
Scrutinizing the State of Cloud Storage with Cloud-RAID: A Secure and Reliable
Storage Above the Clouds

Maxim Schnjakin, Christoph Meinel
Hasso Plattner Institute

Potsdam University, Germany
Prof.Dr-Helmert-Str. 2-3, 14482 Potsdam, Germany
maxim.schnjakin, office-meinel@hpi.uni-potsdam.de

Abstract—Public cloud storage services enable organizations
to manage data with low operational expenses. However, the
benefits come along with challenges and open issues such as
security, reliability and the risk to become dependent on a
provider for its service. In our previous work, we presenteda
system that improves availability, confidentiality and reliability
of data stored in the cloud. To achieve this objective, we encrypt
user’s data and make use of the RAID-technology principle to
manage data distribution across cloud storage providers.

Recently, we conducted a proof-of-concept experiment for
our application to evaluate the performance and cost effective-
ness of our approach. We observed that our implementation
improved the perceived availability and, in most cases, the
overall performance when compared with cloud providers
individually. We also observed a general trend that cloud
storage providers have constant throughput values - whereby
the individual throughput performance differs strongly fr om
one provider to another. With this, the experienced transmis-
sions can be utilized to increase the throughput performance
of the upcoming data transfers. The aim is to distribute the
data across providers according to their capabilities utilizing
the maximum of the available throughput capacity. To assess
the feasibility of the approach we have to understand how
providers handle high simultaneous data transfers. Thus, in
this paper we focus on the performance and the scalability
evaluation of particular cloud storage providers. To this end,
we deployed our application using eight commercial cloud
storage repositories in different countries and conducteda set
of extensive experiments.

I. I NTRODUCTION

The usage of computing resources as pay-as-you-go
model enables service users to convert fixed IT cost into
a variable cost based on actual consumption. Therefore, nu-
merous researchers argue for the benefits of cloud computing
focusing on the economic value [8], [2].

However, despite of the non-contentious financial advan-
tages cloud computing raises questions about privacy, secu-
rity and reliability. Among available cloud offerings, storage
services reveal an increasing level of market competition.
According to iSuppli [6] global cloud storage revenue is set
to rise to $5 billion in 2013, up from $1.6 billion in 2009.
One reason is the ever increasing amount of data which is
supposed to outpace the growth of storage capacity.

For a customer (service) to depend solely on one cloud
storage provider has its limitations and risks. In general,
vendors do not provide far reaching security guarantees
regarding the data retention [11]. Placement of data in the
cloud removes the physical control that a data owner has
over data. So there is a risk that a service provider might
share corporate data with a marketing company or use the
data in a way the client never intended.

Further, customers of a particular provider might experi-
ence vendor lock-in. In the context of cloud computing, it
is a risk for a customer to become dependent on a provider
for its services.

In our previous work [12], [18] and [17] we presented an
approach that deals with the mentioned problems by sepa-
rating data into unrecognizable slices, that are distributed to
different providers. It is important to note, that only a subset
of the providers needs to be available in order to reconstruct
the original data. This is indeed very similar to what has
been done for years at the level of file systems and disks.

In recent months we conducted extensive experiments for
our application to evaluate the overall performance and cost
effectiveness of the approach. The results are presented in
our last work [16]. We observed that, with an appropriate
coding configuration, our system is able to improve signif-
icantly the performance of the data transmission process.
Nevertheless, we also observed that storage providers differ
extremely in their upload and download capabilities. In
addition, some vendors seem to have optimized their infras-
tructure for large files, while others focused more on smaller
data objects. However, the involvement of providers with
different throughput and response time capabilities might
influence the overall performance of our application in a
negative way. This is due to the fact, that in our approach
the transmission of an individual data object depends on
the capabilities (e.g. throughput or response time) of all
the providers involved into the data distribution process.
With Cloud-RAID (Redundant Array of Inexpensive Disks),
a data object is completely transferred, when the last data
package is successfully transferred to its destination (see
figure 1a). On the lookout for solutions, to improve the over-
all transmission performance we decided on the following
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(a) The current implementation of Cloud-RAID. Slow providers hamper
the overall transmission performance.
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(b) The optimization step utilizes the maximum of provider’s throughput
capacity, in such a way that individual chunk transfers finish approximately
at the same time.

Figure 1. Optimization of Cloud-RAID.

approach. The idea is to stripe the original data (prior to
the encoding step) into slices -chunks - and to distribute
the load across providers according to their capabilities.
The aim would be to ensure that the transmission ends
at the same time. More specifically, the duration of the
transmissions should take approximately the same time.
Figure 1b illustrates the described approach. The drawback
of the approach is that providers with higher throughput rates
would receive more and more data over time. However, ap-
plying this method, we would be able to increase the overall
transmission performance by utilizing the maximum of the
available throughput capacity of participating providers.

In our tests, we noticed that most providers have constant
throughput values. With this, the experienced transmissions
can be utilized to estimate the size of individual data
packages for the upcoming data transfers.

To be able to make assumptions about the feasibility of the
approach we have to clarify three questions: First, can the
transmission performance be increased through simultaneous
writing accesses to particular cloud providers? Second, does
the performance of providers remain constant while data
transmission process (or does it degrade over time)? And
third, how quickly can we interact with the APIs of the cloud
storage services. To answer these questions we conduct a
new experiment focusing on the performance abilities of
cloud storage providers in terms of response time and re-
silience. The latter will help us to understand how individual
providers handle high object counts of different sizes.

The main contributions of this paper is an experimental
study on a world-wide testbed of Cloud-RAID application
focussing on performance and resilience evaluation of indi-
vidual cloud storage providers.

II. T HE CLOUD-RAID SYSTEM

The ground of our approach is to find a balance be-
tween benefiting from the cloud’s nature of pay-per-use and
ensuring the security of the company’s data. The goal is

to achieve such a balance by distributing corporate data
among multiple storage providers, supporting the selection
process of a cloud provider, and removing the auditing
and administration responsibilities from the customer’s side.
As mentioned before, the basic idea is not to depend on
solely one storage provider but to spread the data across
multiple providers using redundancy to tolerate possible
failures. The approach is similar to a service-oriented version
of RAID (Redundant Arrays of Inexpensive Disks). While
RAID manages sector redundancy dynamically across hard-
drives, our approach manages file distribution across cloud
storage providers. RAID 5, for example, stripes data across
an array of disks and maintains parity data that can be used
to restore the data in the event of disk failure. In order
to achieve our goal we foster the usage of erasure coding
techniques (interested readers will find more information in
our previous work [18]).

Cloud-RAID is implemented using Grails, JNI and C tech-
nologies, with a MySQL back-end to store user accounts,
current deployments, meta data, the capabilities and the
pricing of cloud storage providers. Keeping the meta data
locally ensures that no individual provider will have access
to stored data. In this way, only users that have authorization
to access the data will be granted access to the shares of (at
least)k different clouds and will be able to reconstruct the
data. Further, our implementation makes use of AES for
symmetric encryption, SHA-1 and MD5 for cryptographic
hashes and an improved version of Jerasure library [13]
for using the Cauchy-Reed-Solomon and Liberation erasure
codes. The usage of erasure coding techniques enables us to
tolerate the loss of one or more storage providers without
suffering any loss of content [10], [19]. In general, our
system follows a model of one thread per provider per data
package in such a way that the encryption, decryption, and
provider accesses can be executed in parallel. Further details
can be found in our previous work [17], [15] and [14].
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Figure 2. Process workflow of the experiment (BPMN diagram).

III. T HE STATE OF CLOUD STORAGE

In this section we present an evaluation of the conducted
experiment that aims to clarify the main questions con-
cerning the performance and resilience aspects of storage
providers when our application is used to store data on
public clouds.

A. Experiment Setup

The testing was run in Hasso Plattner Institute (HPI),
which is located close to Berlin, Germany, over a period
of over 480 hours, in November 2012. As it spans twenty
days, localized peak times (time-of-day) is experienced in
each geographical region. HPI has a high speed connectivity
to an Internet backbone (1 Gb), which ensures that our test
system is not a bottleneck during the testing. The global
testbed spans eight cloud providers and thirteen physical
locations in both Europe and USA. The experiment time
comprises ten rounds, with each round consisting of a set of
predefined test configurations (in the following sequences).

Prior to each test round the client requires a persis-
tent connection to the APIs of the relevant cloud storage
providers, so that requests for an upload or download of
test data can be sent. In general, providers will refuse a
call for the establishment of a new connection after several
back-to-back requests. Therefore we implemented an API-
connection holder. After two hours of an active connection
the old connection is overwritten by a new one. Further, we
determine a timeout of one second between two unsuccessful
requests. In this way each client waits for a think time before
the next request is generated.

1) Machines for Experimentation:We employed two
machines for experimentation. Neither is exceptionally high-
end, but each represents a middle-range commodity proces-
sor, which are: Windows 7 Enterprise (64bit) system with an
Intel Core 2 Duo E8400 @3GHz, 4 GB installed RAM and
a 160 GB SATA Seagate Barracuda hard drive with 7200
U/min.

B. Methodology

To measure the performance and resilience of selected
clouds we conducted two series of experiments:

• The first part of the experiment clarifies the question,
if the transmission performance can be increased by
dividing the data objects into chunks and their simulta-
neous upload to cloud providers. To make assumptions
about the reliability of the services, we let our test client
read infrequently 10% of the transferred data back from
the provider and compare the hash values against an
expected date. The result of each run is the time elapsed
between the execution of the first write request until the
last write request.

• With the second test we aimed to find out, whether
simultaneous uploads influence each other and to what
extent. In each sequence our test client generatesn

data objects of a fixed size and then transfers them
simultaneously to a cloud provider. In this part of the
experiment, we are interested in the average duration
of the data transfer operations (reads and writes). Then
again, to check the integrity of the transferred data, the
test client reads 10% of randomly selected data back
from the cloud and compares it against an expected
value.

Figure 2 presents the workflow of the experiment. All trans-
ferred data objects will be only deleted after the completion
of the experiment, as the aim is to observe the performance
of providers while filling up the repositories.

C. Schemes and Metrics

As mentioned above, we intend to evaluate the per-
formance of cloud storage providers, which are currently
supported by our application. More specifically, we want to
observe the behavior of cloud providers when it comes to
parallel transmission of high data counts. In this context we
are also interested in response times and resilience properties
of the APIs. Therefore, we implemented a simple logger
application to record the results of our measurements. In
total we log 21 different events. For example, each state of
the workflow depicted in figure 2 is captured with two log
entries (START and END).

1) Response Time:In general, the measure of the re-
sponse time (latency) depends on the network proximity,
congestions in network path and traffic load on the target
server. We define response time as a time delay a storage
provider needs to react on an API call. More precisely, we
want to measure the time interval between starting the API
call to download a file and the receipt of its first byte.
To this end we contacted the respective providers with a
request for instruction to perform the correct measurement.
Thereupon we received nearly the same answers: we were
recommended to send an API call and to track the time
span until the network adapter will receive the first bits.



The implementation of the recommended procedure seemed
to complicated. Therefore we looked for an easier and
simpler approach to measure something that would reflect
the workload and the response time of a provider. We
concluded that we could use thegetHash method for two
reasons: first, based on our observations (see below) the
hash value is computed only ones after the data has been
received by a storage provider. Secondly, the size of the
data packet with the requested information is small enough
to be ignored. Note, that the procedure does not exclude the
amount of time that a storage provider spends processing
the request. Nevertheless, as each provider is expected to
process the requests in the same way, we can presume that
the approach described above will reflect the response time
of providers with sufficient precision.

2) Resilience: In general, resilience is defined as the
ability of a system (network, service, infrastructure, etc) to
provide and maintain an acceptable level of service in the
face of various faults and challenges to normal operation. In
the context of our experiment we assess the resilience of a
provider based on the following:

1) The constancy of performance during a series of
simultaneous transfers; and

2) The reliability of the provider over a long period of
sustained operation rates.

For our test we executed a series of simultaneous write
requests with data objects of various sizes (1 MB, 10 MB,
100 MB and 1 GB). We made the decision to start with the
1 MB file size due to our observations from the previous
experiment [16]. We found out, that with Cloud-RAID, the
transmission of smaller data objects (e.g. 64 kB, 100 kB,
500 kB) takes almost the same time as the transmission of a
1 MB file. The underlying reason is that execution of both
read and write requests is dominated by erasure overhead,
DNS lookup and API connection establishment time.

3) Availability: Usually, the availability is defined as
uptime

uptime+downtime
. Applying to cloud storage services

we define the perceived availability of providers as
number of successful requests

number of all requests
. This definition of availability

can be found in the SLAs of most storage providers. Indeed,
some vendors use self-defined metrics for calculation of
the availability of their services. Rackspace, for example,
perceives its network to be down if user requests fail during
two or more consecutive 90 second intervals1. At the same
time Google defines downtime when more than 5% of
request failures occur in a certain time interval2. The latter
availability metrics allow a higher margin for failures.

D. Empirical Results

This section presents the results in terms of response time
and resilience based on over 800.000 requests. Due to space

1http://www.rackspace.com/cloud/legal/sla/
2https://developers.google.com/storage/docs/sla

Provider File Size
(in kB)

API call
(in msec)

Local hash
calculation
(in msec)

Amazon [EU]

100 485 0
1024 417 4
10240 463 54
102400 521 547

Amazon [US]

100 1326 0
1024 1069 5
10240 1280 54
102400 1390 550

Azure

100 28 0
1024 36 4
10240 26 54
102400 26 547

Box

100 308 1
1024 296 12
10240 291 124
102400 317 1258

Google

100 85 0
1024 71 5
10240 60 54
102400 63 548

Nirvanix

100 380 0
1024 393 4
10240 390 54
102400 408 547

Rackspace

100 171 0
1024 152 5
10240 169 54
102400 194 548

Table I
THE COMPARISON OFHASH VALUE CALCULATIONS

constraints, we present only some selected results from the
conducted experiment.

1) Response Time:In order to observe the behavior of
the participating storage providers we uploaded data unitsof
various sizes to each provider (100 kB, 1 MB, 10 MB and
100 MB). Each transferred object has a unique hash value,
regardless of file size. After that, we performed a series of
randomized download requests and measured the time span
between executed calls and received responses. In addition,
we measured the time our system needed to calculate the
hash value of data packages (locally).

The results of the experiment are presented in table I.
There are few observations that can be taken from the table:

1) Box uses a different hash method, therefore it takes
our system nearly twice as much time to calculate the
hash values;

2) The measured time span is not affected by the size of
a data unit;

3) API calls for receiving hash values of larger data
units (greater-than 100 MB) is faster than their on site
calculation;

4) From 2 and 3 we conclude that each provider stores
the information to a meta-object after computing the
hash value of the received data unit.

Following this we conclude that on any APIgetHash-call
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Figure 4. Average response time of the providers Amazon and HP over
a period of twenty days.

the requested information is extracted from the meta-object
and transferred to the caller.

Further we observed a general trend that our test clients
experienced consistent and constant response times in most
cases - whereby the individual latency values differ ex-
tremely from provider to provider. After the first analysis
we divided providers into three clusters related to our test
location:

• Fast (response time<200ms);
• Medium (response time varies between 200 and

1500ms); and
• Slow (response time>1500ms)

The figures 3 an 4 show how quickly providers react on
a getHash request. At several time instances during the
experiment we observed increased response time which can
be attributed to the sudden increases in request traffic on
the target server nodes (for example in case of Google-
US service in figure 3a). Overall, the best and continuous
provider for our location is Azure. The average time needed
by the service to react on a request is about 50 milliseconds
(see figure 3a). We measured the slowest reaction time on
Amazon-US service (see figure 4). The reason is obvious
and refers to the largest distance between the location of our
test clients (located in Germany) and the destination server.
With a deviation of up to 100 milliseconds the providers
Google and Amazon do not provide as constant results
than other providers. It would be speculative to explain
the experienced behavior. One reason cloud be, that both
Amazon and Google are running more cloud services at the
same nodes than other providers, which would result in an
additional traffic load on servers. Then again, the behavior
might be also related to the usage of different consistency
models, which is the subject of our further analysis.

However, the empirical results summarized in this section
are based on continuous monitoring over the course of
over 20 days. Overall, the measured values appear to be

sufficiently comprehensive in order to effectively predictthe
response time for upcoming requests. Hence, the information
can be used for an intelligent data placement within Cloud-
RAID application.

2) Resilence:Due to space constraints, we present only
some selected results from the conducted experiment. In
the first instance, the performance comparison focusses
on the upload performance of six clouds, they are: Ama-
zon EU, Box, Google EU, Nirvanix, HP Cloud Storage
and Rackspace. The evaluation of download performance
showed similar results.

The first part of the experiment can be briefly summarized
as follows: a data unitF of size s(F ) was splitted into
multiple chunks of equal size (starting with 5 and ending
with 100 in intervals of 5 segments) and transferred to
a cloud. At the same time, we measured the time span
between the first and the last read or write request within
each segmentation interval. In general, our system follows
a model of one thread per chunk in such a way that all
provider accesses were executed in parallel.

Before the experimentation, we assumed that the transmis-
sion performance increases with simultaneous chunk trans-
fer. Hence, the interpretation of the results of the conducted
experiment focusses on the following values:

• the number of chunks where the increase in perfor-
mance stops, we will denote the value as (maximum)
segmentation levelx;

• the size of chunks at the segmentation level with the
best performance value, and which we denote ass(Fx)

(= s(F )
x

);
• the average transmission performance of all chunks at

the segmentation levelx, which we denote asP (Fx);
• the transmission performance of chunks of sizes(Fx)

in case of anative data transfer, denoted asP (s(Fx)).
This means that an individual file is transferred as a
single file with one single thread;

• the relation between the transmission performance of a
native data transferP (F ) andP (Fx), expressed as an
improvementfactor;

• the relation between the transmission performance of a
native transfer of a single chunkP (s(Fx)) andP (Fx);

Table II captures the results of the experiment. The
evaluation confirmed the assumption, that the behavior of
providers differs when it comes to simultaneous transfers
of a large number of data objects. In general, an increase
in segmentation level goes hand in hand with an increase in
the transmission performance, at least to a certain extent.As
we have discussed earlier, vendors have optimized their in-
frastructure for particular file sizes. Hence, the improvement
factor depends of the file size and varies from one provider
to another. More specifically, relatively slow providers with
optimized APIs for transmissions of smaller data objects,
achieve significantly better performance with a higher seg-
mentation rate, as the size of individual chunks decreases
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Figure 3. Average response times of cloud storage providersover a period of twenty days. The representation uses the trend line feature of excel to
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Provider Native transfer Best segmentation
level x

Simultaneous transfer Improvement factor Single chunk
transfer

s (F ) in
MB

P (F ) in
ms

s (Fx) in
MB

P (Fx)
in ms

P (F )

P (Fx)
s(Fx) in
MB

P (s(Fx))
in ms

Amazon 1 1941 50 0.02 493 3.94 0.02 422
10 14242 85 0.12 920 15.48 0.12 731
100 122922 85 1.18 3785 32,48 1,18 2257
1000 1265086 100 10.00 18590 68.05 10.00 17872

Google 1 2514 85 0.01 2436 1.03 0.01 2208
10 3812 25 0.40 2449 1.56 0.40 2393
100 20049 35 2.86 3906 5.13 2.86 3322
1000 154327 80 12.50 16318 9.46 12.50 12317

Nirvanix 1 4597 5 0.20 3049 1.51 0.20 636
10 22276 10 1.00 4083 5.46 1.00 1443
100 821391 75 1.33 8924 92.04 1.33 3409

Rackspace 1 11383 30 0.03 2230 5.10 0.03 745
10 103634 55 0.18 7157 14.48 0.18 2400
100 1038696 100 1.00 18072 57.48 1.00 11004

HP 1 25513 50! 0.02! 3099! 8.23! 0.02! 803!
10 230918 95 0.11 8397 27.50 0.11 3047
100 2683488 100 1.00 41047 65.38 1.00 23626

Box 1 18561 50 0.02 10986 1.69 0.02 1445
10 145346 50 0.20 9458 15.37 0.20 3777
100 1393105 50 2.00 36781 37.88 2.00 30383

Table II
THE TABLE CAPTURES THE RESULTS OF THE EXPERIMENT. DATA OBJECTS WERE SPLITTED INTO MULTIPLE CHUNKS OF EQUAL SIZEAND

TRANSFERRED TO CLOUD STORAGE PROVIDERS.

with an increasing number of segments. For example, a
native transmission of a 100 MB data object to Nirvanix
takes about 82,13 seconds. The transmission of the same
object in 75 segments (with a size of 1,33 MB each) takes
nearly 2,6 seconds, which improves the transmission rate
by a factor of 92. In terms of performance of writing a 10
MB file, Nirvanix achieves only an improvement factor of
5,46 (see table II). HP Cloud Storage service shows similar
behavior. A native transfer of a 100 MB file takes the service
about 45 minutes, whereas the segmented upload takes only
23,6 seconds.

Similar behavior can also be observed by providers with
higher throughput rates, although less pronounced. At one
extreme, Amazon achieves the highest improvement factor
of 32, when it comes to an upload of a 100 MB file in

85 segments. However, Google-EU provides consistent high
data throughput for all data sizes and therefore achieves only
an improvement factor of 5 for a segmented transmission of
100 MB data objects.

Important to note, is also the relation between the perfor-
mance of a native chunk transferP (s(Fx)) and the perfor-
mance of multiple simultaneous chunk transfers (cumulated
transfer) of the same sizeP (Fx). For fast providers (e.g.
Amazon and Google), the values ofP (s(Fx)) are approx-
imately identical toP (Fx) (see table II). This means, the
choice of chunk size determines the accumulated transmis-
sion performance of the original data. In order to minimize
transmission times of unsegmented data objects we have to
identify the optimal chunk size. Experienced deviations can
be attributed to the overhead associated with an establish-



�
m

e
 t

a
k

e
n

 i
n

 s
e

co
n

d
s

0

50

100

150

200

250

300

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95  100
number of simultaneous transfers 

(a) HP

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95  100

�
m

e
 t

a
k

e
n

 i
n

 m
se

co
n

d
s

number of simultaneous transfers 

(b) Rackspace

0

2000

4000

6000

8000

10000

12000

14000

16000

�
m

e
 t

a
k

e
n

 i
n

 m
il

li
se

co
n

d
s

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

number of simultaneous transfers 

(c) Amazon

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95  100

�
m

e
 t

a
k

e
n

 i
n

 s
e

co
n

d
s

number of simultaneous transfers 

(d) Box

�
m

e
 t

a
k

e
n

 i
n

 m
il

li
se

co
n

d
s

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95   100

number of simultaneous transfers 

(e) Nirvanix
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Figure 5. Average transmission performance of simultaneous uploads with increasing number of chunks. Each chunk has a size of 10 MB.
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(b) Rackspace.
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(c) Amazon.

0

50000

100000

150000

200000

250000

300000

350000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86

�
m

e
 t

a
ke

n
 i

n
 m

il
li

se
co

n
d

s

threads

(d) Box.

0

5000

10000

15000

20000

25000

30000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91

�
m

e
 t

a
ke

n
 i

n
 m

il
li

se
co

n
d

s

threads

(e) Nirvanix.
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(f) Google.

Figure 6. Transmission performance of single threads at different segmentation levels. Each thread transfers a chunk of 10 MB.

ment of API connections. In addition, with a high number
of threads, it cannot be guaranteed, that all processes are
executed exactly in parallel. Further, no assumptions can be
made about the order in which individual API connections
are processed on the side of providers. It is important to note,
that the transmission of chunks of small sizes takes only few
seconds, so that minor delays in the thread processing affect
the measurement results.

For other providers the relation betweenP (s(Fx)) and
P (Fx) may differ up to 300% (see table II). The observed
behavior could be attributed to weaker load balancing ca-
pabilities. It cloud be also presumed, that these providers
limit the throughput performance beyond a certain number
of connections that are opened simultaneously. Here again,

the minimization of native transfer time requires the iden-
tification of an appropriate chunk size and in this case the
upper limit of simultaneous connections.

The evaluation of the second test provided insights into
the constancy of performance during simultaneous data
transfers. The results of the experiment are presented in
figure 5. Following a preliminary analysis, the general
behavior of cloud storage providers can be grouped into
three categories:

• the number of simultaneous transfers has no impact
on the average transmission performance of individual
chunks (see figure 5a, 5b, 5c);

• additional connections decrease the average perfor-
mance (e.g. in case of Google or Nirvanix in figure
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Figure 7. Average transmission performance in seconds observed on all writes at different segmentation levels. Each initial data object (an unsegmented
file) has a size of 100MB. The highlighted bars correspond to the best segmentation levels, which represent the highest factor of improvement for individual
providers. The size of chunks decreases with growing segmentation level.

5e and 5f)
• the average performance decreases above a certain

segmentation level, the behavior is shown in figure 5d

An especially interesting point is the constancy of per-
formance during simultaneous transfers observed at various
segmentation levels during the experiment. Figure 6 shows
that the transmission performance is relatively constant in
most cases, except the providers Box, Nirvanix and HP.
The average throughput performance of the latter services
decreases above a certain number of simultaneous transfers.
For example, at the segmentation level of 90 the transmission
of threads 51 to 90 takes twice as much time as the
transmission of threads 1 to 50 (see figure 6d). Again, the
behavior might be related to a server-sided limitation of
throughput performance beyond a certain number of open
connections and is subject of the further analysis.

From these observations, we come to the following
decisive conclusions. Simultaneous transfers can increase
significantly the transmission performance of individual data
objects. The improvement factor depends on the capabilities
of cloud providers when dealing with different file sizes
and simultaneous transfers. A ”one-size-fits-all” approach is
not workable. The optimization of Cloud-RAID requires an
intelligent identification of chunk size taking into account

server-sided limitations of open API connections. Neverthe-
less, conducted experiments provide sufficient results forthe
identification of an appropriate transfer strategy based onthe
individual capabilities of cloud storage providers.

3) Availability: During the second part of the experiment
(resilience testing) we performed over 660.000 operations
(read/write). In this time period we observed only a few
number of failed requests. After a thorough evaluation of
the occurred failures, we can safely say, that nearly all
exceptions can be attributed to the implementation errors on
our side. Nevertheless, we experienced a number of opera-
tions that cloud not be completed due to some error on the
server side (e.greadT imeOut or peerNotAuthenticated).
Table III presents theobservedavailability of all experiments
calculated aswrites completed

writes tried
. Further, the table captures

also the results of the infrequent hash value comparison,
which was successful in nearly all cases, except the providers
Rackspace and Box. Note, the observed availability values
represent only a short period of time, which is little more
than twenty days. Actual values may differ from our obser-
vations.



Provider Number
of writes

Errors writes completed

writes tried
wrong
hash
value

Google 72500 0 100% 0
Amazon 72500 16 99,978% 0
Nirvanix 42000 3 99,993% 0
Rackspace 42000 145 99,655% 5
Box 42000 0 100% 40
HP 42000 0 100% 0

Table III
THE OBSERVED AVAILABILITY DURING THE EXPERIMENT.

IV. RELATED WORK

The main idea underlying our approach is to provide
RAID technique at the cloud storage level. In [5] the authors
introduce the HAIL (High-Availability Integrity Layer) sys-
tem, which utilizes RAID-like methods to manage remote
file integrity and availability across a collection of servers
or independent storage services. The system makes use of
challenge-responce protocols for retrievability (POR) [3]
and proofs of data possession (PDP) [3] and unifies these
two approaches. In comparison to our work, HAIL requires
storage providers to run some code whereas our system deals
with cloud storage repositories as they are. Further, HAIL
does not provide confidentiality guarantees for stored data.
In [9] Dabek et al. use RAID-like techniques to ensure the
availability and durability of data in distributed systems. In
contrast to the mentioned approaches our system focuses
on the economic problems of cloud computing described in
chapter I.

Further, in [1] authors introduce RACS, a proxy that
spreads the storage load over several providers. This ap-
proach is similar to our work as it also employs erasure code
techniques to reduce overhead while still benefiting from
higher availability and durability of RAID-like systems. Our
concept goes beyond a simple distribution of users’ content.
RACS lacks the capabilities such as intelligent file placement
based on users’ requirements or automatic replication. In
addition to it, the RACS system does not try to solve security
issues of cloud storage, but focuses more on vendor lock-
in. Therefore, the system is not able to detect any data
corruption or confidentiality violations.

The future of distributed computing has been a subject of
interest for various researchers in recent years. The authors
in [7] propose an architecture for market-oriented allocation
of resources within clouds. They discuss some existing cloud
platforms from the market-oriented perspective and present
a vision for creating a global cloud exchange for trading
services. The authors consider cloud storage as a low-cost
alternative to dedicated Content Delivery Networks (CNDs).

There are more similar approaches dealing with high
availability of data trough its distribution among several
cloud providers. DepSky-A [4] protocol improves availabil-
ity and integrity of cloud-stored data by replicating it on

cloud providers using quorum techniques. This work has
two main limitations. First, a data unit of sizeS consumes
n x S storage capacity of the system and costs on average
n times more than if was stored on a single cloud. Second,
the protocol does not provide any confidentiality guaranties,
as it stores the data in clear text. In their later work the
authors present DepSky-CA, which solves the mentioned
problems by the encryption of the data and optimization
of the write and read process. However, the monetary costs
of using the system is still twice the cost of using a single
cloud. On top of this, DepSky does not provide any means or
metrics for user centric data placement. In fact, our approach
enables cloud storage users to place their data on the cloud
based on their security policies as well as quality of service
expectations and budget preferences.

V. CONCLUSION

In this paper we focused on the performance evaluation
of cloud storage providers in terms of service provider’s re-
sponse time and its resilience (i.e. availability, performance).
The latter experiments helped us to understand how cloud
storage providers handle high numbers of simultaneous
transfers. Using these results we were able to assess the
improvement potential of Cloud-RAID performance. Our
approach focuses on segmenting the input data into different
chunks and transferring them simultaneously. The experi-
ments showed that simultaneous transfers can significantly
increase the transmission performance depending on the
individual capabilities of cloud providers when dealing with
different file sizes and simultaneous transfers.

We concluded that the requirements of implementing our
approach include the identification of: appropriate chunk
size (based on the individual throughput capabilities of each
provider), and a limitation of open API connections (i.e.
load balancing). Our conducted experiments also provided
sufficient results for the identification of an appropriate
transfer strategy per provider’s capabilities.

Nevertheless, we do not find one winning strategy to
optimize the performance of Cloud-RAID. Rather, the opti-
mization needs to be tackled individually per provider when
it comes to simultaneous transfers of high object counts. In
case of transmission of smaller data objects the transmission
is highly affected by the overhead which is associated with
DNS look-ups, API connection time, and API handling
of multiple threads. With increasing segmentation level
(smaller chunk size), response time becomes significant as it
can dominate the overall transmission rate. Therefore, it is an
important factor when deciding on a segmentation strategy.

VI. FUTURE WORK

Our performance testing revealed that some vendors have
optimized for large data objects and high upload perfor-
mance, while others have focused on smaller files and better
download throughput. We will use these observations to



provide a strategy to leverage the discoveries for Cloud-
RAID optimization. During our experiment we also observed
that the reaction time of read and get-hash requests may
vary from provider to provider at different times of day.
This behavior might be related to the usage of different
consistency models and is subject of further analysis. In
addition, we are also planing to implement more service
connectors and thus to integrate additional storage services.
Any extra storage resource improves the performance and
responsiveness of our system for end-users. Whilst our
system is still under development at present, we have to
use the results of the conducted experiment to improve
the overall performance and reliability. This includes for
instance the predictability and sufficiency of response time
and throughput as well as the validation file consistency.
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