Published as : Hosnieh Rafiee, Christoph
Meinel. "A Flexible Framework For Detecting
Security of Information and Networks (SIN2013),

Mueller,

Lukas Niemeler,
IPv6 Vulnerabilities".
ACM, November 26 - 28, 2013 Aksaray,

Jannik Streek,
The 6th International Conference on

Turkey

A Flexible Framework For Detecting IPv6 Vulnerabilities

Hosnieh Rafiee
Rafiee{at}hpi.uni-potsdam.de

Jannik Streek
Jannik.Streek{at}
student.hpi.uni-potsdam.de

Christoph Mueller
Christoph.Mueller{at}
student.hpi.uni-potsdam.de

Christoph Sterz
Christoph.Sterz{at}
student.hpi.uni-potsdam.de

Lukas Niemeier
Lukas.Niemeier{at}
student .hpi.uni-potsdam.de

Christoph Meinel

Meinel{at}hpi.uni-potsdam.de

Hasso Plattner Institute, University of Potsdam
P.O. Box 900460, 14440 Potsdam, Germany

ABSTRACT

Security has recently become a very important concern for
entities using IPv6 networks. This is especially true with
the recent news reports where governments and companies
have admitted to credible cyber attacks against them in
which confidential information and the security of data have
been compromised. In this paper we will introduce a flexible
framework that can be used for penetration testing of IPv6
networks. Due to the large address space in each of the
IPv6 subnets, the traditional scanning approaches do not
work. Here we introduce our new scanning algorithm which
will find the IPv6 nodes on the Internet which are using
Domain Name System (DNS) servers. Our implementation
results showed that the use of the DNS Security Extension
(DNSSEC) with NSEC3 [5], which is a new and promising
approach for the prevention of zone walking, was not able
to prevent us from gathering information about nodes on
different networks.

Categories and Subject Descriptors

H.4 [IPv6 security]: IPv6 Penetration Testing; D.2.8 [DNS
security]: DNS vulnerabilities—DNS Reconnaissance using
DNSSEC

Keywords

Zone walking, NSEC3, DNSSEC, Fuzzier approach, IPv6,
Security, Privacy, Attacks, Penetration test

1. INTRODUCTION

Today, the use of the Internet for a myriad of different
applications is increasing exponentially. This is because, for
governments and businesses alike, it is an easier, faster and
more economical way to reach and conduct business with
target audiences. As a result of this wide use of the Inter-
net, vast amounts of secret, proprietary, and personal data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIN’13, November 26-28, 2013, Aksaray, Turkey. Copyright 2013 ACM
978-1-4503-2498-4/00/10 ...$15.00.

pass through Internet networks and are stored in network
repositories. A major concern is the fact that the Internet
has turned into a war zone where governments, businesses,
and individuals work very hard to find ways to infiltrate the
Internet networks and the network repositories in order to
obtain this secret, proprietary, and personal data, which is
then used in ways to further their goals to the detriment of
those affected. The Internet is being assimilated into the
cultures of countries around the world.

In the non Internet world, to send a letter to a specific place,
one needs an exact address. To accomplish this task using
the Internet, the Internet uses a standard protocol called In-
ternet Protocol version 4 (IPv4). Every device on the Inter-
net is assigned an IP address (a numeric format for IPv4 and
a hexadecimal format for Internet Protocol version 6 (IPv6))
that is used to aid in the sending and receiving of informa-
tion over the Internet. Unfortunately the address space in
IPv4 can only support 232 unique IP addresses and these
have already been assigned to nodes on the Internet, which
means that the supply of IPv4 addresses is exhausted. To
rectify this situation,in 1998, the Internet Engineering Task
Force (IETF) proposed that another version of this proto-
col be created to support a larger address space. This new
Internet Protocol is called IPv6 [3]. But due to the unclear
security flaws that existed with this protocol, its deployment
was postponed for several years. There are too many vari-
ables involved and too many questions remain unanswered.
In this paper we address this problem by proposing a flexi-
ble framework to be used for penetrating and securing IPv6
networks. Our purpose is to offer this system as a basic con-
sulting system that will give companies and governments
the ability to test their networks against the different types
of attacks possible. These attacks are then categorized,
which then makes it faster and easier to target them later.
We also discuss the new vulnerabilities of DNSSEC when
NSECS3 is used. This allows us to demonstrate that the use
of DNSSEC will not prevent scanning attacks, but will de-
crease the chance of this type of attack succeeding. The
result of this boils down to the fact that we use DNS as a
tool to scan nodes that have DNS records in IPv6 networks.
The remainder of this paper is organized as follows: Sec-
tion 2 explains the definition of DNS and DNSSEC. Section
3 briefly summarizes possible attacking mechanisms. Sec-
tion 4 explains the deficiencies that exist with the current
test beds and implementations. Section 5 discusses our pro-
posed framework. Section 6 evaluates our proposed frame-

Christoph Sterz and Christoph

hosnieh.rafiee
Typewritten Text
Published as : Hosnieh Rafiee, Christoph Mueller, Lukas Niemeier, Jannik Streek, Christoph Sterz and Christoph Meinel. "A Flexible Framework For Detecting IPv6 Vulnerabilities". The 6th International Conference on Security of Information and Networks (SIN2013), ACM, November 26 - 28, 2013 Aksaray, Turkey

hosnieh.rafiee
Typewritten Text

Published as : Hosnieh Rafiee, Christoph Mueller, Lukas Niemeier,
Meinel. "A Flexible Framework For Detecting IPv6 Vulnerabilities".
Security of Information and Networks (SIN2013),

Jannik Streek, Christoph ~ Sterz and Christoph
The 6th International Conference on
ACM, November 26 - 28, 2013 Aksaray, Turkey

3. EXISTING TOOLS USED FOR PENETRA-

work. Section 7 explains our plans for future work. Section
8 presents a summary of our conclusions.

2. WHAT IS DNS?

The DNS [7] is a hierarchical database that allows for easy
translation of names into IP addresses. The data is stored
on DNS servers in a specific format in what are called Re-
source Records (RR). Today, with the increased number of
websites on the Internet, it is not an easy task to remember
the TP addresses of all these websites. This is especially true
of websites using IPv6 addresses. A good example would
be in trying to remember and use the IPv4 address of the
google website, ”173.194.113.178”, instead of remembering
and using the user friendly address, www.google.com”. For
IPv6 it becomes even more difficult to remember the actual
address for the google website, 72a00:1450:4005:809::101f”,
because of the hexadecimal complexity of the address. It is
clear that one cannot remember thousands of websites by
their IP addresses. This is why the DNS was proposed and
is used to assist in the expansion of the use of the Internet by
making it more user friendly. However useful this protocol
is, its basic protection mechanisms do make it vulnerable to
several types of attacks, such as cache poisoning, reflector
attacks, spoofing attacks [9], etc.

2.1 What is DNSSEC?

The DNS Security Extension (DNSSEC) [1] was intro-
duced to protect the DNS from security vulnerabilities. It
provides the nodes on DNS servers with data integrity and
secure authentication. DNSSEC protects DNS servers by
using public/private key pairs to encrypt the RRs in a zone.
A zone is a portion of domain space that is authorized and
administered by a primary name server and one or more
secondary name servers. For each zone a different key pair
is used. For security reasons, DNSSEC uses a pre-signing
phase for the zones. The private keys are removed from the
DNS servers after signing the zone to avoid key exposure.
This fact makes it impossible to sign any domains on the
fly. It should thus be possible to verify that a DNS server is
not only signing all the entries correctly, but also that the
correct DNS severs are responding. To implement this, the
server of the parent zone will be asked for its public key. This
public key will then be used to verify the so called DS Key
(Delegation Signer) of the initially requested server. Using
this method it is possible to continue up the chain until the
root server is reached, which can then verify that the ini-
tial server can be trusted. In order to accomplish this, the
DNSSEC introduces the following new types of RRs:

e RRSIG: Signature for A, AAAA, MX, NS RRs

e NSEC/3 [5]: Used for NXDOMAIN responses. A NSEC
RR includes the names of the successor and predeces-
sor names in order to prevent replay attacks.

e DNSKEY: Public key of the zone. Clients can use this
key for signature validation.

e DS (Delegation Signer): Used to create a chain of
trust. This is done to ensure that the zone that a node
is talking to is in fact the correct zone. The server of
the parent zone is queried and then its own DNSKEY
is returned in order to check the signature of the DS
key.

TION TESTING

There are currently several research groups and individ-
ual researchers actively involved in testing IPv6 networks for
vulnerabilities in a variety of IPv6 protocol suites. These in-
clude addressing mechanisms, extension headers, fragmenta-
tions, tunneling or the dual stack networks (using IPv4 and
IPv6 at the same time). One popular tool for this endeavor
is The Hacker Choice (THC)' Attack Suite, which was cre-
ated by and is supported by some individual researchers.
In spite of being considered one of the most complete tools
available on the Internet with which to initiate a large vari-
ety of attacks in IPv6 networks, one needs to call each at-
tack separately, one by one, using the required parameters
in order to execute these attacks. Another problem with
this tool is that no reports are prepared indicating whether
or not the attacks were effective on the network and what
hosts were vulnerable to what attacks. A third problem is
that there is no good documentation for developers to use
in writing additional code for their testing purposes. There
are other available tools, but they have single functionality
and thus they can be used only for a specific purpose. For
example, nmap [6], halfscan6, etc. are used for scanning, or
for locating, live nodes on IPv6 networks. SendIP 2, scapy
3 isic6 4, etc. are used to generate and manipulate IPv6
packets. Some other tools are used just for testing a partic-
ular service. Web applications are one example of important
target services within IPv6 networks. [8] explains the mod-
ifications required in order to be considered a valid current
tool used for penetration testing of web applications based
on checklists containing the most prevalent security issues.
One example of a modification is related to a node scanning
mechanism that should take into account the IPv6 large ad-
dress size and modify its scanning mechanism accordingly.
Another problem is that none of these tools can be used to
scan a network when DNSSEC and NSEC3 are being used.

4. OUR PROPOSED FRAMEWORK

The initial phase used in attacking any network is to scan
the nodes in order to gather their IP addresses in order to
find what available services are running on them. The main
assumption made about the existing scanning tools that are
discussed in section 4 is that the nodes of the attacker reside
within the same network or are able to make use of ICMPv6
messages in order to find all IPv6 nodes residing in the net-
work(s). This assumption is based on the fact that the large
IPv6 address space makes it unfeasible for an attacker to
scan 2% nodes residing in each subnet. However, this as-
sumption is not always true. This is the reason why there is
a need to design new scanning algorithms. Some attackers
tried to misuse DNS; as a tool, in an attempt to gain more
information about the nodes. This helps them obtain the
IP addresses of nodes inside the target networks who have
associated DNS records. However, this attack will fail in
cases where DNSSEC is used.

Another problem with the current tools is their inability to
generate reports and the fact that they do not focus on all

"http:/ /www.thc.org/the-ipv6/
http://snad.ncsl.nist.gov/ipv6/sendip.html
Shttp://www.secdev.org/projects/scapy/
“http://isic.sourceforge.net,/

hosnieh.rafiee
Typewritten Text
Published as : Hosnieh Rafiee, Christoph Mueller, Lukas Niemeier, Jannik Streek, Christoph Sterz and Christoph Meinel. "A Flexible Framework For Detecting IPv6 Vulnerabilities". The 6th International Conference on Security of Information and Networks (SIN2013), ACM, November 26 - 28, 2013 Aksaray, Turkey

Published as : Hosnieh Rafiee, Christoph
Meinel. "A Flexible Framework For Detecting
Security of Information and Networks (SIN2013),

Mueller,

Attack Component @

N [
Config. FFPT Module
-~[{oo--File. | Web Interface | parameters
7 B Wl ——

yternal Lib -
xterna rarie (N _ i -

Y
FFPT backend Library

User ,.'.’\\' N
space FFPTd‘ ase

Kernel spaceg
' NIC driver \

Lukas Niemeier, Jannik Streek,
IPv6 Vulnerabilities".
ACM, November 26 - 28, 2013 Aksaray,

we

The 6th International Conference on
Turkey

Report/Monitoring Component

[
Config. FFPT
File Web Interface

User FFPT backend Library
space

-
Kernel space

Hd b= o= =
g
<
o
=

\

Figure 1: Components of Our Proposed Framework (FFPT)

available protocols used in IPv6 networks. They are also
incapable of checking to see whether or not a combination
of two or more protocols can be used to generate new at-
tacks. One example relates to the vulnerability of the DNS
server. To address these problems we propose the use of
a flexible framework that we call a Flexible Framework for
Penetration Testing (FFPT). We also discuss our new scan-
ning algorithm that can be used in combination with existing
scanning approaches in order to obtain the IP addresses of
nodes residing on the target network. Our framework will
also generate vulnerability reports which administrators can
use to help in the resolution of detected security flaws in their
network. This framework provides for the use of extensions
from three different perspectives: service discovery, attacks,
and reports. Here we will focus on the Attack components
and we will discuss our scanning algorithm.

4.1 FFPT Architecture

FFPT is a user space consisting of an easy to use frame-
work. It is made up of two main components: attack and
report/monitoring. They can be installed for use in two dif-
ferent linux-based nodes in IPv6 networks. Each of these
components makes use of a web interface and a FFPT back-
end library. Figure 1 depicts the architecture of these com-
ponents. The flexibility of the framework gives users the
ability of dragging and dropping their own scripts into the
framework or to extending the framework through the use
of other external scripts or codes that are available from the
Internet by use of the web interface. They can add and save
their commands, which contain the required parameters, us-
ing this interface so that, later, the FFPT backend library
can compile the external scripts and codes and save them in
a directory, and then, save the path to the compiled code in
its database. FFPT will consider and run these scripts and
codes during the next user-triggered network service execu-
tion. During the execution phase, the commands will pass
through to the FFPT backend library in order to trigger a
standard console command.

The web interface is written in PHP. Different credentials
are considered by this framework in order to increase the
transparency to the end user and to make logging activities
easier in cases where a problem occurs. The credentials are:

lterations

ondc52p3ubutdkm9p5rbmpg8légqtc3ka

7D27GHAMQORUZNGIQKT1 | SOA RRSIG DNSKEY NSEC3PARAM

Hashed name Hash Algorithm ~ Salt

Figure 2: DNSSEC and NSEC3

administrator, developer, and general user. A developer is
only allowed to add and modify his own scripts and code,
which he added to the framework. Administrators are al-
lowed to modify all scripts added by any developers to the
framework. He can also designate people as developers or
general users. A general user is only able to execute scripts
that are currently available in the framework and he does
not have the ability to add new ones or to modify existing
ones.

Attack Component

This component performs two different functions:

Service/Protocol Discovery.

FFPT uses ping sweeps or ICMPv6 echo messages to scan
the network in case multicast ICMPv6 messages were used.
In cases where this approach cannot be used (Blocked ICMPv6
echo messages by a firewall or IDS), it should use our new al-
gorithm. It then finds all available nodes and compiles a list
of their running or supported protocols and services. This
occurs immediately after FFPT user login. At the comple-
tion of this task, a list of all available services is displayed
and under each service the IPv4/IPv6 address of all nodes
running these services will be listed. By clicking on any part
of this list, available attacks are shown for that particular
service or protocol. The user can then choose the attack(s)
that he wants to run, from the list of available attacks, and
then he will initiate the attack(s).

DNS Reconnaissance Algorithm. When available, DNS
Zone Transfers offer the easiest opportunity for reconnais-

Christoph Sterz and Christoph

.de. 3600 IN NSEC3 1 1 5 FFFFFF 355FHI94VBMK

hosnieh.rafiee
Typewritten Text
Published as : Hosnieh Rafiee, Christoph Mueller, Lukas Niemeier, Jannik Streek, Christoph Sterz and Christoph Meinel. "A Flexible Framework For Detecting IPv6 Vulnerabilities". The 6th International Conference on Security of Information and Networks (SIN2013), ACM, November 26 - 28, 2013 Aksaray, Turkey

Published as :
Meinel.
Security of Information

Hosnieh Rafiee, Christoph
"A Flexible Framework For Detecting
and Networks (SIN2013),

Mueller,

sance. There is usually a minimum of two DNS servers stor-
ing a copy of a zone file: a master and a slave. A single mas-
ter DNS server keeps the main copy of the zone file, which
contains the essential zone data. Slave nodes receive copies
of that file using the Zone Transfer Process. Synchronizing
zone files via zone transfers can be executed either centrally,
by notifying slaves when changes are stored in the master,
or by allowing slaves to query at a configurable time inter-
val. By sending a DNS query with the special type, AXFR,
a client may receive the DNS server’s zone file. This is a full
zone transfer request. A recent alternative approach is the
Incremental Zone Transfer (IXFR).

By not securing DNS servers, all available hosts on those
servers and, in fact the entire zone, will be exposed. Once
DNS Zone Transfers are sufficiently secured, and DNSSEC is
enabled, a request for a non-existing record will be answered
with the nearest existing enclosing records. For example,
a request for the non-existent foo.bar.com record will be
answered with the signed records for fabulous.bar.com and
great.bar.com. If DNSSEC does not sign a response for all
non-existing records that are requested dynamically, then a
potential DoS attack vector could be performed. A generic
response claiming that the entry does not exist can be used
in a replay DoS attack. This is why, even the message that
proves the non-existence of a host, has to be signed and
verified. But signing new entries, while the DNS server is
online, is not possible for security and performance reasons.
All signing is done offline and security does not permit key
availability during runtime. DNSSEC’s solution is to send
’real” responses of the existing entries that have already been
signed. When a zone is signed using DNSSEC, a linked list
is created that connects all RRs in a ring, starting with
the zone name, itself, in alphabetical order. The enclosing
NSEC records, that are returned when no RR was found,
contain the host names of the previous and next available
host. The FFPT scanning algorithm can now start asking
for non-existing records which will result in the return of
the two closest existing host names. It will modify the re-
quest to find the next set of names and will continue to
"walk” through the linked list until it returns to the begin-
ning. This is also known as zone walking.

To cope with these flaws a new NSEC3 [5] standard was
developed. Host names contained in NSEC3 RRs are no
longer written in plain text. Instead, a salted and iterated,
e.g. SHA-1, hash function is used to obscure the names. The
hash function is only one way hashing, making zone walking,
as described earlier, much more difficult. However, it does
not totally prevent zone walking. The salt used for hashing
is publicly available as shown in figure 2 and the function
used for hashing is well known. FFPT can thus calculate
Rainbow Tables for a list of possible or likely host names.
By comparing the hashes from the Rainbow Tables and the
hashes in the NSEC3 RR records, the clear text value from
which the hash was computed can be retrieved. Calculating
the Rainbow Tables in a smart way (considering often used
domain names, which is also called dictionary based attack)
can make host discovery a very feasible proposition. Here
then, briefly, are the steps of our algorithm:

1. If AXFR is possible, ask for the whole copy of the zone
file. Otherwise go to step 2.

2. If DNSSEC is not enabled, report a failure and stop
scanning. Otherwise go to step 3.

Lukas Niemeler, Jannik Streek,
IPv6 Vulnerabilities".
ACM, November 26 - 28, 2013 Aksaray,

Christoph ~ Sterz and Christoph
The 6th International Conference on
Turkey

3. If the DNS server uses NSEC, then start zone walking.
Otherwise go to step 4.

4. If the DNS server uses NSEC3, start zone walking,
gather hashed, execute the dictionary attack offline
and then go to step 5.

5. If any records are left, do brute force attacks and re-
peat this step until no unknown record is available.

Attacks Execution.

This phase triggers all available attacking scripts for se-
lected services over a certain period of time. This time was
chosen by the user when this attack script was added to the
FFPT. It also activates the report/monitoring component
so that it is ready to monitor the network.

Report/Monitoring Component

The task of the report server is to act as a basic consulting
system that advises the user as to what security and pri-
vacy flaws exist in his network. When the report/monitoring
component receives a wake up message from the attack com-
ponent, it then retrieves the list of attacks from the database
of the attack component, and then starts monitoring the
network in order to find out whether or not the attack was
effective. This is done by sending probe messages or silently
sniffing the network. For example, to see whether or not a
node set its [P address based on a fake router advertisement
message, the monitoring service sniffs the network to obtain
the unsolicited neighbor advertisement message.

To improve the reports, the user can easily add new scripts
in order to determine the effectiveness of the attacks. For
some types of attacks this phase may have problems in gen-
erating the report. This is because FFPT does not install
any external components nor does it activate SNMP on any
node in the target network. This does not mean that the
ability to use this protocol does not exist. If the user wants
to manually enable SNMP on any nodes in his network, then
he can configure FFPT to use the SNMP protocol.

4.2 Mathematic Analysis of the FFPT Scan-
ning Algorithm

We are considering naive brute forcing. All possible com-
binations (including duplicate symbols) are calculated from
formula 1. where [is the length of word, 7 is the number
of iterations, A represents the 38 symbols in the alphabet
which includes 10 digits (0-9), 26 letters (a-z) (only lower-
case), dash(-), and underscore (_). |A] is the size of alphabet.

Cartesian Product(A x A x A...) =
{(a1,..,an) las € A = Vi, 1 <i<n}

(1
So the size of the resulting set is R = |A|'. If the length of

word, ie., =5 = R =238% = 79235168 ~ 80 Million.
4.3 FFPT Vulnerability Model

To make it easier to find new vulnerabilities in a targeted
IPv6 network, N, we use the following mathematical con-
cepts to define our vulnerability model.

e U: The sets of all standard protocols

e V(x): The sets of all vulnerabilities for protocol x.

hosnieh.rafiee
Typewritten Text
Published as : Hosnieh Rafiee, Christoph Mueller, Lukas Niemeier, Jannik Streek, Christoph Sterz and Christoph Meinel. "A Flexible Framework For Detecting IPv6 Vulnerabilities". The 6th International Conference on Security of Information and Networks (SIN2013), ACM, November 26 - 28, 2013 Aksaray, Turkey

Published as : Hosnieh Rafiee, Christoph Mueller, Lukas Niemeier, Jannik Streek, Christoph Sterz and Christoph
Meinel. "A Flexible Framework For Detecting IPv6 Vulnerabilities". The 6th International Conference on
Security of Information and Networks (SIN2013), ACM, November 26 - 28, 2013 Aksaray, Turkey

e V(x|y): The sets of all vulnerabilities for protocol x
made possible by protocol y

e Pr(x): The probability for the occurrence of x.

e P: The sets of all running protocols in network N where:

P = {pilpi CU,i>0}p; € P,3p; € P -

V(pi) = V(pi) + V(pilps),i #j >0 @

Formula 2 explains how combining some protocols in
the network might create new vulnerabilities for other
protocols. One example of this is p; for DNS. From
this statement we can define C as follows:

e C: The sets of different combinations (combination of
2 protocols, combination of 3 protocols, ..., combina-
tion of n protocols) of running protocols in network N
where:

= {(pi,Pj7-~-,Pn)|Pj7pi, vy Pn € P and
4Jy.n>0andi#j#..#n},CCP

The total members of C' = ZEZIU Pe 1;) where Pe

is the number of all possible permutations of n protocol from
P set by considering C' C P.

n

> (V(pi) x Pr(V(p:)))

i=1

(2),(3) = V(N) =~
+ZZZ§I

=1 j=1

V(pilp;) x Pr(V(pilp;)))

(pilpip) x Pr(V(pilp; - .. p1)))

A A A
(4)

Formula 4 depicts the total vulnerability in network N with
n protocols running. It is a general formula that shows the
vulnerability model. It is possible to derive different formu-
las with regard to the different conditions that might exist
in the network.

n

4) — lim V(N) =~ V(pi 5
“) Pr(V(pilpj-.-p1))—0 (N) ; (P:))

If for each protocol we assume there is at least one vulner-
ability and the probability of a vulnerability resulting from
a combination of protocols is heading toward zero, then the
total number of vulnerabilities in the network can be esti-
mated using formula 5. It is one of the possible cases where
a derivation of formula 4 is used. For example, if there are
10 protocols running in the network, and each protocol has
at least two vulnerabilities, then V(N) = 31, 2 = 20.
Another example is when the combination of only one pro-
tocol (psz) with other protocols is important, and there is no

14%

12%

10%

8%

6%

Total records covered

4%

2% H

0%
12 3456 7 8 910111213141516171819 20

word length | (exact)

Figure 3: Distribution of Third Level Domain

Length

permutation, then formula 4 changes to:

n

D_(V(p:) x Pr(V(p))
" - (6)
+ 3 V(pilps) x Pr(V(pilps)), pi # pe

=1

S. EVALUATION OF OUR FFPT

We evaluated our framework by considering some factors
such as the time it takes to find the nodes’ IP information
from the DNS server along with the time needed to generate
the report describing said services and attacks.

5.1 Node Detection

Dictionary based attacks make use of a predefined set of
commonly used names so as to compare the hashes of these
names with the hashes from the server. However, a list of the
most commonly used names is needed first. Additionally,
intelligent brute-forcing needs some data itself. To gather
these information and fill our database with useful domain
names, we implemented our DNS scanning algorithm using
python. We did not optimize the implementation, so it uses
a single core thread, which means that there is a poten-
tial for optimization to enable it to run faster. We ran our
code on a computer with a 2.60 GHz CPU. We also imple-
mented the case where we have a database full of common
names. To gather the names for this database we found the
list of most popular web sites from Alexa.com, but it was
unable to provide us with much information about the third
level domains behind these domains. To get the information
about third level domains we needed to make the request us-
ing AXFR. We scanned one million domains. Among them,
55160 domains (5.5 %) were not secure, which enabled us
to obtain a copy of the zone file by using an AXFR query.
This helped us to gather 1.43 x 10° RRs which we stored
in our database for later use in a dictionary attack against
NSEC3. According to our results, the popularity of a 3
length word (3 character word), third level domain (Exam-
ple: www.google.com, www in this combination is the third
level domain) is about 14% and the next popular third level
domain is a 4 length word. Figure 3 shows the popularity of
an n length word, third level domain.

Figure 4 shows how many third-level-domains can be col-

(4) > V(N) =~

hosnieh.rafiee
Typewritten Text
Published as : Hosnieh Rafiee, Christoph Mueller, Lukas Niemeier, Jannik Streek, Christoph Sterz and Christoph Meinel. "A Flexible Framework For Detecting IPv6 Vulnerabilities". The 6th International Conference on Security of Information and Networks (SIN2013), ACM, November 26 - 28, 2013 Aksaray, Turkey

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

Total records covered

20%

10%

0% L=
12345678 91011121314151617181920

word length | (up to)

Figure 4: Name Length Distribution of Our Col-
lected Data

lected, by percentage, with a given number of characters
(length of word). We could cover 50% of all third level do-
mains by the use of brute-forcing with up to 20 characters.
Figure 5 shows the different combination of alphabets as was
explained in section 4.2 and the time required to do brute
force attacks against this combination. Our result reflects
an hours time using a normal CPU. As explained earlier,
we did brute force attacks offline, and did not ask the DNS
server for each record after gathering hashes from the DNS
server. This is because we did not want to do a DoS attack
against a DNS server when our goal was to obtain more
records about nodes. We also did not want to slow down
the I/0.

5.2 Attack Execution

The time duration of attacks is a variable time determined

by the user and input using the FFPT web interface. If the
user chose a value of 40 seconds, then the duration of the
attack would be 40 seconds.
To enhance the framework with the addition of more at-
tacks, we implemented new attacks with which to evalu-
ate the IPv6 protocols. These attacks entailed the use of
fuzz mechanisms, evaluating DNS protocols such as multi-
cast DNS (mDNS) [2] and the evaluation of Mobile IPv6.
Some instances of the new attacks are as follows:

Attacks Against Multicast DNS (mDNS)

DNS is one of the application layer services that uses an
IP address. This is why the existing attack tools on DNS
needs to be modified in order to support IPv6. mDNS is
one of the new operations of DNS used in a local link in
the absence of a unicast DNS server. The domain names
using multicast DNS end with .local. mDNS is used for
finding printers or other shared folders of different Operat-
ing Systems (OS), or for checking the uniqueness of names
used in local links. When a host joins a network that sup-
ports multicast DNS, it tries to set its local hostname, like
mydomain.local, and then it sends a multicast DNS mes-
sage to all nodes on that local link to see whether or not
the chosen name is unique. We implemented a Man In The
Middle (MITM) attack using C++ by extending the packet-
manipulation-library ®.Using a Sniffer object, provided by

®https://code.google.com/p/packet-manipulation-library /

3600

Total

Hash Dictionary

Execution time in seconds

0.016667

¥
Maximum Length of Word

Figure 5: Time Required to Execute Brute Force
Attacks On Words of different Length

the packet-manipulation-library, the component analyzed all
traffic on UDP port 5353. Each host name query (AAAA,
i.e. IPv6 RRs) was stored in a map laid out to remember
the questioner and the host name in question. Every time
a DNS response was received by our framework, the map
was checked for a matching answer. If found, the attack is
carried out against the original questioner. For example, if
node A and B want to communicate together then node B
will ask the name of node A using mDNS in order to connect
via its name. Node A picks up a name and tries to check the
uniqueness of this name by sending a mDNS message. Our
MITM components (in FFPT framework) receive this mes-
sage as well as Node B. Our component can then spoof that
message and claim to have that name. There is no security
proposed for mDNS; so this can easily happen. Our compo-
nent could wait for node A and B to start their connection.
First the MITM component will send out unicast goodbye
packets to B indicating that the original host name holder
gave up his authority over the name (node A will not hold
onto A’s name anymore). Then the MITM component sends
another spoof unicast mDNS message to node B claiming to
be allowed to use name A and continues the communica-
tion and then redirects the communication to the real A. In
this case it plays a MITM attack. According to the mDNS
RFC, the node should not accept unicast messages. How-
ever, we discovered that all current mDNS implementations
accept unicast messages so that we were able to successfully
execute our attacks.

Fuzz Attacks

Fuzz testing is one of the popular testing approaches used
by industries. To better test an IPv6 protocol stack, we im-
plemented fuzz attacks. The code is called by the FFPT
framework, which is then responsible for the creation and
sending of fuzzy IPv6 packets as well as the monitoring the
target machines. Our first approach falls into the category
of random input generation. We used scapy to generate our
own packets as it allows for the generation of invalid packets,
which is useful for the fuzz approach. Our experimental re-
sults show that many packets are being rejected in the early
stages because of invalid formats. In some cases the victim
node’s crashed and we had to reboot the system. To im-
prove our results we used grammar based fuzz mechanisms.
Grammar based fuzz mechanisms are more precise. To fa-

Hash Combinations

Www 50868
mail 40234
ftp 31948
localhost 21254
webmalil 13830
smitp 13581
pop 11915
d 10974
webdisk 9264
nsl 8924
ns2 8693
cpanel 8105
whm 7955
autodiscover 5918

autodiscover._tcp 4703

autoconfig 4568
ns 3126
test 3030
m 3016
default._domainkey 2846
blog 2437
imap 2424
dev 2159
pop3 2031
www2 1794

Figure 6: Some of The Third Level Domains Records
Collected in Our Database

cilitate the process of grammar based fuzzing we used the
Peach Fuzzer framework ¢. During the day that we ran our
code, we could not find any malfunction in nodes that ac-
cepted our IPv6 plain packets. However, as we did not have
access to the IPv6 implementation stack, it was not easy to
completely evaluate the target nodes.

5.3 Report/Monitoring

The last step, and the most important step for FFPT,
is the generation of reports. Based on our experiments, it
takes an average of 9.77 seconds to generate a report on one
protocol, like the Neighbor Discovery Protocol (NDP). This
report varies from one protocol to another as it is dependent
on many factors such as how fast the victim nodes responds
to attacks, the duration of the attacks and whether the re-
port component needs to send a probe message to gather
data from the nodes in the network or whether just sniffing
is sufficient.

6. FUTURE WORK

This framework is still in the deployment phase, which
makes it a work in progress. We plan to enhance it with
new attacks based on our assumptions from the vulnerabil-
ity model. We are currently focused on some protocols in
IPv6 networks, such as DNS, NDP, Dynamic Host Config-
uration Protocol (DHCP), Mobile IPv6, etc. We also plan
on improving the report in order to generate more effective
reports.

7. CONCLUSIONS

In this paper we proposed a flexible framework that gives
users the ability to enhance it through the use of their own
scripts or through the use of external code and scripts. We
also introduced our scanning algorithm that will improve
the scanning results in order to check for the possibility of
all attacks against target networks. Unlike other tools, that
do not produce a report of the vulnerabilities or that have a
single functionality, our framework plays the role of a basic
consulting system. The probability of new vulnerabilities

Shttp://peachfuzzer.com/

being introduced in the network is also considered. The
framework uses a learning approach to find the vulnerabili-
ties that result from the combinations of different protocols
in the network. Based on our evaluation, we could find a
model for vulnerabilities and produce a time estimate for
scanning a target network using our scanning algorithm.

8. REFERENCES

[1] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. Protocol modifications for the dns security
extensions. IETF, Mar. 2005.
http://tools.ietf.org/html/rfc4035.

[2] S. Cheshire and M. Krochmal. Multicast dns. IETF,
Feb. 2013. http://tools.ietf.org/html/rfc6762.

[3] S. Deering and R. Hinden. Internet protocol, version 6
(ipv6) specification. IETF, Dec. 1998.
http://tools.ietf.org/html/rfc2460.

[4] S. Hogg and E. Vyncke. IPv6 Security. Cisco Press,
ISBN-13: 978-1-58705-594-2, 2009.

[5] B. Laurie, G. Sisson, R. Arends, and D. Blacka. Dns
security (dnssec) hashed authenticated denial of
existence. IETF, Mar. 2008.
http://tools.ietf.org/html/rfc5155.

[6] G. F. Lyon. Nmap network scanning: The official nmap
project guide to network discovery and security
scanning. ISBN-10 0-9799587-1-7, Jan. 2009.

[7] P. Mockapetris. Domain names - implementation and
specification. IETF, Nov. 1987.
http://tools.ietf.org/html/rfc1035.

[8] C. Ottow, F. van Vliet, P. de Boer, and A. Pras. The
impact of ipv6 on penetration testing. Springer,
7479:88-99, Auguest 2012.

[9] H. Rafiee, M. v. Loewis, and C. Meinel. Challenges and
Solutions for DNS Security in IPv6. 1GI,
http://www.igi-global.com/chapter/challenges-and-
solutions-for-dns-security-in-ipv6 /78870,

2013.

