
Efficient Event Detection for the Blogosphere

Patrick Hennig
Hasso-Plattner-Institut

University of Potsdam, Germany
patrick.hennig@hpi.uni-potsdam.de

Philipp Berger
Hasso-Plattner-Institut

University of Potsdam, Germany
philipp.berger@hpi.uni-potsdam.de

Daniel Kurzynski
Hasso-Plattner-Institut

University of Potsdam, Germany
daniel.kurzynski@hpi.uni-potsdam.de

Christoph Meinel
Hasso-Plattner-Institut

University of Potsdam, Germany
christoph.meinel@hpi.uni-potsdam.de

Hannes Rantzsch
Hasso-Plattner-Institut

University of Potsdam, Germany
hannes.rantzsch@hpi.uni-potsdam.de

Abstract—In this paper we come up with a novel approach
for the early detection of events in blog entries. The detection
of trend is already discussed pretty often. Nevertheless, in our
understanding the detection of events goes one step further. The
presented algorithms detects unique happenings at a given point
in time by perceiving unusual frequent occurrences of words or
word groups. We introduce an implementation of our algorithm,
making use of the SAP HANA database in order to achieve high
performance and the ability to answer live queries for events.

I. INTRODUCTION

With the recent increase of social media in the past years,
a big amount of user generated content has been created. This
data provides many interesting research opportunities. In this
paper we are focusing on the detection of significant changes
in this corpus and come up with an approach to summarize
changes to events.

Event detection algorithms could be used for disaster
recognition. Sakaki et al. used Twitter in their work [1] to
detect earthquakes before the disaster prevention could rec-
ognize them. Further usages of event detection are automatic
news creation or support for news reporters and personalized
advertisement.

In this paper we introduce a new approach to event
detection for blogs, which is one important category of social
media, in which continuously large amounts of data is being
generated. The proposed algorithm was implemented in the
context of the BlogIntelligence1 project at the Hasso Plattner
Institute, Potsdam and tested with real world data collected
cumulatively during the time of the project’s duration.

As there is no consistent and formal definition of the
term event, we propose the following definition: An Event
is a unique happening at a given point in time or a time
interval. Each event is identified by a small set of keywords.
A keyword in turn is defined as a word or word group which
is representative for a document, in our case a blog post.

Consider a campaign speech of German chancellor Merkel
as an example for an event. A possible subset of the keywords
describing this event might be “Merkel”, “Berlin”, and “cam-
paign speech”.

1http://www.blog-intelligence.com

In contrast to other implementations we laid the focus
of our work to the performance of the algorithm’s imple-
mentation. One of our goals was the ability to answer live
queries. One challenge we faced concerning this requirement
was the vast amount of data provided by the BlogIntelligence
project. About 80 millions of blog entries containing 3 million
unique keywords had to be considered for the detection of
events. In order to make use of this huge amount of data,
the project is using an in-memory database provided by SAP,
called SAP HANA2 as discussed by Hennig et. al [2] . Our
implementation enables the execution of the computation in a
highly parallelized environment. The computation of the events
is integrated into one of the deepest levels of the database.
Thus, keeping the amount of data transferred between the
different levels of the database is very minimal.

A. Project Scope: BlogIntelligence

With a wide circulation of more than 200 million weblogs
worldwide, weblogs with good reason are one of the most
important data streams in the World Wide Web. Therefore,
weblogs offer access to latest information discussed in the real
world. Since writing posts in weblogs goes along with a high
editorial effort, the available information is of major interest.
However, for a user it is becoming harder and harder to gain an
overview of all discussions in the blogosphere. Hence, a system
that collects information from the blogosphere and presents it
to the user in a very meaningful way would be of great use.

Therefore, mining, analyzing, modeling and presenting this
enormous amount of data is the overall aim of the project the
presented work is integrated in. This enables the user to detect
technical trends, political climates or news articles about a
specific topic. Most approaches to mining and analyzing such
a huge amount of data focus on offline algorithms which use
pre-aggregated results. This is in contrast to the continuously
growing nature of the World Wide Web. As a result, including
the latest data is one of the key aspects of data mining on the
web. This is exactly the topic covered by the BlogIntelligence
project.

The presented work in this paper is integrated into the
BlogIntelligence project. There are three main steps involved
to visualize blogs in the BlogIntelligence project:

2http://www.saphana.com

1) Extraction: In the extraction step the blogs are basically
crawled. In order to achieve this a, purpose-built crawler
needs to be used as traditional crawlers do not fully meet the
particularities of blogs as opposed to conventional websites.

2) Analysis: The analysis step prepares the crawled data for
visualization. Each blog is analyzed by multiple Analyzers, that
process its details in certain ways. Among potentially others,
there are data analyzers that store the meta information about
the blogs into the database, content analyzers that store infor-
mation about the content which allow content-related analyses
and there are network analyzers that store information on the
relationships and links between blogs or other communities.

3) Visualization: The last and very important step within
the BlogIntelligence framework is the visualization of the
analyzed information. Hereby, new ways of visualization of
this big amount of data from the social web is being tested.

II. RELATED WORK

The results of the research of Sayyadi et al.[3] and Fung
et al.[4] form the foundation of our work. Both groups worked
under the assumption that documents which describe the
same event contain similar sets of keywords. Therefore, the
automatic detection of events tries to identify such sets. The
researchers proposed different approaches to discover these
sets.

Sayyadi suggests extracting keywords from documents and
clustering them based on their co-occurrence in the documents.
They consider keywords, that are clustered together, to belong
to the same event. Unfortunately, the proposed algorithm
requires a very accurate selection of many parameters and
thresholds. These values have a large impact on the quality
of the generated results and are very hard to determine due to
their inter-dependencies.

Tackling this problem, Fung proposed a time based cluster-
ing approach. Thus, fewer parameters have to be set manually.
This technique provides the basis for our algorithm. In contrast
to Sayydi’s approach and building on the work of Fung, our
algorithm takes the time interval, in which a keyword occurs,
into account. This avoids the effect of merging events with
similar keyword sets but different occurrence times to one
larger event.

Both of the research teams discussed above made use of
data sets containing only news articles or blog posts referring
to news. Hence, they work on preselected data that is known to
deal with events. Our implementation however works on a data
set where news articles are only a minority of the documents,
while the majority of the documents does not describe events
on their own. Instead, we aggregate information from many
documents to detect events even from these documents.

A different event detection mechanism was shown by
Jurgens[5]. The group used changes of keyword semantics over
time periods to detect events.

III. CONCEPT

In this section we give an overview of our algorithm. We
explain the derivation of each algorithm step and present the
resulting algorithm. All steps are illustrated in Figure 1.

Given a set of documents and a time interval we want to
determine a set of events, that is described by these documents
and took place during this time interval. Each document
represents a blog post and provides an ID, the blog text
and its publication date. The underlying assumption is that
an occurring event generates a large number of documents
reporting on this event. For example, after the election of
Angela Merkel there were many blog posts reporting on the
election and its result. Therefore, we analyze the content of
blog posts.

We use keywords as content representation of documents.
Keywords are defined as words or word groups which are
representative for documents. Therefore, in the first step we
extract one list with all keywords from all documents. Since
events are also represented by keywords they are the connec-
tion between events and documents.

We consider unusual high occurrence frequencies of a
keyword as an indicator for an event. As mentioned previously
an event results in a high count of documents reporting on this
event. As a result, the frequency with which keywords occur
in these documents is higher than usual. Thus, we analyze the
frequency distribution over time of each keyword in the second
step. In the third step we detect the time intervals in which
these frequencies are unusually high. We call these intervals
bursty in accordance with established literature [4].

We detect Keywords that are bursty at the same time and
occur in the same documents as events. The keywords of an
event are bursty at least in the time interval of the event.
Therefore, finding all bursty keywords in a time interval we
find all events happening in this time interval. Dividing these
keywords into sets of keywords in a way that all keywords of
a set belong to the same documents, these sets resemble the
events. Clustering keywords to events is our fourth step.

To provide more information about events than only key-
words, we find related documents for each event. By analyzing
the documents of an event we could extract more information
such as a location, the participants and the importance in
future. But for now, we only use this information to sort the
events by the number of documents the event is related to.

IV. IMPLEMENTATION

This section focuses on the most important implementation
details of the process described in Figure 1.

A. Extraction of keywords

The extraction of keywords aims to find a small set of
descriptive words for the document. Therefore, we need a
means to evaluate the importance of a word for the respective
document. Various approaches exist in order to achieve this
goal. The two techniques our algorithm makes use of are the
TF-IDF metric3 and the Named-entity Recognition4 (NER).

The first method provides an easy and fast way to identify
words that are often used in a document and rarely used in
other documents. The weakness of this approach is that each
word will be treated separately from others if the text was only

3see [6] for an overview to the usage of TF-IDF
4see [7] for an overview to NER

Fig. 1: Abstract algorithm steps

tokenized before by white spaces. While TF-IDF provides a
simple and fast way to identify words that occur frequently
in a document while occurring rarely in other documents, its
weakness is that every word is treated separately. This can be
problematic, for example when evaluating people’s first and
last names, which are identified as separate keywords. This
leads to corrupted results in the following algorithm steps. The
use of NER—treating first and last name as one term—solves
this problem. After the NER we still need to calculate the
TF-IDF values for the resulting terms. This way, we get a
global metric for a term’s relevance in all documents. Note
that instead of NER also n-gram5 could have been used here.

In our system, the in-memory database performs the NER
and provides all terms for each document. As described above,
these terms can consist of multiple words, if the words form
one entity for the NER. Therefore, we are able to apply the
TF-IDF metric on these terms. If the TF-IDF result exceeds a
predefined threshold the term will be classified as a keyword
for the document. The computation of the TF-IDF values is
also done by the database.

The TF-IDF computation and therefore the extraction of
keywords depends on the given time interval. Therefore, only
documents published in this time interval are considered for
the TF-IDF computation. This limitation is important for the
algorithm’s efficiency.

B. Computation of keywords’ distributions

The second step is the computation of the occurrence
frequency over time for each keyword. As in the previous step,
we only compute the distribution for the given time interval
and apply the same limitation to the documents.

In order to count the occurrences of keywords, we need to
build buckets depending on the time parameter. Otherwise, a
keyword will rarely occur more than once at the same time,
because the publishing dates of documents are given exactly
to the second. Therefore, we sample the time interval in time
frames. The length of each frame is constant and called time
unit. For example, a time unit can be an hour or a day. Resizing

5consult [8] for an introduction to natural language classification using n-
gram models

the time unit allows for control over the tradeoff between
accuracy depending and computation costs.

The input for the distributions’ calculation comprises the
keyword, the documents, and the time interval. The idea behind
this is to compute the occurrence value of the keyword for each
time unit in the given interval and to normalize this value, so
it can be compared to other values later. The normalization
is needed because the number of documents published differs
between different time units. Therefore, the absolute number
of occurrences does not provide a reliable basis of comparison.
To improve the performance of the next algorithm step it is
important to provide the occurrence history sorted by time. The
pseudocode for the keyword frequency distribution calculation
is illustrated in Algorithm 1 on page 4.

First the start and end time values of the given time interval
are adjusted depending on the length of a time unit. The new
start value is set to the begin of the time unit the old value
belongs to, the new end value to its end. This time interval
adjustment allows us to divide the given interval into whole
time units, which is important for the normalization step.

After the time interval adjustment, the algorithm iterates
over all time units in the redefined interval starting with the
earliest one. In each iteration, the set of documents published
in the currently viewed time unit will be determined. For sorted
or indexed data, this step performs very efficiently.

The normalized occurrence value for a time unit can be
calculated by dividing the number of documents encountered
in the last step and containing the given keyword by the
number of all documents relating to the time unit. If the
resulting value is non-zero we store it in the result list together
with the respective time unit. The resulting values are also
sorted by time units due to our choice of the iteration order.
This also saves us the computational expense for sorting them.

The provided algorithm needs only read access to the doc-
ument corpus. The distribution computation of one keyword is
independent of other keywords. Therefore, the distributions can
be computed easily in a parallel way and without additional
need for synchronization.

Algorithm 1 Calculation of occurrence histories

function KEYWORDHISTORY(keyword k, document corpus
D, time interval t)

result← empty list
. Redefine time interval begin
start← t.start− t.start%TIME UNIT
. Redefine time interval end if needed
if t.end%TIME UNIT ¿ 0 then

end← t.end− t.end%TIME UNIT + TIME UNIT
end if
. Iterate over all time units in given interval
for time tc← start; tc < end; tc← tc+ TIME UNIT

do
relevantDocs ← {d ∈ D : tc ≤ d.publicationDate ≤

tc+ TIME UNIT}
frequency← 0
. count the number of documents containing k

for document d ∈ relevantDocs do
if count(k, d) > 0 then

frequency← frequency + 1
end if

end for
. Normalize the frequency

frequency← frequency/|relevantDocs|
result.add((tc,frequency))

end for
return result

end function

C. Identification of busty intervals

During this step of our algorithm we determine bursty
intervals in the distribution of each keyword. Bursty intervals
describe time intervals in which the keyword occurs unusually
often. Statistical metrics like the expected value µ of occur-
rences and the related sample standard deviation s are used to
define which occurrence frequencies are unusually high and
which are not. Assuming a normal distribution of keywords,
we define all occurrence frequencies larger than a threshold of
µ + s as unusually high. This approach leads to good results
that are comprehensible for humans.

It is important to note that these statistical metrics are not
computed for the whole distribution period but for smaller
parts of this distribution, termed subintervals. Otherwise, long
periods of very low occurrence frequencies that usually occur
would falsify the detection of burstiness. This solution to the
problem was proposed by Fung [4].

Unfortunately, another problem results from this solution.
Subintervals with constant or nearly constant occurrence fre-
quencies are always classified as bursty intervals because the
standard deviation is close to zero and the expected value is
almost equal to each occurrence frequency in the subinterval.
To tackle this problem we introduce an additional threshold,
constant for each subinterval. For this additional threshold
we use the expected value of the whole occurrence history.
Thereby we are able to find time units where the keyword is
bursty. We identify bursty intervals by merging adjoining time
units. Figure 2 on page 5 illustrates this procedure.

In order to implement this procedure, a way to compute

subintervals needs to be determined. In our system, we use
constant subintervals and quantify the length of a subinterval
in time units. For example, if we define a day as a time unit,
an appropriate subinterval length is a week. For an hour as a
time unit, we propose a subinterval length of a day.

After choosing the subintervals’ lengths, we now have to
choose when each subinterval should start. Fung proposed to
split the whole time interval into subinterval by having the first
subinterval start at time 0, the second at the end of the first one
and so on. As the results of this approach are often not intuitive
for humans, we pursue a different approach. In contrast to the
work of Fung, we decided to test each possible subinterval
which could be appropriate for a time unit. Because each
subinterval consist of whole time units, we can easily check
each possibility for the start time. This method is an adaption
of the moving windows approach and provides more smoothed
and human intuitive solutions than the approach proposed by
Fung.

The computation of bursty intervals depends only on the
distribution of the respective keyword. Therefore, the bursty
intervals for different keywords can be computed simultane-
ously and without additional synchronization.

D. Creation of events

For the final creation of events we use the extracted
keywords and the related bursty intervals to identify events
for the given time interval. We defined an event as a set of
keywords that are bursty in the same time interval. To build
this set we cluster keywords with overlapping bursty intervals.
As mentioned in Chapter III the time interval cannot be the
only feature for our clustering algorithm, because different
events could occur at the same time. Instead, we use not only
the time of keywords’ occurrences but also co-occurrences
and conditional co-occurrences of keywords as it has been
proposed by Sayyadi[3].

Two keywords k1 and k2 co-occur if they are used in
the same document d. We define the co-occurrence value of
two keywords in a time interval as the number of documents,
published in the given interval and containing both keywords
divided by the total number of documents |D| published in
the interval. The co-occurrence value provides a possibility to
decide how often both keywords are used together. The higher
this value is, the higher is the relevance of the relationship
between these two keywords. But this value is not enough
to decide on the quality of such relationships, only about the
quantity.

We use the conditional co-occurrences to decide on the
quality. The conditional co-occurrence values describe how
often two keywords co-occur if one of them occurs. As a
result of this definition, there are always two conditional co-
occurrence values for each pair of keywords With these two
values we can easily decide on the quality of the relationship.
If one of these values is low then the keywords not belong to
each other. The formulas in Figure 3 show the mathematical
definition of both metrics.

Based on the two metrics, co-occurrences and conditional
co-occurrences, Sayyadi proposes an approach to cluster key-
words. The keywords and their relationships are represented

Fig. 2: Procedure for the identification of bursty time units

co-occurrence(k1, k2) =
|{d ∈ D | k1 ∈ d.text ∧ k2 ∈ d.text}|

|D|
conditional

co-occurrence(k1|k2) =
|{d ∈ D | k1 ∈ d.text ∧ k2 ∈ d.text}|

|{d ∈ D | k2 ∈ d.text}|

Fig. 3: Definition of co-occurrence and conditional co-
occurrence

as a graph. In the so called KeyGraph each node represents
a keyword and each edge represents the relationship between
the keywords corresponding to the nodes. The idea behind
Sayyadi’s method is to identify highly connected sets of nodes
and to define each such node set as an event.

To achieve this, Sayyadi proposes to identify edges which
are important for the connectivity of the KeyGraph and to
remove them. The resulting graph consists of independent
subgraphs. Figure 4 on page 6 demonstrates a simplified
example. Sayyadi uses the betweenness centrality measure[9]
to identify edges which have a high connectivity. From our
point of view this approach fails to take the time parameter
into account. Furthermore, such KeyGraphs tend to be large.
In our experiment with a small dataset of 1000 blog posts,
we extracted 5400 keywords and each keyword must be
represented as a node in the KeyGraph. The main problem
with the analysis of such large graphs is the computation of
the betweenness centrality measure. The known algorithms

for computation of the betweenness centrality on directed and
weighted graphs are not very efficient. For example, the Floyd-
Warshall algorithm has a complexity of O(n3), where n is the
number of nodes.

For these two reasons, we adjusted Sayyadi’s approach to
solve both problems. First we introduced the time parameter
dependency into the clustering method. We split the time
interval that should be searched for events into time units
and generate KeyGraphs for each time unit. The KeyGraph
for a time unit then contains only keywords that are bursty
in this time unit. Now we can generate a set of events for
each KeyGraph and unify the resulting sets to one result. This
approach allows to take the time parameter into consideration
and to shrink the size of the individual KeyGraphs drastically.
The performance gain from this step depends on the keyword
distribution over time and the length of the search interval. For
a common data set where each time unit has the same amount
of bursty keywords, the KeyGraphs shrink by the factor of time
units in given the search interval.

But this solution causes a new problem: Events that occur
during more than one time unit are split to different events.
Therefore, we must check all resulting events during the union
step and merge split events together. Two events are similar
enough to be merged if they are described by similar keyword
sets and occur closely one after another.

We solved the problem of introducing the dependency from
the time by splitting the KeyGraph into one KeyGraph per
time unit. The second problem, the inefficient computation of
the betweenness centrality, remains to be solved. We propose

Fig. 4: Clustering of keywords with the KeyGraph

different heuristics which could tackle this problem.

First the average KeyGraph size should be reduced. As
proposed by Sayyadi, we remove all edges for which either the
co-occurrence or conditional co-occurrence values between the
related keywords lie under a threshold. These edges represent
relationships with too low relevance for the event detection or
with too low quality of the relationship. We observed in tests
with real world data that the resulting KeyGraphs often consist
of many smaller KeyGraphs, which are not connected to each
other. Therefore, we can split such KeyGraphs in linear time
into smaller graph structures and analyze them much faster
than one large KeyGraph.

A further improvement is the use of the Dijksta algorithm
for the computation of the betweenness centrality measure,
since it is easy to parallelize and achieves better performance
in sparse graphs than the Floyd-Warshall algorithm.

In the work [10] Brandes proposed a probably faster way
for computations of the betweenness centrality in undirected
graphs. Due to the limitation to undirected graphs we did
not implement this approach. For future research the relation
between the achieved speed-up and the loss of accuracy could
be examined, though.

Algorithm 2 on page 7 shows the cooperation between the
approach steps described above. We used a stack structure
to avoid recursion and to realize the depth search, to avoid

memory problems.

This step is easy to parallelize. The search of events for
one time unit is completely independent from other time units.
This fact allows us to compute the events for each time
unit simultaneously. In contrast to previous steps, we need
to merge the results of the parallel computations. To avoid
synchronization overhead, we provide another result set to
each of the parallel computations and merge them after all
computations are finished.

E. Matching of documents to events

After the creation of events, we need to find documents
that relate to the events in order to provide the user with a
proper description of the created events.

By limiting the set of documents to only those which
were published in the time interval of the event, we reduce
the number of needed comparisons massively. As mentioned
earlier, this reduction step performs very efficiently for sorted
or indexed data.

Now we are able to compare the documents with events
based on the keyword sets both object types provide. Each
document has a set of keywords which are used in the
document text. Each event is defined by a set of keywords.
By computing the similarity between these two sets, we are
able to decide how well a document represents an event.

Algorithm 2 Algorithm for event creation

procedure FINDEVENTS(IN TIME INTERVAL TI, OUT
EVENTS E)

for TIME UNIT TU ∈ TI do
EVENTS E TU ← {}
FindEvents(TU, E TU)
MergeEventsFromTo(E TU, E)

end for
end procedure

procedure FINDEVENTS(IN TimeUnit TU, OUT EVENTS
E)

KEYGRAPH k ← createGraphFor(TU)
STACK S ← {k}
EVENTS E ← {}
while NOT empty(S) do

KEYGRAPH sTop ← pop(S)
EDGE e ← bestSplitEdge(sTop)
if valueBC(e) ≥ threshold then

removeEdge(e, sTop)
if splitNeeded(sTop) then

KEYGRAPHS graphs ← split(sTop)
pushAll(graphs, S)

else
push(sTop, S)

end if
else

addAll(eventsFrom(sTop), E)
end if

end while
end procedure

procedure MERGEEVENTSFROMTO(IN EVENTS
toMerge, INOUT EVENTS toMergeInto)

for EVENT eventToMerge ∈ toMerge do
for EVENT eventToMergeInto ∈ toMergeInto do

if similar(eventToMerge, eventToMergeInto)
then

merge(eventToMerge, eventToMergeInto)
break

end if
end for
if noSimilarEventsFound(eventToMerge) then

add(eventToMerge, toMergeInto)
end if

end for
end procedure

For the comparison of keyword sets we used the well-
known Jaccard index, because it can be implemented very
efficiently with our data structure. The cosine similarity mea-
sure could also be employed for this task and provides similar
results as the Jaccard index in our case.

To evaluate the relevance of the created events, we sort the
events by the number of documents that belong to them and
filter out events with too few documents.

This algorithm step is easy to parallelize. The comparison
of an event and a document is independent from other com-
parisons and needs only read access to keyword sets of both

objects. Therefore, we can simultaneously compare events and
documents.

V. EVALUATION

Since it was one of our main goals to allow the detection of
events to be run in a highly parallized way, we want to provide
some evaluation here. In the following we will discuss each
step of the algorithm regarding its scalability.

Figure 5 shows the performance of the identification of
bursty intervals, the creation of events, and the matching of
documents to events respectively6.

The table does not provide measurement data about the
extraction of keywords as the keywords are obtained directly
from the database. As the table about the performance of the
event creation step reveals, there has been a problem scaling
this part of the algorithm. This undesired behavior results from
a too small caching capability and thus many context switches
on the machine we used for the measurements. It does not
occur on the productive system of the BlogIntelligence project.

The overall performance of the algorithm also depends
on the number of keywords we extract from each document.
The number of keywords directly influences the size of the
KeyGraph described in section IV-D. Hence, the computational
cost for the creation of events is increased proportionally.

Another factor that impairs the algorithm’s performance
is unclean data. The algorithm can misinterpret non-content
strings—such as html tags—that have not been stripped from
the crawled documents as keywords. For the creation of events
from bursty keywords, those strings are of no value.

VI. CONCLUSION

In this paper we introduced aa approach for the detection of
events in blogs. The algorithm we presented is geared to high
performance, sufficient for answering live queries. As it has
been pointed out in section V our implementation processes in-
put documents in a parallelized manner with multiple threads.
Also, the implementation is embedded deeply into the database
source, making optimal use of its hardware capabilities.

Speaking from an algorithmic point of view, our implemen-
tation combines the idea of a co-occurrence based keyword
clustering algorithm with a time based approach to clustering.
Thus, we achieve very good clustering results while avoiding
a large set of user defined parameters as well as the effect of
undesired merging of temporally separated events.

VII. FUTURE WORK

Since the event detection software is meant to be run as part
of the BlogIntelligence project it would be desirable to create a
precise mechanism to measure the results’ quality. Therefore,
a tagged data set would be necessary, which provides ground
truth about the events that should be detected by the algorithm.
Currently there is no such data set available. Hence, the data
set needs to be created.

6The event detection was run on a data set of about 10000 documents (about
20 MB) on a Windows 7 machine, Intel Core i7 Q720, 1,6 Ghz, 8 GB Ram

Threads Runtime
1 29952
2 15538
4 10467
8 7987

(a) Computation of keyword distribution
and identification of bursty intervals

Threads Runtime
1 4649
2 4430
4 5429
8 6427

(b) Creation of events from keyword clus-
tering

Threads Runtime
1 514
2 281
4 250
8 203

(c) Matching of documents to events

Fig. 5: Performance of each step of the algorithm in dependence of the number of threads employed

There are also yet not implemented means to improve
the quality of the generated events. In contrast to plain text
streams there is much meta information associated to blog
entries. Among other data, this includes the category of the
blog and the location where it originates from. How well this
information can be employed in order to identify blog entries
discussing the same event has not yet been researched.

In addition to using the meta information for improving
the quality of the events, the information could also be used
to provide more details about the events. Thus augmenting
events with information about groups of persons associated to
the event or locations which are relevant to it.

Finally, stories of events could be created by identifying
events that have similar keyword sets but take place at different
times. In many cases multiple events belong to one larger
context. Thus, they could tell a story if this relationship was
unveiled. Consider the release of a new smart phone as an
example: Typically, the phone would first appear in the media
when some information about it is “leaked”. A few weeks
later, the phone will be officially announced. After that it will
be presented to the public and finally it will be released to the
stores. While each of these four points in time marks a single
event, they tell one story once we look at them together.

REFERENCES

[1] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake
shakes twitter users: Real-time event detection by social
sensors,” in In Proceedings of the Nineteenth Interna-
tional WWW Conference (WWW2010). ACM, 2010.

[2] C. M. Patrick Hennig, Philipp Berger, “Web mining ac-
celerated with in-memory and column store technology,”
in Proceedings of the 9th International Conference on

Advanced Data Mining and Applications (ADMA 2013).
Springer-Verlag Berlin Heidelberg 2013, 12 2013, pp.
205–216.

[3] H. Sayyadi, M. Hurst, and A. Maykov, “Event detection
and tracking in social streams,” in In Proceedings of the
International Conference on Weblogs and Social Media
(ICWSM 2009). AAAI, 2009.

[4] G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu,
“Parameter free bursty events detection in text streams.”
in VLDB. ACM, 2005, pp. 181–192. [Online].
Available: http://dblp.uni-trier.de/db/conf/vldb/vldb2005.
html#FungYYL05

[5] D. Jurgens and K. Stevens, “Event detection in blogs
using temporal random indexing,” in Proceedings of the
Workshop on Events in Emerging Text Types, ser. eETTs
’09. Stroudsburg, PA, USA: Association for Computa-
tional Linguistics, 2009, pp. 9–16. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1859650.1859652

[6] J. Ramos, “Using tf-idf to determine word relevance in
document queries,” in Proceedings of the First Instruc-
tional Conference on Machine Learning, 2003.

[7] A. Borthwick, “A maximum entropy approach to named
entity recognition,” Ph.D. dissertation, New York Univer-
sity, 1999.

[8] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D.
Pietra, and J. C. Lai, “Class-based n-gram models
of natural language,” Comput. Linguist., vol. 18,
no. 4, pp. 467–479, Dec. 1992. [Online]. Available:
http://dl.acm.org/citation.cfm?id=176313.176316

[9] L. C. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, pp. 35–41, 1977.

[10] U. Brandes, “A faster algorithm for betweenness central-
ity,” Journal of Mathematical Sociology, vol. 25, pp. 163–
177, 2001.

