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Abstract—Cloud Computing as a service-on-demand archi-
tecture has grown in importance over the previous few years.
One driver of its growth is the ever increasing amount of data
which is supposed to outpace the growth of storage capacity.
The usage of cloud technology enables organizations to manage
their data with low operational expenses. However, the benefits
of cloud computing come along with challenges and open issues
such as security, reliability and the risk to become dependent
on a provider for its service. In general, a switch of a storage
provider is associated with high costs of adapting new APIs
and additional charges for inbound and outbound bandwidth
and requests. In this paper, we present a system that improves
availability, confidentiality and reliability of data stor ed in the
cloud. To achieve this objective, we encrypt user’s data and
make use of the RAID-technology principle to manage data
distribution across cloud storage providers.

We conduct a proof-of-concept testbed experiment for our
application to evaluate the performance and cost effectiveness
of our approach. We deployed our application using eight
commercial cloud storage repositories in different countries.
Our approach allows users to avoid vendor lock-in, and reduces
significantly the cost of switching providers. We also observed
that our implementation improved the perceived availability
and, in most cases, the overall performance when compared
with individual cloud providers. Moreover, we estimated the
monetary costs to be competitive to the cost of using a single
cloud provider.

I. I NTRODUCTION

Cloud Computing is a concept of utilizing computing as
an on-demand service. It fosters operating and economic
efficiencies and promises to cause an unanticipated change
in business. Using computing resources as pay-as-you-go
model enables service users to convert fixed IT cost into
a variable cost based on actual consumption. Therefore,
numerous authors argue for the benefits of cloud computing
focusing on the economic value [9], [2].

However, despite of the non-contentious financial advan-
tages cloud computing raises questions about privacy, secu-
rity and reliability. Among available cloud offerings, storage
services reveal an increasing level of market competition.
According to iSuppli [7] global cloud storage revenue is
set to rise to $5 billion in 2013, up from $1.6 billion
in 2009. One reason is the ever increasing amount of
data which is supposed to outpace the growth of storage
capacity. Currently, it is very difficult to estimate the actual

future volume of data but there are different estimates being
published. According to IDC review [12], the amount of
digital information created and replicated is estimated to
surpass 3 zettabytes by the end of this year. This amount
is supposed to more than double in the next two years. In
addition, the authors estimate that today there is 9 times
more information available than was available five years ago.

However, for a customer (service) to depend solely on
one cloud storage provider (in the following provider) has
its limitations and risks. In general, vendors do not provide
far reaching security guarantees regarding the data retention
[13]. Users have to rely on effectiveness and experience
of vendors in dealing with security and intrusion detection
systems. For missing guarantees service users are merely
advised to encrypt sensitive content before storing it on the
cloud. Placement of data in the cloud removes the physical
control that a data owner has over data. So there is a risk that
service provider might share corporate data with a marketing
company or use the data in a way the client never intended.

Further, customers of a particular provider might expe-
rience vendor lock-in. In the context of cloud computing,
it is a risk for a customer to become dependent on a
provider for its services. Common pricing schemes foresee
charging for inbound and outbound transfer and requests in
addition to hosting the actual data. Changes in features or
pricing scheme might motivate a switch from one storage
service to another. However, because of the data inertia,
customers may not be free to select the optimal vendor due
to immense costs associated with a switch of one provider
to another. The obvious solution is to make the switching
and data placement decisions at a finer granularity then all-
or-nothing. This could be achieved by distributing corporate
data among multiple storage providers. Such an approach is
pursued by content delivery networks (for example in [6],
[8]) and implies significant higher storage and bandwidth
costs without taking into account the security concerns
regarding the retention of data.

A more economical approach, which is presented in this
paper, is to separate data into unrecognizable slices, which
are distributed to providers - whereby only a subset of
the nodes needs to be available in order to reconstruct the
original data. This is indeed very similar to what has been



done for years at the level of file systems and disks. In
our work we use RAID like techniques to overcome the
mentioned limitations of cloud storage in the following way:

1) Security. The provider might be trustworthy, but
malicious insiders represent a well known security
problem. This is a serious threat for critical data such
as medical records, as cloud provider staff has physical
access to the hosted data. We tackle the problem
by encrypting and encoding the original data and
later by distributing the fragments transparently across
multiple providers. This way, none of the storage ven-
dors is in an absolute possession of the client’s data.
Moreover, the usage of enhanced erasure algorithms
enables us to improve the storage efficiency and thus
also to reduce the total costs of the solution.

2) Service Availability. Management of computing re-
sources as a service by a single company implies
the risk of a single point of failure. This failure
depends on many factors such as financial difficulties
(bankruptcy), software or network failure, etc. In July
2008, for instance, Amazon storage service S3 was
down for 8 hours because of a single bit error [24].
Our solution addresses this issue by storing the data
on several clouds - whereby no single entire copy of
the data resides in one location, and only a subset of
providers needs to be available in order to reconstruct
the data.

3) Reliability. Any technology can fail. According to
a study conducted by Kroll Ontrack1 65 percent of
businesses and other organizations have frequently lost
data from a virtual environment. A number that is
up by 140 percent from just last year. Admittedly, in
recent times, no spectacular outages were observed.
Nevertheless failures do occur. For example, in Octo-
ber 2009 a subsidiary of Microsoft, Danger Inc., lost
the contracts, notes, photos, etc. of a large number of
users of the Sidekick service [19]. We deal with the
problem by using erasure algorithms to separate data
into packages, thus enabling the application to retrieve
data correctly even if some of the providers corrupt or
lose the entrusted data.

4) Data lock-in. By today there are no standards for APIs
for data import and export in cloud computing. This
limits the portability of data and applications between
providers. For the customer this means that he cannot
seamlessly move the service to another provider if he
becomes dissatisfied with the current provider. This
could be the case if a vendor increases his fees,
goes out of business, or degrades the quality of his
provided services. As stated above, our solution does
not depend on a single service provider. The data is
balanced among several providers taking into account

1http://www.krollontrack.com/resource-library/case-studies/

user expectations regarding the price and availability
of the hosted content. Moreover, with erasure codes
we store only a fraction of the total amount of data
on each cloud provider. In this way, switching one
provider for another costs merely a fraction of what it
would be otherwise.

In recent months we conducted an extensive experiment for
our application to evaluate the overall performance and cost
effectiveness of the approach. In this paper we present the
results of the experimental study. We show, that with an
appropriate coding configuration Cloud-RAID is able to im-
prove significantly the performance of the data transmission
process, whereby the monetary costs are competitive to the
cost of using a single cloud.

II. A RCHITECTURE

The ground of our approach is to find a balance between
benefiting from the cloud’s nature of pay-per-use and en-
suring the security of the company’s data. As mentioned
above, the basic idea is not to depend on solely one storage
provider but to spread the data across multiple providers
using redundancy to tolerate possible failures. The approach
is similar to a service-oriented version of RAID (Redundant
Arrays of Inexpensive Disks). While RAID manages sector
redundancy dynamically across hard-drives, our approach
manages file distribution across cloud storage providers.
RAID 5, for example, stripes data across an array of disks
and maintains parity data that can be used to restore the
data in the event of disk failure. We carry the principle of the
RAID-technology to cloud infrastructure. In order to achieve
our goal we foster the usage of erasure coding technics (see
chapter III). This enables us to tolerate the loss of one or
more storage providers without suffering any loss of content
[25], [11]. The system has a number of core components
that contain the logic and management layers required to
encapsulate the functionality of different storage providers.
Our architecture includes the following main components:

• User Interface Module.The interface presents the user
a cohesive view on his data and available features. Here
users can manage their data and specify requirements
regarding the data retention (quality of service param-
eters).

• Resource Management Module.This system com-
ponent is responsible for intelligent deployment of
data based on users’ requirements. The component is
supported by:

– a registry and matching service: assigns storage
repositories based on users requirements (for ex-
ample physical location of the service, costs and
performance expectations). Monitors the perfor-
mance of participating providers and ensures that
they are meeting the agreed SLAs

– a resource management service: takes operational
decisions regarding the content storage



– a task scheduler service: has the ability to schedule
the launch of operations at peak-off hours or after
specified time intervals.

• Data Management Module.This component handles
data management on behalf of the resource manage-
ment module and is mainly supported by:

– a data encoding service: this component is respon-
sible for striping and encoding of user content

– a data distribution service: spreads the encoded
data packages across multiple providers. Since
each storage service is only accessible through a
unique API, the service utilizes storage ”service-
connectors”, which provide an abstraction layer for
the communication to storage repositories

– a security service: manages the security function-
ality based on a user’s requirements (encryption,
secret key management).

Further details can be found in our previous work [23],
[21], [20] and [14].

III. E VALUATION

In this section we present an evaluation of our system
that aims to clarify the main questions concerning the cost,
performance and availability aspects when erasure codes are
used to store data on public clouds.

A. Methodology

The experiment was run on Hasso Plattner Institute (HPI),
which is located close to Berlin, Germany, over a period of
over 377 (24x7) hours, in the middle of July 2012. As it
spans seven days, localized peak times (time-of-day) is ex-
perienced in each geographical region. HPI has a high speed
connectivity to an Internet backbone (1 Gb), which ensures
that our test system is not a bottleneck during the testing. The
global testbed spans eight cloud providers in five countries
on three continents. The experiment time comprises three
rounds, with each round consisting of a set of predefined test
configurations (in the following sequences). Table I provides
a summary of the conducted experiment. We used test files
of different sizes from 100 kB up to 100 MB, deployed by
the dedicated test clients.

Prior to each test round the client requires a persis-
tent connection to the APIs of the relevant cloud storage
providers, so that requests for an upload or download of
test data can be send. In general, providers will refuse a
call for the establishment of a new connection after several
back-to-back requests. Therefore we implemented an API-
connection holder. After two hours of an active connection
the old connection is overwritten by a new one. Further, we
determine a timeout of one second between two unsuccessful
requests, each client waits for a think time before the next
request is generated.

Category Description
Cloud storage provider 8
Locations Europe, USA, Asia
Total experiment time about 15d 9h (377h)
Total number of test rounds about 3 rounds
Total number of requests (read/write) / round281,900
Service time out for each request 1 sec
Test file size 100 kB - 100 MB
Coding Method cauchy good
Coding configuration [k,m] k=[2..4,6,10],

m=[1..2], k>=m

Table I
EXPERIMENT DETAILS

1) Machines for Experimentation:We employed three
machines for experimentation. Neither is exceptionally high-
end, but each represents middle-range commodity processor,
which should be able to encode, encrypt, decrypt and decode
comfortably within the I/O speed limits of the fastest disks.
These are: Windows 7 Enterprise (64bit) system with an
Intel Core 2 Duo E8400 @3GHz, 4 GB installed RAM and
a 160 GB SATA Seagate Barracuda hard drive with 7200
U/min.

2) Experiment Setup:Figure 1 presents the workflow of
the experiment. In general we use two machines to transfer
test data to cloud storage providers. The first machine (the
upper part of the graph) uses erasure codes. This means,
upon receiving a write request the test system splits the
incoming object intok data fragments of an equal size -
chunks. Thesek data packages hold the original data. In
the next step the system addsm further packages whose
contents are calculated from thek chunks, wherebyk andm

are variable parameters [15]. With this, the act of encoding
takes the contents ofk data packages and encodes them on
m coding packages. In turn, the act of decoding takes some
subset of the collection ofn = k + m total packages and
from them recalculates the original data. Any subset ofk

shares is sufficient to reconstruct the original data object
[18].

In the next step, the application makes sure that each data
package is sent to a different storage repository. In general,
our system follows a model of one thread per provider per
data package in such a way that the encoding, encryption,
decryption, and provider accesses can be executed in paral-
lel.

The second machine (the lower part of the graph in the
figure 1) uploads the entire data object to a single provider
without any modifications. As we are interested in the direct
comparison between these two approaches, we want each
data transmission to start simultaneously. Therefore we used
the third machine as a ”sync-instance” running a Tomcat 7
server with a self-written sync-servlet which controls the
workflow of the experiment.

3) Erasure Configuration:In our experiment we make
use of the Cauchy-Reed-Solomon algorithm for two reasons.
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Figure 1. Workflow of the experiment

First, according to Plank et al. [17] the algorithm has a
good performance characteristics in comparison to existing
codes. In their work, the authors performed a head-to-
head comparison of numerous open-source implementations
of various coding techniques which are available to the
public. Second, the algorithm allows free selection of coding
parameters k and m, whereas other algorithms restrict the
choice of parameters. Liberation Code [16] for example is
a specification for storage systems withn = k + 2 nodes to
tolerate the failure of any two nodes (whereby the parameter
m is fix and is equal to two).

In our test scenario we tested more than 2520 combina-
tions of k and m. We will denote them by [k, m] in the
course of the paper, whereby the present evaluation focuses
on an encoding configuration [4,1]. Which means, that the
setting provides data availability toward one cloud failure at
the time of read or write request. Most of the providers have
SLAs with 99% and 99.9% monthly up-time percentages.
Thus, we believe that adding enough redundancy to tolerate
one provider outage or failure at a time will be sufficient in
most cases. The automated determination of the appropriate
m andk values remains a subject of future work.

B. Schemes and Metrics

The goal of our test is to evaluate the performance of our
approach. Mainly we are interested in availability of APIs,
overhead caused by erasure codes and transmission rates.
Therefore, we implemented a simple logger application to
record the results of our measurements. In total we log 34
different events. For example, each state of the workflow
depicted in figure 1 is captured with two log entries (START
and END).

1) Erasure Overhead:Due to the nature of erasure codes,
each file upload and download is associated with a certain
overhead. On one hand this overhead is caused by the re-
dundantm packages, which have to be stored, uploaded and
sometimes downloaded (in the events of failure). The total
size of all chunks (after encoding) can be expressed with the
following equation:s∗(1+ m

k
), whereby variables is defined

as the original file size. With this, the usage of erasure codes
increases the total storage by a factor ofm

k
. Further, we need

to encode data prior to its upload and accordingly decode the
downloaded packets into the original file. Both operations
cause an additional computational expense.

2) Transmission Performance and Throughput:We mea-
sure the throughput obtained from each read and write re-
quest. In general the throughput is defined as the average rate
of successful message delivery over a communication chan-
nel. In our work we link the success of the message delivery
to the success of the delivery of the entire data object. In
our approach, a data object is completely transferred, when
the last data package is being successfully transferred to the
transfer destination. This means that in case of data upload,
the transfer is only completed, when (upon a write request)
our client receives a confirmation message in the form of
individual digest values that correspond with the results of
the local computation (this applies for all transferred data
packages). In the event of a mismatch the system will delete
the corrupted data and initiate a reupload procedure. With
this, the value of throughput does not only represent the pure
upload or download rate of the particular providers, as the
measured time span includes also possible failures, latency
and the bilateral processing of get-hash calls.

C. Empirical Results

This section presents the results in terms of read and
write performance, as well as throughput, response time and
availability based on over 281.000 requests. Due to space
constraints, we present only some selected results from the
conducted experiment.

1) Erasure Overhead:As described in III-B1 the erasure
coding leads to a storage overhead of factorm

k
. For instance,

an [k = 4, m = 1] encoding results in a storage overhead of
1

4
∗ 100% = 25%. In order to reduce the storage overhead,

it would be advisable to define highk and preferably
low m values. For example, an encoding configuration
[k = 10, m = 1] produces a storage overhead of only
1

10
∗ 100% = 10%. Erasure causes also a computational



overhead. During the experiment we scrutinized 12 differ-
ent configurations. A selection of the results is presented
in figure 2. The figure illustrates, that the computational
expense increases with the file size regardless of the erasure
configuration. As the encoding of a 100 MB data object
takes approximately one second, the encoding overhead can
be neglected in view of the significantly higher transmission
times. In [14] we showed, that the average performance
overhead caused by data encoding is less than 2% of the
entire data transfer process to a cloud provider.

Using encryption, we can say that the total performance
decreases as individual data packages have to be encrypted
locally before moving them to the cloud. In our experiments
the costs for encryption were less than 3% of total time
which is also negligible in view of the overall transmission
performance. This point has been addressed in our previous
work [14] and [22].
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Figure 2. The computational overhead caused by erasure withdifferent
configurations and file sizes. In general, the overall overhead increases with
growing file size regardless of the definedm and k parameters for the
erasure configuration.

2) Transmission Performance and Throughput:Due to
space constraints the current evaluation focuses on the
Cloud-RAID configuration withk = 4 and m = 1. For
performance comparison we experimented with different
combinations among eight clouds, which are: Amazon US,
Amazon EU, Azure, Box, Google EU, Google US, Nirvanix
and Rackspace. The particular combinations are represented
in table II.

In general, we observed that utilizing Cloud-RAID for
data transfer improves the throughput significantly when
compared with cloud storages individually. This can be
explained with the fact, that Cloud-RAID reads and writes
a fraction of the original data (more specific1

4
th with

[4,1] setting, see III-B1) from and to clouds simultaneously.
However, the total time of data transfer depends on the
throughput performance of each provider involved into the
communication process. The throughput performance of
Cloud-RAID increases with higher performance values of
cloud providers involved into the data distribution setting.
During the performance evaluation we observed, that storage
providers differ extremely in their upload and download ca-
pabilities. Moreover, some vendors seem to have optimized
their infrastructure for large files, while others focused more

on smaller data objects. In the following we will clarify this
point.

As we mentioned above there is a striking difference in
the up- and download capabilities of cloud services. Except
Microsoft Azure all the tested providers are much faster in
download than in upload. This applies to smaller and larger
data objects. At one extreme, with Google EU or Google
US services a write request of a 100 kB file takes up to
19 times longer than a read request (see figures 3a and
3d). This behavior can also be observed with larger data
objects (although less pronounced). Here the difference in
the throughput rate may range from 4 to 5 times, with the
exception of the provider Rackspace, where an execution of
a write request is up to 49 times slower than of a read request
(e.g. an upload of a 100 MB file takes on average 17,3
minutes, whereas the download of the same file is performed
in less than 21 seconds, see figures 4b and 4d). Then again,
Google US service improves its performance clearly with
the growing size of data objects (see figures 3a and 4a).
The explanation for this could be that with larger files the
relatively long reaction time of the service (due to the long
distance between our test system and the service node) has
less impact on the measuring results. Similar to the US
service Google EU performs rather mediocre in comparison
to other providers when it comes to read speeds for data
objects up to 1 MB, (see figures 3a and 3b). In terms of
performance for writing larger files, Google EU becomes the
clear leader and even outperforms the fastest Cloud-RAID
setting, which consists of the five fastest providers: Amazon
EU, Azure, Google EU, Google US and Nirvanix (see figure
4b).

Similar phenomena have been observed by read requests.
Microsoft Azure belongs to the leading providers for reading
100 kB data objects (see figure 3d) and falls back by reading
100 MB files (see figure 4d).

Hence, the performance of Cloud-RAID differs depending
on the provider setting and file size. It is observed that our
systems achieves better throughput values for read requests.
The reason is that the test client fetches less data from the
cloud (only k of n data packages) than in case of a write
request, where alln packages have to be moved to the cloud.

As expected, we observe that the fastest read and write
settings consist of the fastest clouds. Concerning writing
100 kB data objects, the fastest Cloud-RAID setting CR-
A improves the overall throughput by an average factor of
3 (compared to the average throughput performance of the
providers in the current Cloud-RAID setting). For reading
100 kB, CR-E achieves an improvement factor of 5. In
terms of performance for writing 1 MB and 10 MB objects,
Cloud-RAID setting CR-D and CR-E achieve already an
average improvement factor of 7. Then again, for reading
10 MB, Cloud-RAID improves the average performance
by a factor of 13 and even outperforms the fastest cloud
providers (see figure 4c). By smaller data objects, execution
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Figure 3. Average throughput performance in milliseconds and seconds observed on all reads and writes executed for the [4,1] Cloud-RAID configuration
(4 of 5 data packages are necessary to reconstruct the original data, m = 1). The Cloud-RAID bars (CR) correspond to the complete data processing cycle:
the encoding of a data object into data packages and the subsequent transmission of individual chunks in parallel threads.

Cloud-
RAID

Provider Setting

CR-A Amazon EU, Amazon US, Azure, Nirvanix, Rackspace
CR-B Amazon EU, Amazon US, Azure, Google EU, Rackspace
CR-C Amazon US, Azure, Google EU, Nirvanix, Rackspace
CR-D Amazon EU, Amazon US, Azure, Google EU, Nirvanix
CR-E Amazon EU, Azure, Google EU, Google US, Nirvanix
CR-F Amazon EU, Google EU, Google US, Nirvanix, Rackspace
CR-G Amazon EU, Amazon US, Azure, Google EU, Google US
CR-H Amazon EU, Amazon US, Google EU, Google US, Nirvanix
CR-I Amazon EU, Azure, Google EU, Google US, Rackspace
CR-K Amazon EU, BoxNet, Google EU, Google US, Nirvanix
CR-L Amazon EU, Amazon US, BoxNet, Google EU, Google US
CR-M Amazon EU, Amazon US, Azure, BoxNet, Google EU

Table II
CLOUD-RAID SETTING WITH k = 4 AND m = 1.

of both read and write requests is highly affected by erasure
overhead, DNS lookup and API connection establishment
time. This can lead to an unusual behavior. For example, the
transmission of a 100 kB data object to Google US can take
our system more time than the transmission of a 500 kB or
even 1 MB file (see figure 3a, 3b and 3c). Hence, increasing
the size of data objects improves the overall throughput of
Cloud-RAID. Concerning read and write speeds for 100 MB
data objects, Cloud-RAID increases the average performance
by a factor of 36 for writes (despite of the erasure overhead
of 25 percent) and achieves an improvement factor of 55 for
reads (see figures 4c and 4d).

There is also an observed connection between the through-
put rate and the size of data objects. Charts 3a to 3f show
results from performance tests on smaller files (up to 1 MB).
Microsoft Azure and Amazon EU achieve the best results
in terms of write requests. When writing 10 MB or 100
MB data objects Amazon EU falls back on the fourth place
(see figures 4b and 4d). Form these observations, we come
to the following conclusions. The overall performance of
Cloud-RAID is not only dependent on the selection ofk

and m values, but also on the throughput performance of
the particular storage providers. Cloud-RAID increases the
overall transmission performance compared to the slower
providers. Beyond that we are able to estimate, that the more
providers are involved into the data distribution process,
the less weight slower providers carry in terms of overall
throughput performance. The underlying reason is again the
size of individual data packages, which decrease with the
growing number of k data packages (see chapter III-B1).

D. Observations and Economic Consequences

Finally, based on the measured observations, we deter-
mine users benefits from using our system. In order to assert
the feasibility of our application we have to examine the cost
structure of cloud storage services. Vendors differ in pricing
scheme and performance characteristics. Some providers
charge a flat monthly fee, others negotiate contracts with
individual clients. However, in general pricing depends on
the amount of data stored and bandwidth consumed in
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Figure 4. Throughput observed in seconds on reads and writesexecuted for the [4,1] Cloud-RAID configuration. Here again, CR bars correspond to the
complete data processing cycle.

transfers. Higher consumption results in increased costs.
As illustrated in tables III and IV providers also charge
per API request (such as read, write, get-hash, list etc.) in
addition to bandwidth and storage. The usage of erasure
codes increases the total number of such requests, as we
divide each data object into chunks and stripe them over
multiple cloud vendors. The upload and download of data
takes on average two requests. Considering this, our system
needs(4 + 1) ∗ 2 = 10 requests for a single data upload
with a [4, 1] coding configuration. The download requires
only 4 ∗ 2 = 8 requests, as merely 4 packets have to be
received to rebuild the original data. Thus, erasure[k, m]
increases the number of requests by a factor ofk + m

for upload andk for download. Consequently, the usage of
erasure codes increases the total cost compared to a direct
upload or download of data due to the caused storage and
API request overhead. Tables III and IV summarize the cost
in US Dollars of executing 10,000 reads and 10,000 writes
with our system considering 5 data unit sizes: 100 kB, 500
kB, 1 MB, 10 MB and 100 MB. We observe, that the usage
of erasure is not significantly more expensive than using a
single provider. In some cases the costs can be even reduced.

IV. RELATED WORK

The main idea underlying our approach is to provide
RAID technique at the cloud storage level. In [5] the authors

Provider Filesize in kB
100 500 1024 10240 102400

CR-B 0.15 0.55 1.07 10.21 101.61
CR-G 0.16 0.52 0.99 9.28 92.25
CR-I 0.15 0.55 1.07 10.21 101.61

CR [6,1]1 3.61 4.12 4.78 16.50 133.69
Azure 0.11 0.53 1.08 10.74 107.42

Amazon/Google 0.13 0.59 1.19 11.74 117.21
Rackspace 0.17 0.86 1.76 17.58 175.78
Nirvanix 4.14 4.72 5.46 18.65 150.48

1 The setting CR [6,1] consist of nearly all providers involved
in the test setting: Amazon EU, Amazon US, Azure, Boxnet,
Google EU, Nirvanix, Rackspace.

Table III
COSTS IN$ FOR 10,000READS.

Provider Filesize in kB
100 500 1024 10240 102400

CR-B 0.12 0.12 0.12 0.12 0.12
CR-G 0.16 0.16 0.16 0.16 0.16
CR-I 0.12 0.12 0.12 0.12 0.12

CR [6,1] 8.14 8.20 8.29 9.75 24.40
Azure 0.00 0.00 0.00 0.00 0.00

Amazon/Google 0.02 0.02 0.02 0.02 0.02
Rackspace 0.00 0.00 0.00 0.00 0.00
Nirvanix 4.10 4.48 4.98 13.77 101.66

Table IV
COSTS IN$ FOR 10,000WRITES.



introduce the HAIL (High-Availability Integrity Layer) sys-
tem, which utilizes RAID-like methods to manage remote
file integrity and availability across a collection of servers
or independent storage services. The system makes use
of challenge-response protocols for retrievability (POR)[3]
and proofs of data possession (PDP) [3] and unifies these
two approaches. In comparison to our work, HAIL requires
storage providers to run some code whereas our system deals
with cloud storage repositories as they are. Further, HAIL
does not provide confidentiality guarantees for stored data.
In [10] Dabek et al. use RAID-like techniques to ensure
the availability and durability of data in distributed systems.
In contrast to the mentioned approaches our system focuses
on the economic problems of cloud computing described in
chapter I.

Further, in [1] authors introduce RACS, a proxy that
spreads the storage load over several providers. This ap-
proach is similar to our work as it also employs erasure code
techniques to reduce overhead while still benefiting from
higher availability and durability of RAID-like systems. Our
concept goes beyond a simple distribution of users’ content.
RACS lacks sophisticated capabilities such as intelligent
file placement based on users’ requirements or automatic
replication. In addition to it, the RACS system does not try
to solve security issues of cloud storage, but focuses more
on vendor lock-in. Therefore, the system is not able to detect
any data corruption or confidentiality violations.

The future of distributed computing has been a subject of
interest for various researchers in recent years. The authors
in [8] propose an architecture for market-oriented allocation
of resources within clouds. They discuss some existing cloud
platforms from the market-oriented perspective and present
a vision for creating a global cloud exchange for trading
services. The authors consider cloud storage as a low-cost
alternative to dedicated Content Delivery Networks (CNDs).

There are more similar approaches dealing with high
availability of data trough its distribution among several
cloud providers. DepSky-A [4] protocol improves availabil-
ity and integrity of cloud-stored data by replicating it on
cloud providers using quorum techniques. This work has
two main limitations. First, a data unit of sizeS consumes
n x S storage capacity of the system and costs on average
n times more than if was stored on a single cloud. Second,
the protocol does not provide any confidentiality guaranties,
as it stores the data in clear text. In their later work the
authors present DepSky-CA, which solves the mentioned
problems by the encryption of the data and optimization
of the write and read process. However, the monetary costs
of using the system is still twice the cost of using a single
cloud. On top of this, DepSky does not provide any means or
metrics for user centric data placement. In fact, our approach
enables cloud storage users to place their data on the cloud
based on their security policies as well as quality of service
expectations and budget preferences.

V. CONCLUSION

In this paper we outlined some general problems of
cloud computing such as security, service availability and
a general risk for a customer to become dependent on a
service provider. In the course of the paper we demonstrated
how our system deals with the mentioned concerns. In a
nutshell, we stripe users’ data across multiple providers
while integrating with each storage provider via appropriate
service-connectors. These connectors provide an abstraction
layer to hide the complexity and differences in the usage of
storage services.

The main focus of the paper is an extensive evaluation
of our application. From the results obtained, we conclude
that our approach improves availability at costs similar to
using a single commercial cloud storage provider (instead
of 100% and more when full content replication is used).

We use erasure code techniques for striping data across
multiple providers. The experiment proved, that given the
speed of current disks and CPUs, the libraries used are fast
enough to provide good performance - whereby the overall
performance depends on the throughput performance of the
particular storage providers. The throughput performance
of Cloud-RAID increases with the selection of providers
with higher throughput performance values. Hence, with
an appropriate coding configuration Cloud-RAID is able to
improve significantly the data transmission process when
compared with cloud storages individually.

Further, performance tests showed that our system is best
utilized for deployment of large files. Utilization of our
system for storing of smaller data objects is subject to further
test and analysis.

In the long term, our approach might foster the provision
of new and even more favorable cloud storage services.
Today, storage providers surely use RAID like methods
to increase the reliability of the entrusted data to their
customers. The procedure causes costs which are certainly
covered by providers price structure. With our approach, the
on-site backups might become redundant, as users data is
distributed among dozens of storage services. Furthermore,
we enable users of cloud storage services to control the
availably and physical segregation of the data by themselves.

However, additional storage offerings are expected to be-
come available in the next few years. Due to the flexible and
adaptable nature of our approach, we are able to support any
changes in existing storage services as well as incorporating
support for new providers as they appear.

VI. FUTURE WORK

Our performance testing revealed that some vendors have
optimized their systems for large data objects and high
upload performance, while others have focused on smaller
files and better download throughput. We will use these
observations to optimize read and write performance of our
application. During our experiment we also observed that the



reaction time of read and get-hash requests may vary from
provider to provider at different times of day. This behavior
might be related to the usage of different consistency models
and is subject of further analysis.

In addition, we are also planing to implement more service
connectors and thus to integrate additional storage services.
Any extra storage resource improves the performance and
responsiveness of our system for end-users.
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