

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 91–102, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Implementation of Cloud-RAID:
A Secure and Reliable Storage above the Clouds

Maxim Schnjakin and Christoph Meinel

Hasso Plattner Institute, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
maxim.schnjakin, meinel@hpi.uni-potsdam.de

Abstract. Cloud Computing as a service-on-demand architecture has grown in
importance over the previous few years. One driver of its growth is the ever in-
creasing amount of data which is supposed to outpace the growth of storage ca-
pacity. In this way public cloud storage services enable organizations to manage
their data with low operational expenses. However, the benefits of cloud com-
puting come along with challenges and open issues such as security, reliability
and the risk to become dependent on a provider for its service. In general, a
switch of a storage provider is associated with high costs of adapting new APIs
and additional charges for inbound and outbound bandwidth and requests. In
this paper, we describe the design, architecture and implementation of Cloud-
RAID, a system that improves availability, confidentiality and integrity of data
stored in the cloud. To achieve this objective, we encrypt user’s data and make
use of the RAID-technology principle to manage data distribution across cloud
storage providers. The data distribution is based on users’ expectations regard-
ing providers geographic location, quality of service, providers reputation, and
budget preferences. We also discuss the security functionality and reveal our
observations on the utility and users benefits from using our system. Our ap-
proach allows users to avoid vendor lock-in, and reduce significantly the cost of
switching providers.

1 Introduction

Cloud Computing is a concept of utilizing computing as an on-demand service. It
fosters operating and economic efficiencies and promises to cause a significant
change in business. Using computing resources as pay-as-you-go model enables ser-
vice users to convert fixed IT cost into a variable cost based on actual consumption.
Therefore, numerous authors argue for the benefits of cloud computing focusing on
the economic value [11], [6].

Among available cloud offerings, storage services reveal an increasing level of
market competition. According to iSuppli [9] global cloud storage revenue is set to
rise to $5 billion in 2013, up from $1.6 billion in 2009. One reason is the ever increas-
ing amount of data which is supposed to outpace the growth of storage capacity. Cur-
rently, it is very difficult to estimate the actual future volume of data but there are
different estimates being published. According to IDC review [14], the amount of
digital information created and replicated is estimated to surpass 3 zettabytes by the

92 M. Schnjakin and C. Meinel

end of 2012. This amount is supposed to more than double in the next two years. In
addition, the authors estimate that today there is 9 times more information available
than was available five years ago.

However, for a customer (service) to depend on solely one cloud storage provider
(in the following provider) has its limitations and risks. In general, vendors do not
provide far reaching security guarantees regarding the data retention. Users have to
rely on effectiveness and experience of vendors in dealing with security and intrusion
detection systems. For missing guarantees service users are merely advised to encrypt
sensitive content before storing it on the cloud. Placement of data in the cloud re-
moves many of direct physical controls that a data owner has over data. So there is a
risk that service provider might share corporate data with a marketing company or use
the data in a way the client never intended. Further, customers of a particular provider
might experience vendor lock-in. In the context of cloud computing, it is a risk for a
customer to become dependent on a provider for its services. Common pricing
schemes foresee charging for inbound and outbound transfer and requests in addition
to hosting the actual data. Changes in features or pricing scheme might motivate a
switch from one storage service to another. However, because of the data inertia,
customers may not be free to select the optimal vendor due to immense costs asso-
ciated with a switch of one provider to another. The obvious solution is to make the
switching and data placement decisions at a finer granularity then all-or-nothing. This
could be achieved by replicating corporate data to multiple storage providers. Such an
approach implies significant higher storage and bandwidth costs without taking into
account the security concerns regarding the retention of data.

A more economical approach which is presented in this paper is to separate data in-
to unrecognizable slices, which are distributed to providers - whereby only a subset of
the nodes needs to be available in order to reconstruct the original data. This is indeed
very similar to what has been done for years at the level of file systems and disks. In
our work we use RAID-like (Redundant Array of Independent Disks) techniques to
overcome the mentioned limitations of cloud storage in the following way:

1. Security. The provider might be trustworthy, but malicious insiders represent a
well known security problem. This is a serious threat for critical data such as medi-
cal records, as cloud provider staff has physical access to the hosted data. One so-
lution might be to encrypt data before the transmission to providers and to decrypt
data when receiving those. This requires users to handle the distribution of crypto-
graphic keys when the data needs to be accessed by different users. For each poten-
tial customer, it is both expensive and time consuming to handle these security and
usability concerns. We tackle the aforementioned problem by encrypting and en-
coding the original data and later by distributing the fragments transparently across
multiple providers. This way, none of the storage vendors is in an absolute posses-
sion of the client’s data. Moreover, the usage of enhanced erasure algorithms
enables us to improve the storage efficiency and thus also to reduce the total costs
of the solution.

2. Service Availability. Management of computing resources as a service by a single
company implies the risk of a single point of failure. This failure depends on many

 Implementation of Cloud-RAID: A Secure and Reliable Storage above the Clouds 93

factors such as financial difficulties (bankruptcy), software or network failure, etc.
However, even if the vendor runs data centers in various geographic regions using
different network providers, it may have the same software infrastructure. There-
fore, a failure in the software in one center will affect all the other centers, hence
affecting the service availability. In July 2008, for instance, Amazon storage ser-
vice S3 was down for 8 hours because of a single bit error [25]. Our solution ad-
dresses this issue by storing the data on several clouds - whereby no single entire
copy of the data resides in one location, and only a subset of providers needs to be
available in order to reconstruct the data.

3. Reliability. Any technology can fail. According to a study conducted by Kroll On-
track1 65 percent of businesses and other organizations have frequently lost data
from a virtual environment. A number that is up by 140 percent from just last year.
Admittedly, in the recent times, no spectacular outages were observed. Nevertheless
failures do occur. For example, in October 2009 a subsidiary of Microsoft, Danger
Inc., lost the contracts, notes, photos, etc. of a large number of users of the Sidekick
service [20]. Most of the data could be recovered within a few weeks, but the users
of Ma.gnolia2 were not so lucky in February of the same year, when the company
lost half a terabyte of data [17]. We deal with the problem by using erasure algo-
rithms to separate data into packages, thus enabling the application to retrieve data
correctly even if some of the providers corrupt or lose the entrusted data.

4. Data lock-in. By today there are no standards for APIs for data import and export
in cloud computing. This limits the portability of data and applications between
providers. For the customer this means that he cannot seamlessly move the service
to another provider if he becomes dissatisfied with the current provider. This could
be the case if a vendor increases the fees, goes out of business, or degrades the
quality of the provided services. As stated above, our solution does not depend on a
single service provider. The data is balanced among several providers taking into
account user expectations regarding the price and availability of the hosted content.
Moreover, with erasure codes we store only a fraction of the total amount of data
on each cloud provider. In this way, switching one provider for another costs mere-
ly a fraction of what it would be otherwise.

The main contribution of this paper is: we present a design of an application that can
be used to overcome the limitations of individual clouds by using encryption, erasure
codes and by integrating various cloud storage providers.

2 Architecture Overview

The ground of our approach is to find a balance between benefiting from the cloud’s
nature of pay-per-use and ensuring the security of the company’s data. The goal is
to achieve such a balance by distributing corporate data among multiple storage

1 http://www.krollontrack.com/resource-library/case-studies/
2 http://gnolia.com/

94 M. Schnjakin and C. Meinel

providers, automizing big part of the selection process of a cloud provider, and re-
moving the auditing and administrating responsibility from the customer’s side. As
mentioned above, the basic idea is not to depend on solely one storage provider but to
spread the data across multiple providers using redundancy to tolerate possible fail-
ures. The approach is similar to a service-oriented version of RAID. While RAID
manages sector redundancy dynamically across hard-drives, our approach manages
file distribution across cloud storage providers. RAID 5, for example, stripes data
across an array of disks and maintains parity data that can be used to restore the data
in the event of disk failure. We carry the principle of the RAID-technology to cloud
infrastructure. In order to achieve our goal we foster the usage of erasure coding tech-
nics (see 3.3). This enables us to tolerate the loss of one or more storage providers
without suffering any loss of content [26], [13]. Our architecture includes the follow-
ing main components:

─ User Interface Module. The interface presents the user a cohesive view on the
data and available features. Here users can manage their data and specify re-
quirements regarding the data retention (quality of service parameters).

─ Resource Management Module. This system component is responsible for an
intelligent deployment of data based on the user’s requirements.

─ Data Management Module. This component handles data management on be-
half of the resource management module.

Interested readers will find more background information in our previous work
[24],[21]. The system has a number of core components that contain the logic and
management layers required to encapsulate the functionality of different storage pro-
viders. The next section gives an overview on the implementation of our system on a
more detailed level.

3 Design

Any application needs a model of storage, a model of computation and a model of
communication. In this section we describe how we achieve the goal of the consistent,
unified view on the data management system to the end-user. The web portal is de-
veloped using Grails, JNI and C technologies, with a MySQL back-end to store user
accounts, current deployments, meta data, and the capabilities and pricing of cloud
storage providers. Keeping the meta data locally ensures that no individual provider
will have access to stored data. In this way, only users that have authorization to
access the data will be granted access to the shares of (at least) k different clouds and
will be able to reconstruct the data. Further, our implementation makes use of AES
for symmetric encryption, SHA-1 and MD5 for cryptographic hashes and an
improved version of Jerasure library [18] for using the Cauchy-Reed-Solomon and
Liberation erasure codes. Our system communicates with providers via ”storage con-
nectors”, which are discussed further in this section.

 Implementation of Cloud-RAID: A Secure and Reliable Storage above the Clouds 95

3.1 Service Interface

The graphical user interface provides two major functionalities to an end-user: data
administration and specification of requirements regarding the data storage. Interested
readers are directed to our previous work [22] which gives a more detailed back-
ground on the identification of suitable cloud providers in our approach. In short, the
user interface enables users to specify their requirements (regarding the placement
and storage of user’s data) manually in form of options, for example:

─ budget-oriented content deployment (based on the price model of available
providers)

─ data placement based on quality of service parameters (for example
availability, throughput or average response time)

─ storage of data based on geographical regions of the user’s choice. The restric-
tion of data storage to specific geographic areas can be reasonable in the case of
legal restrictions.

3.2 Storage Repositories

Cloud Storage Providers. Cloud storage providers are modeled as a storage entity
that supports six basic operations, shown in table 1. We need storage services to sup-
port not more than the aforementioned operations. Further, the individual providers
are not trusted. This means that the entrusted data can be corrupted, deleted or leaked
to unauthorized parties [16]. This fault model encompasses both malicious attacks on
a provider and arbitrary data corruption like the Sidekick case (section 1). The proto-
cols require n = k + m storage clouds, at most m of which can be faulty. Present-day,
our prototypical implementation supports the following storage repositories: Amazons
S3 (in all available regions: US west and east coast, Ireland, Singapore and Tokyo),
Box, Rackspace Cloud Files, Azure, Google Cloud Storage and Nirvanix SND. Fur-
ther providers can be easily added.

Service Repository. At the present time, the capabilities of storage providers are
created semi-automatically based on an analysis of corresponding SLAs which are
usually written in a plain natural language [5]. Until now the claims stated in SLAs
need to be translated into WSLA statements and updated manually (interested readers
will find more background information in our previous work [22]). Subsequently the
formalized information is imported into a database of the system component named
service repository. The database tracks logistical details regarding the capabilities of
storage services such as their actual pricing, SLA offered, and physical locations.
With this, the service repository represents a pool with available storage services.

Matching. The selection of storage services for the data distribution occurs based on
user preferences set in the user interface. After matching user requirements and pro-
vider capabilities, we use the reputation of the providers to produce the final list of
potential providers to host parts of the user’s data. A provider’s reputation holds the

96 M. Schnjakin and C. Meinel

Table 1. Storage connector functions

Function Description
create(ContainerName) creates a container for a new user
write(ContainerName, ObjectName) writes a data object to a user container
read(ContainerName, ObjectName) reads the specified data object
list(ContainerName) list all data objects of the container
delete(ContainerName, ObjectName) removes the data object from the container
getDigest(ContainerName, ObjectName) returns the hash value of the specified data

object

details of his historical performance plus his ratings in the service registries and is
saved in a Reputation Object (introduced in our previous work [3], [2], [4]). By read-
ing this object, we know a provider’s reputation concerning each performance para-
meter (e.g. has high response time, low price). With this information the system
creates a prioritized list of repositories for each user. In general, the number of storage
repositories needed to ensure data striping depends on a user’s cost expectations,
availability and performance requirements. The total number of repositories is limited
by the number of implemented storage connectors.

3.3 Data Management

Data Model. In compliance with [1] we mimic the data model of Amazon’s S3 by the
implementation of our encoding and distribution service. All data objects are stored in
containers. A container can contain further containers. Each container represents a flat
namespace containing keys associated with objects. An object can be of an arbitrary
size, up to 5 gigabytes (limited by the supported file size of cloud providers). Objects
must be uploaded entirely, as partial writes are not allowed as opposed to partial
reads. Our system establishes a set of n repositories for each data object of the user.
These represent different cloud storage repositories (see figure 1).

Encoding. Upon receiving a write request the system splits the incoming object into k
data fragments of an equal size - called chunks. These k data packages hold the origi-
nal data. In the next step the system adds m additional packages whose contents are
calculated from the k chunks, whereby k and m are variable parameters [18]. This
means, that the act of encoding takes the contents of k data packages and encodes
them on m coding packages. In turn, the act of decoding takes some subset of the
collection of n = k + m total packages and from them recalculates the original data.
Any subset of k chunks is sufficient to reconstruct the original object of size s [19].
The total size of all data packets (after encoding) can be expressed with the following

equation: ቀ௦௞ כ ݇ቁ ൅ ቀ௦௞ כ ݉ቁ ൌ ݏ ൅ ቀ௦௞ כ ݉ቁ ൌ ݏ כ ቀ1 ൅ ௠௞ ቁ. With this, the usage of

erasure codes increases the total storage by a factor of m k . Summarized, the overall
overhead depends on the file size and the defined m and k parameters for the erasure
configuration. Figure 2 visualizes the performance of our application using different

 Implementation of Cloud-RAID: A Secure and Reliable Storage above the Clouds 97

erasure configurations. Competitive storage providers claim to have SLAs ranging
from 99% to 100% uptime percentages for their services. Therefore choosing m = 1 to
tolerate one provider outage or failure at time will be sufficient in the majority of
cases. Thus, it makes sense to increase k and spread the packages across more provid-
ers to lower the overhead costs.

Fig. 1. Data unit model at different abstraction levels. At a physical layer (local directory) each
data unit has a name (original file name) and the encoded k+m data packages. In the second
level, Cloud-RAID perceives data objects as generic data units in abstract clouds. Data objects
are represented as data units with the according meta information (original file name, crypto-
graphic hash value, size, used coding configuration parameters m and k, word size etc.). The
database table ”Repository Assignment” holds the information about particular data packages
and their (physical) location in the cloud. In the third level, data objects are represented as
containers in the cloud. Cloud-RAID supports various cloud specific constructions (buckets,
treenodes, containers etc.).

In the next step, the distribution service makes sure that each encoded data package
is sent to a different storage repository. In general, our system follows a model of one
thread per provider per data package in such a way that the encryption, decryption,
and provider accesses can be executed in parallel.

Fig. 2. The average performance of the erasure algorithm with data objects of varying sizes
(100kB, 500kB, 1MB, 10MB and 100MB)

98 M. Schnjakin and C. Meinel

However, most erasure codes have further parameters as for example w, which is
word size3. In addition, further parameters are required for reassembling the data
(original file size, hash value, coding parameters, and the erasure algorithm used).
This metadata is stored in a MySQL back-end database after performing a successful
write request.

Data Distribution. Each storage service is integrated by the system by means of a
storage-service-connector (in the following service-connector). These provide an
intermediate layer for the communication between the resource management service
(see section 3.4) and storage repositories hosted by storage vendors. This enables us
to hide the complexity in dealing with proprietary APIs of each service provider. The
basic connector functionality covers operations like creation, deletion or renaming of
files and folders that are usually supported by every storage provider. Such a service-
connector must be implemented for each storage service, as each provider offers a
unique interface to its repository. As discussed earlier in this chapter all accesses to
the cloud storage providers can be executed in parallel. Therefore, following the en-
coding, the system performs an initial encryption of the data packages based on one of
the predefined algorithms (this feature is optional).

Reassembling the Data. When the service receives a read request, the service com-
ponent fetches k from n data packages (according to the list with prioritized service
providers which can be different from the prioritized write-list, as providers differ in
upload and download throughput as well as in cost structure) and reassembles the
data. This is due to the fact, that in the pay-per-use cloud models it is not economical
to read all data packages from all clouds. Therefore, the service is supported by a load
balancer component, which is responsible for retrieving the data units from the most
appropriate repositories. Different policies for load balancing and data retrieving are
conceivable as parts of user’s data are distributed between multiple providers. A read
request can be directed to a random data share or the physically closest service (laten-
cy-optimal approach). Another possible approach is to fetch data from service provid-
ers that meet certain performance criteria (e.g response time or throughput). Finally,
there is a minimal-cost aware policy, which guides user requests to the cheapest
sources (cost optimal approach). The latter strategy is implemented as a default confi-
guration in our system. Other more sophisticated features as a mix of several complex
criteria (e.g. faults and overall performance history) are under development at present.
However, the read optimization has been implemented to save time and costs.

3.4 Resource Management Service

This component tracks each user’s actual deployment and is responsible for various
housekeeping tasks:

3 The description of a code views each data package as having w bits worth of data.

 Implementation of Cloud-RAID: A Secure and Reliable Storage above the Clouds 99

1. The service is equipped with a MySQL back-end database to store crucial informa-
tion needed for deploying and reassembling of users data.

5. Further, it audits and tracks the performance of the participated providers and en-
sures, that all current deployments meet the corresponding requirements specified
by the user.

6. The management component is also responsible for scheduling of not time-critical
tasks.

Further details can be found in our previous work [21].

4 Related Work

The main idea underlying our approach is to provide RAID technique at the cloud
storage level. In [8] the authors introduce the HAIL (High-Availability Integrity
Layer) system, which utilizes RAID-like methods to manage remote file integrity and
availability across a collection of servers or independent storage services. The system
makes use of challenge-responce protocols for retrievability (POR) [15] and proofs of
data possession (PDP) [15] and unifies these two approaches. In comparison to our
work, HAIL requires storage providers to run some code whereas our system deals
with cloud storage repositories as they are. Further, HAIL does not provide confiden-
tiality guarantees for stored data. In [12] Dabek et al. use RAID-like techniques to
ensure the availability and durability of data in distributed systems. In contrast to the
mentioned approaches our system focuses on the economic problems of cloud compu-
ting described in chapter 1.

Further, in [1] authors introduce RACS, a proxy that spreads the storage load over
several providers. This approach is similar to our work as it also employs erasure code
techniques to reduce overhead while still benefiting from higher availability and du-
rability of RAID-like systems. Our concept goes beyond a simple distribution of us-
ers’ content. RACS lacks the capabilities such as intelligent file placement based on
users’ requirements or automatic replication. In addition to it, the RACS system does
not try to solve security issues of cloud storage, but focuses more on vendor lock-in.
Therefore, the system is not able to detect any data corruption or confidentiality
violations.

The future of distributed computing has been a subject of interest for various
researchers in recent years. The authors in [10] propose an architecture for market-
oriented allocation of resources within clouds. They discuss some existing cloud plat-
forms from the market-oriented perspective and present a vision for creating a global
cloud exchange for trading services. Further, our service acts as an abstraction layer
between service vendors and service users automatising data placement processes. In
fact, our approach enables cloud storage users to place their data on the cloud based
on their security policies as well as quality of service expectations and budget prefe-
rences. Furthermore, the usage of erasure algorithms for data placement is more effi-
cient than a native replication (in terms of storage and costs).

100 M. Schnjakin and C. Meinel

5 Conclusion

In this paper we outlined some general problems of cloud computing such as security,
service availability and a general risk for a customer to become dependent on a ser-
vice provider. In the course of the paper we demonstrated how our system deals with
the mentioned concerns. In a nutshell, we stripe users’ data across multiple providers
while integrating with each storage provider via appropriate service-connectors.
These connectors provide an abstraction layer to hide the complexity and differences
in the usage of storage services.

We use erasure code techniques for striping data across multiple providers. The
first experiments proved, that given the speed of current disks and CPUs, the libraries
used are fast enough to provide good performance, reliable storage system. The aver-
age performance overhead caused by data encoding is less than 2% of the amount of
time for data transfer to a cloud provider [23]. With this, encoding is dominated by
the transmission times and can be neglected. Here, the storage overhead can be varied
to achieve higher availability values depending on user requirements. It is up to each
individual user to decide whether the additional cost caused by data encoding with
higher availability due to determination of higher m parameter are justified. By
spreading users data across multiple clouds our approach enables users to avoid the
risk of data lock-in and provide a low-level protection even without using security
functionality.

However, additional storage offerings are expected to become available in the next
few years. Due to the flexible and adaptable nature of our approach, we are able to
support any changes in existing storage services as well as incorporating support for
new providers as they appear.

6 Future Work

In the last month, we deployed your application using seven commercial cloud sto-
rage repositories in different countries in order to conduct a comprehensive test of our
system. This includes the predictability and sufficiency of response time and through-
put, the overall performance as well as the validation of file consistency.

The results of the experiment are being analysed currently an will be addressed in
our next publication. Whilst our system is still under development at present, we will
have to use the results of the conducted experiment to improve the overall perfor-
mance and reliability. This includes for instance the predictability and sufficiency of
response time and throughput as well as the validation of file consistency.

In the next step in the development of our registry service we will have to look at
ways in which we are able to verify that providers have retained data without retriev-
ing it from the storage repositories and without having to access the entire data. Read-
ing an entire archive, even periodically, is expensive in upload and download costs
and limits the scalability of networks. Existing approaches as PDP [7] require service
providers to run some code, which is not suitable with our solution.

 Implementation of Cloud-RAID: A Secure and Reliable Storage above the Clouds 101

In addition, we are also planning to implement more service connectors and thus to
integrate additional storage services. Any extra storage resource improves the perfor-
mance and responsiveness of our system for end-users.

References

1. Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: Racs: A case for cloud storage diver-
sity. In: SoCC 2010 (June 2010)

2. Alnemr, R., Bross, J., Meinel, C.: Constructing a context-aware service-oriented reputation
model using attention allocation points. In: Proceedings of the IEEE International Confe-
rence on Service Computing, SCC 2009 (2009)

3. Alnemr, R., Meinel, C.: Getting more from reputation systems: A context-aware reputation
framework based on trust centers and agent lists. In: International Multi-Conference on
Computing in the Global Information Technology (2008)

4. Alnemr, R., Schnjakin, M., Meinel, C.: Towards context-aware service-oriented semantic
reputation framework. In: International Joint Conference of IEEE TrustCom/IEEE
ICESS/FCST, pp. 362–372 (2011)

5. Amazon. Amazon ec2 service level agreement (2009) (online)
6. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patter-

son, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley view of cloud
computing. Technical Report UCB/EECS-2009, EECS Department, University of Califor-
nia, Berkeley (2009)

7. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.:
Provable data possession at untrusted stores. Cryptology ePrint Archive, Report 2007/202
(2007)

8. Bowers, K.D., Juels, A., Oprea, A.: Hail: A high-availability and integrity layer for cloud
storage. In: CCS 2009 (November 2009)

9. Burt, J.: Future for cloud computing looks good, report says (2009) (online)
10. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: Vision, hype, and

reality for delivering it services as computing utilities. In: Proceedings of the 10th IEEE
International Conference on High Performance Computing and Communications (August
2008)

11. Carr, N.: The Big Switch. Norton (2008)
12. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative sto-

rage with cfs. In: ACM SOSP (October 2001)
13. Dingledine, R., Freedman, M.J., Molnar, D.: The free haven project: Distributed anonym-

ous storage service. In: Federrath, H. (ed.) Anonymity 2000. LNCS, vol. 2009, pp. 67–95.
Springer, Heidelberg (2001)

14. Gantz, J., Reinsel, D.: Extracting value from chaos (2009) (online)
15. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.) CRYPTO

1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)
16. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Pro-

gram. Lang. Syst. 4(3), 382–401 (1982)
17. Naone, E.: Are we safeguarding social data? (2009) (online)
18. Plank, J.S., Simmerman, S., Schuman, C.D.: Jerasure: A library in C/C++ facilitating era-

sure coding for storage applications - Version 1.2. Technical Report CS-08-627, Universi-
ty of Tennessee (August 2008)

102 M. Schnjakin and C. Meinel

19. Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weatherspoon, H., Kubiatowicz, J.:
Maintenance free global storage in oceanstore. IEEE Internet Computing (September
2001)

20. Sarno, D.: Microsoft says lost sidekick data will be restored to users. Los Angeles Times
(October 2009)

21. Schnjakin, M., Alnemr, R., Meinel, C.: A security and high-availability layer for cloud sto-
rage. In: Chiu, D.K.W., Bellatreche, L., Sasaki, H., Leung, H.-f., Cheung, S.-C., Hu,
H., Shao, J. (eds.) WISE Workshops 2010. LNCS, vol. 6724, pp. 449–462. Springer,
Heidelberg (2011)

22. Schnjakin, M., Alnemr, R., Meinel, C.: Contract-based cloud architecture. In: Proceedings
of the Second International Workshop on Cloud Data Management, CloudDB 2010,
pp. 33–40. ACM, New York (2010)

23. Schnjakin, M., Korsch, D., Schoenberg, M., Meinel, C.: Implementation of a secure and
reliable storage above the untrusted clouds. In: Proceedings of 8th International Confe-
rence on Computer Science and Education, ICCSE 2013 (to appear in April 2013)

24. Schnjakin, M., Meinel, C.: Platform for a secure storage-infrastructure in the cloud. In:
Proceedings of the 12th Deutscher IT-Sicherheitskongress, Sicherheit 2011 (2011)

25. The Amazon S3 Team. Amazon s3 availability event: July 20, 2008 (2008) (online)
26. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. Replication: A quantitative com-

parison. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS,
vol. 2429, pp. 328–337. Springer, Heidelberg (2002)

	Implementation of Cloud-RAID:
A Secure and Reliable Storage above the Clouds

	1 Introduction
	2 Architecture Overview
	3 Design
	3.1 Service Interface
	3.2 Storage Repositories
	3.3 Data Management
	3.4 Resource Management Service

	4 Related Work
	5 Conclusion
	6 Future Work
	References

