fewer pairwise keys can
be preloaded if a node’s neighbors are known in advance, but
this will complicate the deployment.

2. Second, there is a problem regarding the management of
frame counters. To detect replayed frames, the most recent
frame counter per source address needs to be stored. Delet-
ing a frame counter when a node disappears is impossible be-
cause an attacker can then replay old frames. Therefore, over
time, not all frame counters will fit in the limited random-
access memory (RAM) on nodes, but some need to be
swapped to external flash memory, which is energy consum-
ing [23].

3. Third, while pairwise keys offer a compromise-resilient so-
lution for securing unicast frames, there is no such solution
for broadcast frames. Broadcast frames have to be authen-
ticated with keys that are shared among neighboring nodes.



Thus, a node compromise not only reveals a single broad-
cast key, but also those of neighboring nodes. This is prob-
lematic when trying to detect compromised nodes because a
malicious authentic broadcast frame can pretend to originate
from an uncompromised node.

Unfortunately, public-key cryptography (PKC) is inappropriate
for solving these problems. PKC remains, despite various opti-
mizations[20], time and energy consuming on nodes. For example,
an Elliptic Curve Digital Signature Algorithm (ECDSA) signature
generation takes 3.2s and consumes 17.11mJ on a TelosB mote
[20]. This may be acceptable for establishing a pairwise key with
Elliptic Curve Menezes-Qu-Vanstone (ECMQV). However, attack-
ers could exploit the relatively high energy consumption of ECDSA
signature generations by repeatedly sending bogus key establish-
ment requests. Consequently, attackers could deplete a node’s bat-
tery. Moreover, ECMQYV itself does not check whether a node is
authorized to join a 6LoWPAN network. Hence, a certificate-based
authorization mechanism should be used in addition. Such a mech-
anism would also be susceptible to denial-of-service (DoS) attacks
since attackers could force nodes to verify the ECDSA signatures
of bogus certificates. An ECDSA signature verification takes about
4s and consumes 21.82mJ on a TelosB mote [20]. Likewise, if
ECDSA signatures were used to authenticate broadcast frames, this
would also enable attackers to launch DoS attacks. Moreover, a
software implementation of ECDSA consumes 28.2% of the pro-
gram memory and 15% of the RAM on a TelosB mote [20].

We make two main contributions:

e We propose the Adaptable Pairwise Key Establishment
Scheme (APKES). APKES is a framework for establishing
pairwise 802.15.4 keys without PKC. Different pairwise key
establishment schemes that forgo PKC can be plugged into
APKES so as to adapt to different 6LoWPAN networks and
threat models. This adaptability accounts for the current
dilemma that indeed plenty of pairwise key establishment
schemes that forgo PKC have been devised (see [9] for a sur-
vey), but none of them is universally applicable [3]. Further-
more, APKES features a much simpler approach to avoid the
swapping of frame counters than was proposed in [21, 17].

e We propose the Easy Broadcast Encryption and Authentica-
tion Protocol (EBEAP). EBEAP is a compromise-resilient
protocol for authenticating and encrypting 802.15.4 broad-
cast frames. Also EBEAP forgoes PKC. However, in con-
trast to existing broadcast authentication protocols that forgo
PKC[22, 28], EBEAP needs neither delays, nor hash chains,
nor time synchronization.

2. BACKGROUND

In this section, we provide background information for under-
standing the design of APKES and EBEAP. We will first outline
the 6LoWPAN protocol stack and its vulnerabilities. Finally, we
briefly explain the 802.15.4 security sublayer.

2.1 6LoWPAN and its Vulnerabilities

The 6LoWPAN protocol stack is shown in Figure 1. On Layer
1 and 2, the 802.15.4 media access control (MAC) and physical
layer (PHY) transmit frames to one-hop neighbors. On Layer 2.5,
the 6LoWPAN adaption layer[15] fragments and compresses IPv6
packets. Fragmentation is necessary because 802.15.4 has a Maxi-
mum Transmission Unit (MTU) of 127 bytes. Compression, on the
other hand, reduces the energy consumption for transmitting and
receiving IPv6 packets. On Layer 3, 6LoWPAN neighbor discovery

(6LoWPAN-ND)[26] disseminates context information for com-
pressing arbitrary IPv6 network prefixes. Apart from this, 6LoW-
PAN-ND is a multi-hop version of IPv6 neighbor discovery and
IPv6 stateless autoconfiguration. Also on Layer 3, the IPv6 Rout-
ing Protocol for Low-Power and Lossy Networks (RPL)[31] routes
IPv6 packets. On Layer 7, User Datagram Protocol (UDP)-based
protocols, such as the Constrained Application Protocol (CoAP),
are commonly employed.

CoAP layer7
ubp Layer 4
6LoWPAN-ND RPL
ICMPV6 Layer 3
IPv6

6LoWPAN adaption layer

802.15.4 security sublayer | APKES | EBEAP | Layer 2

802.15.4 MAC

802.15.4 PHY

Figure 1: The 6LoWPAN protocol stack

Owing to the use of a wireless medium, attackers can inject and
replay 802.15.4 frames. If the 802.15.4 security sublayer does not
filter them out, such attacks can have severe consequences. On
Layer 2.5, attackers can launch fragmentation attacks, which de-
stroy partly reassembled IPv6 packets or exhaust buffers [16]. On
Layer 3, an attacker can launch path-based DoS (PDoS)[10] at-
tacks. In a PDoS attack, an attacker injects bogus IPv6 packets,
which are then routed through the 6LoWPAN network, thus ex-
pending battery power. Another attack on Layer 3 is to inject bogus
Internet Control Message Protocol for IPv6 (ICMPv6) messages so
as to cripple RPL or 6LoWPAN-ND.

2.2 The 802.15.4 Security Sublayer

Figure 2 shows the format of a secured 802.15.4 frame. The es-
sential security-related fields are a MIC and a frame counter. These
fields enable receivers to verify both the authenticity and the fresh-
ness of a frame. The MICs are being generated with CCM* -
a modified version of Counter with Cipher Block Chaining-MIC
(CCM) [30]. CCM* in turn uses the Advanced Encryption Stan-
dard (AES) block cipher with 128-bit keys. The optional Key Iden-
tifier field can carry a reference to the key that was passed to CCM*.

- 802.15.4
Securit Frame (Ke (encrypted) ;
Control | Counter Identizer) PayYoad Mic zﬁajg,tgr

------ - = 802.15.4
Frame | Sequence | Addressing
Control | Number fields Payload | CRC I'\afﬁ:cr

Figure 2: Format of a secured 802.15.4 frame

CCM* can also encrypt the payload. This makes sense if the final
destination is just one hop away, as is the case in most 6LoWPAN-
ND and RPL interactions. Conversely, if the final destination is
multiple hops away, the hop-by-hop encryption of the 802.15.4 se-
curity sublayer is inappropriate because each (potentially compro-
mised) intermediary can decrypt the payload. In such cases, the
payload should be encrypted with IPsec[24] or another end-to-end
security solution.



3. THREE PLUGGABLE SCHEMES AND
THEIR TRADE-OFFS

In this section, we reconsider the dilemma that there is currently
not “the” scheme for establishing pairwise 802.15.4 keys. We be-
gin with defining criteria that should be fulfilled by such a scheme
in general. Then, we present the “as is” state of three example
schemes that can be plugged into APKES and evaluate them ac-
cording to the defined criteria. Finally, we point out the trade-offs
between these schemes. For reference, the appendix summarizes
our notations.

3.1 The IOWEU Criteria

An ideal scheme for establishing pairwise 802.15.4 keys should
meet the criteria inoculation, opaqueness, welcomingness,
efficiency, and universality IOWEU):

Inoculation: Inoculation was originally defined as the property
that an attacker cannot “aid unauthorized nodes to join a net-
work by compromising a small number of sensor nodes”[11].
However, most pairwise key establishment schemes cannot
prevent so-called node replication attacks. In a node repli-
cation attack, an attacker reuses the address, or more gen-
erally speaking, the identity of a compromised node on an
unauthorized node. Nevertheless, if a pairwise key estab-
lishment scheme at least guarantees that unauthorized nodes
cannot use another address than that of a compromised node,
concluding which node was compromised will be facilitated.
Also, this will allow for blacklisting the address of a com-
promised node. Therefore, we relax the original definition
of inoculation. We do not require an inoculated pairwise key
establishment scheme to prevent node replication attacks.

Opaqueness: We also slightly change the original definition of
opaqueness [11]. We call a pairwise key establishment
scheme opaque if, in the event of node compromise, only
links from and to the compromised node get compromised.
Opaqueness is very useful when it comes to detecting ma-
licious nodes. Detection will be difficult if an attacker not
only gets the pairwise keys of links from and to compromised
nodes, but also of links between uncompromised nodes. This
is because a receiver of a malicious frame could not decide if
the sender was compromised or not.

Welcomingness: A pairwise key establishment is welcoming if it
supports the addition of new nodes at runtime.

Efficiency: Efficiency relates to the energy and memory efficiency
of a pairwise key establishment scheme.

Universality: A pairwise key establishment scheme is universal if
it does not assume a restrictive network model.

3.2 Localized Encryption and Authentication
Protocol

The main idea of the Localized Encryption and Authentication
Protocol (LEAP)[32] is to preload each node with a master key K,
and to erase K, after the pairwise key establishment. K, is used
during the pairwise key establishment phase as follows. Suppose
a node u is being deployed. w first derives its individual key K,
from Ky, as Ky = F(Kpm, ID,). Thereby, F is a pseudorandom
function family, which is passed the seed K, and the input I D,,.
1D, on the other hand, is a unique identifier of u, such as u’s

address. Then, u broadcasts a HELLO message:

u — * : HELLO (I D,,)
v = u:ACK (IDy,ID,)k,

A neighbor v replies with an ACK message. The ACK message is
authenticated with a MIC that is generated with K, - the individual
key of v. When u receives the ACK message from v, u still has
K. Thus, u can generate K, and hence verify the attached MIC.
Once u and v discovered each other, both v and v calculate their
pairwise key K, as F'(Ky, ID,,). Finally, after u has established
a pairwise key with each of its neighbors, u erases K, so that K,
will not leak in the event of a node compromise.

Inoculation and opaqueness: LEAP is not inoculated because v
has no way to authenticate u. However, APKES fixes this
problem by adding bidirectional authentication to LEAP, as
was also proposed in [11]. That is, when running LEAP in
conjunction with APKES, LEAP is inoculated and opaque,
as long as the master key remains secret.

Welcomingness: LEAP is welcoming under the assumption that
no jamming attacks occur during neighbor discovery. To en-
sure the successful addition of nodes, one can, e.g., eaves-
drop on pairwise key establishment messages while deploy-
ing nodes.

Efficiency: LEAP is the most energy- and memory-efficient scheme
that we are aware of. Only a single key needs to be preloaded
and no other nodes need to be contacted during pairwise key
establishment.

Universality: LEAP does not support mobile nodes.

3.3 Blom’s Scheme

Blom’s scheme[6] uses the parameters A, n, and [. A denotes the
number of node compromises that are tolerable in Blom’s scheme.
n denotes the number of nodes in the network including not-yet-
deployed nodes. [ is the desired key length in bits. Given these
three parameters, Blom’s scheme initially chooses a prime power
q that is large enough to accommodate keys of length [ (¢ > 2%),
as well as n node identifiers (¢ > n). All operations in Blom’s
scheme will be done over the finite field F,. Next, a secret matrix
D € FQTDXOFD 4nd a public matrix G € F*™ are gen-
erated randomly. The only requirements on D and G are that D
is symmetric and that the columns of G are linearly independent.
Then, the matrix A = (DG)” € F;***Y is being calculated. Fi-
nally, a new node u is preloaded with the I D,,-th row vector of A
(denoted by Arp,,,—) and the I D,,-th column vector of G (denoted
by G_ rp,), where 1 < ID, < n.

Note that K is symmetric:

K =(DG)"G=G"D"G =G"DG = (D&)"G)" = K"

If two nodes v and v want to establish a pairwise key, they exchange
their columns G_ rp, and G_ ;p, and calculate their pairwise
key as:

Krp,ip, =Arp,,-G- 1p, = Arp,,—-G- 1D,

This procedure is depicted in Figure 3.

When choosing GT as a Vandermonde matrix and ¢ as a prime
number, the exchange of the columns of G can be omitted and the
pairwise key can be directly calculated as [12]:

A1 _ A1 ,
Kip,.1p, =Y A, ;(ID,) " =) A, ;(ID.) ™

j=1 j=1
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Figure 3: Blom’s scheme

Thus, preloading the columns of G becomes omissible, too.

Inoculation and opaqueness: As long as no more than A nodes
are compromised, Blom’s scheme is perfectly inoculated and
opaque. Otherwise, the attacker obtains a system of linear
equations with the A + 1 variables of D. Thus, the attacker
can calculate D and subsequently A.

Welcomingness: Blom’s scheme is welcoming if the parameter n
takes future deployments into account.

Efficiency: Both the computational effort and the memory con-
sumption of Blom’s scheme increase linearly with A\. More-
over, the row vector of A should be stored in the limited pro-
gram memory or RAM on nodes since each generation of a
pairwise key requires the entire row vector. An on-demand
retrieval of this row vector from external flash memory would
be energy consuming [23].

Universality: Blom’s scheme is universal.

3.4 Random Pairwise Keys Scheme

Recall that in the fully pairwise keys scheme, each node is
preloaded with a pairwise key for communication with any other
node. By contrast, in the random pairwise keys scheme[8], only
some pairs of nodes have pairwise keys. For example, in a network
of 10, 000 nodes, each node has to store only 75 pairwise keys to
achieve a probability of 0.5 of having a pairwise key with another
node [14]. The reasoning is similar to that of the birthday paradox.
Furthermore, if each node has at least 20 neighbors, the network
is connected with probability 0.99999 [14]. Two nodes without a
pairwise key have to employ an intermediary node for path key es-
tablishment. Thereby, the intermediary node unfortunately learns
the established path key. To mitigate this problem, multiple inter-
mediaries can be employed [8].

Inoculation: The random pairwise keys scheme is inoculated.

Opaqueness: In the random pairwise keys scheme, directly estab-
lished pairwise keys are opaque, but path keys are revealed
to intermediaries.

Welcomingness: The random pairwise keys scheme is welcom-
ing.

Efficiency: The memory consumption of the random pairwise keys
scheme is low. Furthermore, the retrieval of a pairwise key
from external flash memory is not too energy consuming
since a pairwise key is relatively short. The energy-consum-
ing part is the path key establishment.

Universality: The random pairwise keys scheme requires a mini-
mum network density.

3.5 The “IOWEU Dilemma”

The limiting factors of LEAP are universality, inoculation, and
opaqueness. LEAP’s universality is limited since LEAP does not
support 6LoWPAN networks with mobile nodes. Moreover, LEAP
should not be used if the secrecy of the master key cannot be guar-
anteed since inoculation and opaqueness are not ensured otherwise.

The limiting factor of Blom’s scheme is efficiency. A cannot be
chosen arbitrarily high since both the memory consumption and the
computational effort increase linearly with A.

The limiting factors of the random pairwise keys scheme are
opaqueness and universality. Its opaqueness is not perfect since
path keys are not opaque. This complicates the detection of com-
promised nodes since a malicious frame could pretend to originate
from an uncompromised node. If no full connectivity is needed,
a drastic solution will be to skip the path key establishment and
to therefore preload more pairwise keys. Its universality is also not
perfect since the random pairwise keys scheme requires a minimum
network density. This is problematic if a 6LoWPAN network has a
deformed topology, such as when monitoring a pipeline.

In short, LEAP, Blom’s scheme, as well as the random pair-
wise keys scheme require a trade-off between the IOWEU crite-
ria. In terms of inoculation and opaqueness, the fully pairwise keys
scheme remains the best choice and should be used whenever its
memory consumption is acceptable.

4. APKES: ADAPTABLE PAIRWISE KEY
ESTABLISHMENT SCHEME

The principle of APKES is as follows. The planner of a
6LoWPAN network picks an appropriate pairwise key establish-
ment scheme and plugs it into the APKES implementation of each
node. Table 1 defines four example schemes that can be plugged
into APKES. The plugged-in scheme merely implements two func-
tions, which provide APKES with shared secrets. However, the
plugged-in scheme neither communicates with neighbors nor gen-
erates the actual pairwise keys. This is done by APKES. An ex-
ception is the random pairwise keys scheme, which may implement
path key establishment in addition. Below, we first outline and then
detail APKES. Finally, we analyze the security of APKES.

4.1 Protocol Overview
APKES involves three phases:

Optional preloading of short addresses: As described in the pre-
vious section, pluggable schemes usually need IDs for gen-
erating shared secrets. APKES reuses 802.15.4 addresses as
IDs.

An 802.15.4 address consist of two parts. The first part is a
2-byte PAN-ID, which designates a subnetwork, or equiva-
lently a Personal Area Network (PAN), of a LoOWPAN. The
second part is either a 2-byte short or an 8-byte extended ad-
dress. Short addresses are only unique within a PAN. They
can be preloaded manually or configured automatically with
6LoWPAN-ND. Extended addresses are globally-unique 64-
bit Extended Unique Identifiers (EUI-64s). Each 802.15.4
transceiver has an EUI-64 assigned to it.

If APKES needs a shared secret with a node u, APKES passes
the PAN-ID of u (denoted by PAN,,), the extended address
of u (denoted by F'A,), and, if present, the short address of
u (denoted by SA,,) to the plugged-in scheme. Some plug-
gable schemes may require the presence of short addresses.
For example, in Blom’s scheme, the dimensions of the matri-
ces A and G will get too large otherwise. Unfortunately, the
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Figure 4: Format of APKES’ commands (a) when broadcast encryption is off and (b) when broadcast encryption is on

Table 1: Shared secrets in different pluggable schemes

Pluggable Shared secret with Shared secret with
scheme HELLO sender u HELLOACK sender v
Fully
pairwise Ky Koo
keys [9]
AES(Knm, EA,) if
LEAP K K, was not yet erased
[32] v or else discard the
HELLOACK
Blom’s A1 ) A1 )
scheme Asa, j(SAL)! Asa,,i(SA,)
[6, 12] J=1 J=1
Ra.nd(.)m K v, if present or else Koo if present or else
pairwise discard the HELLO discard the HELLOACK
keys [8] command

automatic configuration of short addresses with 6LoWPAN-
ND is incompatible with APKES. This is because 802.15.4
keys have to be established before ICMPv6 messages can be
sent. Therefore, if the plugged-in scheme requires short ad-
dresses, these short addresses must be preloaded manually in
this phase.

Preloading of cryptographic material: Prior to deploying a node

u, u needs to be preloaded with its cryptographic material.
APKES itself just needs a seed S,, for generating random
numbers. In addition, u is preloaded with the specific cryp-
tographic material of the plugged-in scheme. For example,
when using LEAP, the master key K, is preloaded in this
phase.

Pairwise key establishment: The pairwise key establishment

phase is initiated when pairwise keys with neighboring nodes
are to be established. For doing so, APKES employs a three-
way message exchange. The three messages are sent as three
newly defined 802.15.4 commands, namely HELLO,
HELLOACK, and ACK commands. Commands are special
frames, which are not passed to an upper-layer protocol, but
are processed at Layer 2. This enables APKES to establish
pairwise 802.15.4 keys independently from upper-layer pro-
tocols.

Suppose a node w initiates the pairwise key establishment
phase and discovers a neighbor v. Then, the protocol trace
of the three-way handshake looks as follows:

u : Generate R,, randomly

: HELLO (Ry)

v : Generate R, randomly and wait for T3, < M,,
v : K, = see Table 1

HELLOACK (Ru, Ry) K, .,

v: K, = AES(K, .y, Ru||Rv)

u : Ky, = see Table 1

u: Ky, = ABS(Ku,w, Rul|Ry)

u— v :ACK (),

Initially, u generates a random number R, and broadcasts
a HELLO command. The HELLO command contains R,,.
Upon receipt of the HELLO command on v, v generates a
random number R, . Furthermore, v stores R, || R, and waits
for a random waiting period 7%,, which has a maximum of
M,,. This prevents u from being overwhelmed with
HELLOACKS. As soon as T}, elapses, v sends a HELLOACK
containing both R, and R,. The HELLOACK is authenti-
cated with K, , as CCM* key. K, is the shared secret
between v and u and is provided by the plugged-in scheme,
as defined in Table 1. Furthermore, v derives the actual pair-
wise key K, ,, from K, o as AES(Ky, v, Ru||Rv). Upon re-
ceipt of the HELLOACK on u, u verifies the attached CCM*-
MIC by obtaining the shared secret K, ,, from the plugged-in
scheme. In addition, u checks whether the challenge R, re-
mained unchanged. When all these checks are successful, u
derives the pairwise key K7, ,, too. Finally, u sends an ACK
to v, which is authenticated with K, ,,. Upon receipt of the
ACK on v, v verifies the attached CCM*-MIC by using the
already-generated pairwise key K7, ,.

4.2 Protocol Specification

Fig

ure 4a shows the format of APKES’ commands. Ignore the

bold fields for the moment - their use will become apparent when
we discuss EBEAP in the next section. Note that the address-
ing fields always contain extended addresses and that HELLO and
HELLOACK commands contain the sender’s short address in ad-
dition. As already mentioned, these addresses are passed to the



Node u 1 Ring Buffer
Sy : char[16] > CCM*-MICs
K, . : char[Lp,]

* J{ordered} 1
Neighbor v ID

is_tentative : boolean PAN: char[2]
T,: uint64_t >| EA: char[8]
Ry Il Ry: char(Ly] 1| s4: char[2]
Ky,»: char[Lyy]
Cy: uint32_t
I, ,: uint8_t
K, .: char[Ly]

Figure 5: Data on a node u that runs both APKES and EBEAP

plugged-in when getting shared secrets. If a sender has no short ad-
dress, the short address field is set to OXFFFFE. The first payload byte
of each command is the command’s identifier, as specified in the
802.15.4 standard. The proposed values 0x0A, 0x0OB, and 0x0C are
currently unused. The length of the random numbers |Ry| = |Ry|
is calculated as L;”“, where Ly, is the length of pairwise keys in
bytes. L,y is left configurable by APKES and may take the values
Ly € {2,4,...,16}. Choosing L, < 16 saves RAM, but is less
secure. Additionally, HELLOACKS and ACKs carry the fields of the
802.15.4 security sublayer. Thereby, C,, denotes the 4-byte frame
counter of a node u.

If APKES were implemented as described so far, attackers could
launch DoS attacks on APKES by flooding HELLO commands. Re-
ceivers will always reply with a HELLOACK and hence expend their
battery power. Likewise, replayed HELLOACKs trigger ACKs. To
prevent these attacks, and to prevent injection and replay attacks in
general, each node stores its neighbors as shown in Figure 5. There
are two kinds of neighbors:

Tentative neighbors: Tentative neighbors are created upon receipt
of a HELLO command if two conditions are met. First, the
sender v must not already be stored as a neighbor. Second,
the number of tentative neighbors of the receiver u must be
smaller than M;. Before checking the second condition, u
deletes all expired tentative neighbors. A tentative neighbor
expires at T. = T, + T, + T4, where T is the time when
the tentative neighbor was created, 73, is the waiting period
until the HELLOACK will be sent to the tentative neighbor,
and 7y, is the waiting period for the ACK from the tentative
neighbor. Since the maximum number of tentative neighbors
is restricted to My, multiple consecutive HELLO commands
are being discarded. When a tentative neighbor is created,
several fields are set, namely R,||R., is_tentative, T,
SA,, EFA,, PAN,, and after the HELLOACK to v was sent,
K.

Permanent neighbors: Permanent neighbors are potentially cre-
ated upon receipt of valid HELLOACKS and ACKs. Upon re-
ceipt of a valid HELLOACK, there are three cases. First, if the
sender v is not already a neighbor, v is stored as a permanent
neighbor. Second, the sender v may already be a permanent
neighbor. This can happen when an ACK gets lost or when
the received HELLOACK was replayed. In this case, the re-
ceiver u only sends another ACK if the stored frame counter
C, of v is smaller than the frame counter within the received

HELLOACK from v. If so, v updates all information about
v, especially K fw since R, will have changed. Third, if the
sender v is a tentative neighbor, v is turned into a perma-
nent neighbor and an ACK is sent. This avoids a deadlock
situation when multiple nodes perform pairwise key estab-
lishment in parallel. Upon receipt of a valid ACK from v, v
is only turned into a permanent neighbor if v is currently a
tentative neighbor. In brief, permanent neighbors are created
upon receipt of valid nonreplayed HELLOACKs and upon re-
ceipt of valid ACKs from nontentative neighbors. When a
permanent neighbor is created, only 7%, as well as the ran-
dom numbers R, || R, remain unset.

A disappeared permanent neighbor should be deleted auto-
matically like in 6LoOWPAN-ND, but that is beyond the scope
of this paper.

APKES modifies the 802.15.4 security sublayer to discard frames
from nonpermanent neighbors right away. Only frames from a per-
manent neighbor v are decrypted, verified, and (if authentic and
fresh) passed to the 6LoWPAN adaption layer. If so, C, is thereby
updated.

4.3 Security Analysis

APKES mitigates HELLO flood attacks by limiting the number
of tentative neighbors. To reinforce this mechanism, the maxi-
mum number of tentative neighbors M; should be low and the
waiting period for an ACK 7, should be long. Unfortunately, an
attacker can also create tentative neighbors and thus prevent the
pairwise key establishment. Another approach would have been
to accept unlimited amounts of tentative neighbors, e.g., through a
SYN cookie-like mechanism. In this case, however, each HELLO
command would still trigger a HELLOACK.

Furthermore, APKES prevents the replay of HELLOACKs and
ACKs. The replay of HELLOACKs is prevented directly through
frame counters. Also the replay of HELLOACKS from deleted neigh-
bors is impossible since the expected random number R,, will have
changed. The replay of an ACK is senseless since a tentative neigh-
bor is turned into a permanent neighbor just once. The situation
is different when a permanent neighbor was deleted. Then, an at-
tacker could try to become a permanent neighbor by first spoofing
a HELLO command and second replaying a corresponding ACK.
However, the random number R, will have changed and therefore
K{,yu = AES(K,,u, Ru||Rv), too. Thus, the CCM*-MIC of the
replayed ACK will not be accepted.

In Table 1, we defined that individual keys in LEAP are gener-
ated using AES. This is practical since AES is required for imple-
menting CCM* anyway. The security of this definition depends on
the pseudorandomness, as well as the resistance against key recov-
ery attacks of AES.

Likewise, APKES uses AES for deriving the actual pairwise
keys. This has two advantages. First, disappeared permanent neigh-
bors can be deleted along with their frame counters. This is thanks
to the random numbers R, and R,, which cause a different pair-
wise key to be established when a neighbor reappears. Hence, re-
played frames from previous interactions will be detected and dis-
carded. Second, this improves the opaqueness of some pluggable
schemes. For example, in LEAP, the attacker not only needs to ob-
tain the master key to derive the pairwise key between two nodes,
but also to eavesdrop on the random numbers R, and R,. Simi-
larly, this mechanism improves the opaqueness of Blom’s scheme.
Compromising A + 1 nodes is not sufficient to obtain all pairwise
keys. Also the random numbers are needed. Since |R.| + |Ry| =
Ly, guessing R, and R, is as difficult as guessing a pairwise key.



S. EBEAP: EASY BROADCAST ENCRYP-
TION AND AUTHENTICATION PROTO-
COL

While APKES enables nodes to authenticate and encrypt unicast
frames, EBEAP enables nodes to authenticate and encrypt broad-
cast frames. Broadcast frames are, e.g., used in RPL and 6LoWPAN-
ND to discover neighboring nodes and to inform neighboring nodes
about network changes in an efficient manner. As already dis-
cussed, authenticating broadcast frames with ECDSA signatures
would enable DoS attacks. Instead, EBEAP solely uses CCM* and
reuses the established pairwise keys of APKES. As in the previous
section, we will first outline and then detail EBEAP. Finally, we
analyze the security of EBEAP.

5.1 Protocol Overview

Let M (k, f) denote the CCM*-MIC over a frame f with key
k. Suppose a node u wants to send a broadcast frame f to its per-
manent neighbors vo, v1, . .., vn—1. In this case, v first adds a Se-
curity Control, as well as a Frame Counter field to f to obtain f’.
Then, u broadcasts two frames:

u — * : ANNOUNCE (M (Ky oy |- 1M (K, 15 1))
u—x: f

The first broadcast is an ANNOUNCE command, which contains
one CCM*-MIC over f’ for each permanent neighbor v;. Thereby,
K, ,, is the established pairwise key from APKES. Note that the
ordering of the CCM*-MICs corresponds to the ordering of the
neighbor list of w. Upon receipt of the ANNOUNCE command on
a permanent neighbor v; of u, v; extracts and stores its desig-
nated CCM*-MIC in a ring buffer, which automatically overwrites
old CCM*-MICs. However, to enable v; to extract its designated
CCM*-MIC, v; needs its index ¢ = I, ,, in the neighbor list of u.
These indices are piggybacked on APKES’ commands, as will be
explained in the next subsection. The second broadcast is the ac-
tual broadcast message f’. Upon receipt of f’ on v;, v; generates
M (K, u, f'). If the resulting CCM*-MIC is stored in v;’s ring
buffer and if f' is fresh, v accepts f'.

Optionally, EBEAP also supports the encryption of broadcast
frames. If this feature is on, each node w generates a broadcast
key K., . and passes it securely to its neighbors. We will discuss
how this is done in the next subsection. Broadcast keys are not used
for authenticating f', but only for encrypting f'. When encryption
is on, EBEAP’s protocol trace looks as follows:

w — * : ANNOUNCE (M (Ky pos £ IM (K, )
u— s {f VK,

, where { '}k, , denotes that the payload of f” is being encrypted
with K, .. We will discuss the security implications later in the
course of our security analysis of EBEAP.

5.2 Protocol Specification

EBEAP needs to store additional data on each node w, as marked
in bold in Figure 5. In particular, u stores its index I,,, € {0,1,...}
in the neighbor list of each permanent neighbor v. Furthermore, u
now has a ring buffer for storing received CCM*-MICs. Broadcast
keys are only stored in addition if broadcast encryption is on. If so,
v generates its own broadcast key K, . randomly by using its seed
Sw. The length of broadcast keys is denoted by L, and is 16 bytes
maximum.

Figure 4a and b show the format of APKES’ commands when
broadcast encryption is off and on, respectively. HELLOACKs and

ACKs now piggyback the indices I, ., and I, respectively. Fur-
thermore, when using broadcast encryption, HELLOACKs and ACKs
piggyback the broadcast keys K, . and Ky, ., respectively. How-
ever, the broadcast keys cannot be sent in plain text. Therefore,
when using broadcast encryption, HELLOACKs and ACKs are not
only authenticated, but also encrypted with CCM*. This incurs the
problem that CCM* encrypts the whole payload. Thus, receivers
could not decide which key to use for decrypting the payload since
they cannot read either the contained command frame identifier or
short address. Therefore, when using broadcast encryption, this
data is put within the Key Identifier field, which remains unen-
crypted.

Figure 6 shows the format of ANNOUNCE commands. Recall that
802.15.4 has an MTU of 127 bytes. To support the case where the
CCM*-MICs do not fit within a single ANNOUNCE command, we
added the First Index field. Its value is the index of the neighbor for
whom the first CCM*-MIC is designated. This allows for sending
multiple ANNOUNCE commands when a single ANNOUNCE com-
mand is insufficient. For example, when using 7-byte CCM*-MICs,
no more than 15 = [#22=21] CCM*-MICs fit within a single
ANNOUNCE command.

ANNOUNCE | First

0x0D Index

Frame Control "
(frame type:
Command)

MKy fO N I MKy, 0 f)

-

Sequence | Addressing
Number fields Payload | CRC

Figure 6: Format of ANNOUNCE commands

Over time, expired tentative neighbors or deleted permanent
neighbors can cause gaps in the neighbor list. To keep ANNOUNCE
commands as short as possible, the neighbor list should never have
gaps. To support the reordering of neighbors, we define another
command: UPDATE. The format of UPDATE commands corre-
sponds to that of HELLOACKs, except that the random numbers
are left out. Furthermore, in contrast to HELLOACKS, UPDATE
commands are secured with K, ,,. The semantic of an UPDATE
command is to replace the currently stored values of PAN,,, EA,,
SAy, I, and K, . with the values contained in the UPDATE
command. UPDATE commands can also be used when a short ad-
dress was obtained via 6LoWPAN-ND. In this case, neighboring
nodes can be notified via UPDATE commands of the obtained short
address.

5.3 Security Analysis

Let us consider the probability that a random broadcast frame
gets accepted by a receiver. The frame will potentially be accepted
by one of the n permanent neighbors of the sender. All other nodes
will immediately discard the broadcast frame. Suppose each of the
n permanent neighbors buffers a maximum of m CCM*-MICs. A
single neighbor will hence accept the frame with probability 7,
where [ is the length of CCM*-MICs in bits. Thus, the proba-
bility that any neighbor will accept the broadcast is “7*. This is
higher than the probability of accepting a random unicast, which is
2%. To compensate for this effect, our implementation allows users
to configure the length of CCM*-MICs within ANNOUNCE com-
mands and unicast frames independently. It is usually sufficient to
use one additional byte per CCM*-MIC within ANNOUNCE com-
mands. For example, when m = 10 and n = 15, this yields:

10«15 2% 1
ol +8 ol+8 — 9l

Since ANNOUNCE commands are sent unauthenticated, attackers



can spoof them. Thus, before u sends the actual broadcast f’, an
attacker could overwrite the announced CCM*-MICs from w. If the
attacker succeeds, u’s permanent neighbors discard f’. However,
since the permanent neighbors always overwrite the oldest CCM*-
MIC first, the attacker needs to send multiple ANNOUNCE com-
mands. Hence, choosing m very high prevents this attack, but en-
tails the problem that the probability of accepting a random broad-
cast frame increases. Therefore, choosing m very high is not an
option. Another mitigation technique is to authenticate ANNOUNCE
commands with broadcast keys. The attached CCM*-MICs could
be short since our goal is just to discard most of the spoofed
ANNOUNCE commands. However, we think that this attack will be
difficult anyway if all CCM*-MICs fit within a single ANNOUNCE
command. This is due to the fact that the two broadcast frames are
sent without delay. If multiple ANNOUNCE commands have to be
sent, this attack becomes easier and puts a limit on the scalability
of EBEAP.

If an attacker compromises a node, the broadcast keys of the
node’s permanent neighbors will leak. Thus, the above mitigation
technique would no longer work. Moreover, the attacker can then
decrypt the neighbors’ broadcast frames. However, the attacker
cannot get broadcast frames accepted that pretend to originate from
one of the neighbors. This is due to the opaqueness of the pairwise
keys between other pairs of nodes. This property is valuable when
it comes to detecting compromised nodes and is the advantage of
EBEAP over authenticating broadcast frames with shared broad-
cast keys.

6. IMPLEMENTATION

We implemented APKES and EBEAP in the WSN operating
system Contiki' and made our implementation publicly available>.
Contiki’s 6LoWPAN stack is organized like the theoretical 6LoW-
PAN protocol stack shown in Figure 1. However, Contiki currently
does not allow for an additional layer in between the MAC and
the 6LoWPAN adaption layer for implementing link layer secu-
rity. We added such a layer, which enables us to plug-in arbitrary
llsec_drivers. By default, the nullsec_driver is used,
which merely passes incoming and outgoing frames to the upper
and lower layer, respectively. Furthermore, we implemented the
coresec_driver, which implements the 802.15.4 security sub-
layer, as well as our add-ons APKES and EBEAP. Thereby, we
made three simplifications. First, we did not implement UPDATE
commands. Second, we restricted the maximum number of neigh-
bors so that a single ANNOUNCE command is always sufficient.
Third, only LEAP is currently available as a pluggable scheme.

The CCM* implementation of the coresec_driver is en-
capsulated behind an interface. For our TelosB motes, we im-
plemented a CCM* driver, which leverages the hardware security-
based AES implementation of the CC2420° transceiver. (The
CC2420 does also implement CCM* directly. However, accord-
ing to our tests, the output is not 802.15.4 compliant.) The in-
terface of CCM* drivers also provides direct access to AES. The
coresec_driver uses AES not only for deriving pairwise keys,
but also for generating random numbers. Specifically, the
coresec_driver generates random numbers by calling AES
with the seed S, as key and a nonce i as plain text. The output is a
16-byte random number [11].

"http://contiki-os.org
https://github.com/kkrentz/contiki/wiki
*http://www.ti.com/1lit/ds/symlink/cc2420.pdf
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Figure 7: Memory footprint of the coresec_driver
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7. EVALUATION

Figure 7 shows the memory footprint of the coresec_ driver
on TelosB motes. We obtained these numbers with the tools
msp430-size and msp430-ram-usage. The numbers com-
prise the implementation of CCM*, APKES, as well as EBEAP.
The required program memory is acceptable on TelosB motes,
which have 48KB of program memory. The RAM overhead in-
creases linearly with the maximum number of neighbors. Our ex-
ample configuration allows for 15 neighbors with 12-byte pairwise
and 8-byte broadcast keys. The resulting RAM overhead is signifi-
cant for TelosB motes, which have 10KB RAM. This shows that the
ability to delete neighbors is crucial. For comparison, an ECDSA
implementation alone consumes 13.5KB of program memory and
1.5KB of RAM on a TelosB mote [20].

We have not yet measured the energy consumption of the
coresec_driver. However, Raza et al.[24] also leveraged the
hardware security of the CC2420. According to their results, CCM*
operations consume only a few microjoules. This indicates that
the energy consumption for generating multiple CCM*-MICs, as
done in EBEAP, is negligible, too. For this reason, we expect that
the overhead in energy consumption of the coresec_driver is
dominated by the transmission of additional security-related data.
In particular, the transmission of the additional broadcast frames
in EBEAP will be energy consuming. The energy consumption
for transmitting frames highly depends on the employed MAC pro-
tocol. When using ContikiMAC[13], sending broadcast frames is
relatively energy consuming since each broadcast frame is repeat-
edly transmitted during an entire wake-up interval. This consumes
~1.8mJ on TelosB motes, irrespective of the broadcast’s length. By
contrast, a broadcast reception consumes only ~0.2mJ in Contiki-
MAC. For comparison, an ECDSA signature generation or verifi-
cation consumes 17.11mJ or 21.82mJ, respectively [20].

8. RELATED WORK

As an alternative to the 802.15.4 security sublayer, Hummen et
al.[16] proposed mitigation mechanisms against known fragmenta-
tion attacks. Likewise, RPL[31] specifies mechanisms that can be
used in lieu of the 802.15.4 security sublayer. However, these surgi-
cal security mechanisms introduce complexity and cannot prevent
PDoS attacks. The 802.15.4 security sublayer protects against all
these attacks at once and is hence more efficient. Beyond that, AP-
KES prevents unauthorized nodes from joining a 6LoWPAN net-
work.

The swapping of frame counters was avoided in [21, 17] by
means of Bloom filters. Unfortunately, Bloom filters have a false
positive rate, which causes legitimate frames to sometimes be dis-
carded. Another approach is to use timestamps instead of counters
[21], but this requires a secure time synchronization protocol [29].


http://contiki-os.org
https://github.com/kkrentz/contiki/wiki
http://www.ti.com/lit/ds/symlink/cc2420.pdf

APKES avoids these drawbacks. The approach of APKES is to
establish a different pairwise key when a neighbor reappears. This
enables nodes to free up memory that was allocated for disappeared
permanent neighbors and, in particular, their frame counters.

EBEAP bases on the Timed Efficient Stream Loss-tolerant Au-
thentication++ (TESLA++)[28] protocol, which is in turn based on
TESLA[22]. Like EBEAP, TESLA and TESLA++ use symmetric-
key algorithms and send two broadcasts. In TESLA, the first broad-
cast is the actual broadcast message. Unfortunately, the receivers
need to buffer the whole broadcast message until the second broad-
cast arrives. Moreover, the second broadcast must be delayed. This
makes TESLA susceptible to memory-based DoS attacks.
TESLA++ prevents such attacks by sending only the MIC of up-
coming broadcast frames within the first broadcast like in EBEAP.
However, TESLA++ still requires delaying the second broadcast.
Another limitation of both TESLA and TESLA++ is their need for a
secure time synchronization protocol[29] and hash chains. EBEAP
needs neither hash chains, nor time synchronization, nor a delay in
between the two broadcasts. Unfortunately, EBEAP does not scale
well with the number of receivers due to additional CCM*-MICs.

Thus far, most efforts on link layer security in WSNs have fo-
cussed on performance[18, 7] and energy efficiency[21, 17], and
have left pairwise key establishment unaddressed. An exception
is L3Sec[27], which integrates a variant of LEAP. Besides, two
recent efforts[2, 25] use key distribution centers (KDCs) for boot-
strapping 802.15.4 keys. However, KDCs are susceptible to PDoS
attacks since bogus key establishment requests are routed all the
way to the KDC. Instead, APKES establishes pairwise keys in a
distributed fashion, which is PDoS resistant and more energy effi-
cient. Furthermore, as opposed to the recent efforts[2, 25], APKES
forgoes PKC.

9. CONCLUSIONS AND FUTURE WORK

Node compromises are a severe threat to 6LoWPAN networks.
We have pointed out that inoculated and opaque pairwise key es-
tablishment schemes contain the effects of node compromises. Fur-
thermore, we have presented APKES and EBEAP, which solve the
three problems stated in the introduction in an energy-efficient, as
well as DoS-resilient manner. Unfortunately, attackers can still in-
ject malicious frames after compromising a node because they ob-
tain its pairwise keys. However, APKES and EBEAP exhibit a nice
property: If the plugged-in scheme is inoculated and opaque, the
sender of a malicious authentic frame can be considered compro-
mised. For future work, we will try to exploit this property to de-
tect compromised nodes and to subsequently revoke their pairwise
keys. We will also investigate whether the pairwise key establish-
ment phase of APKES could be triggered self-adaptively through
cooperation with RPL. At the moment, the coresec_driver
initiates the pairwise key establishment phase only at start-up.
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APPENDIX

A. NOTATIONS

Symbol Meaning

U, v, ... nodes u, v, . ..

(.. insecure message or frame

(- )k message or frame that is authenticated with the key
k

{.. .} frame whose payload is encrypted with the key k

U —v u sends a message to v

U — * u broadcasts a message

1D, unique identifier of u (e.g., its address)

AES(k,m)| single AES encryption of the plain text block m
with the key &

AT transpose of the matrix A

| concatenation operator

|m| length of m in bytes
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