published

as: Martin Malchow, Matthias Bauer, Christoph Meinel:
In-Memory Database Technology, In Proc. of IEEE 18th International
21-23 October, 2015, Porto (Portugal)

(CSE2015),

Archive Search with OCR Slide
on Computational Science

Enhance Lecture
Conference

2015 IEEE 18th International Conference on Computational Science and Engineering

Enhance Lecture Archive Search with OCR Slide
Detection and In-Memory Database Technology

Martin Malchow, Matthias Bauer, Christoph Meinel
Hasso Plattner Institute (HPI)
University of Potsdam
Potsdam, Germany
Email: {martin.malchow, matthias.bauer, christoph.meinel} @hpi.de

Abstract—On the Web there are a lot of frequently used
video lecture archives which have grown up fast during the last
couple of years. This fact led to a lot of lecture recordings which
include knowledge for a variety of subjects. The typical way of
searching these videos is by title and description. Unfortunately,
not all important keywords and facts are mentioned in the title
or description if they are available. Furthermore, there is no
possibility to analyze how important those detected keywords
are for the whole video. Another lecture archive specific virtue is
that every regular university lecture is repeated yearly. Normally
this will lead to duplicate lecture recordings. In search results
doubling is disturbing for students when they want to watch the
most recent lectures from the search result. This paper deals with
the idea to resolve these problems by analyzing the recorded
lecture slides with Optical Character Recognition (OCR). In
addition to the name and description the OCR data will be used
for a full text analysis to create an index for the lecture archive
search. Furthermore, a fuzzy search is introduced. This will solve
the issue of misspelled search requests and OCR detection defects.
Additionally, this paper deals with the performance issues of a full
text search with an in-memory database, issues in OCR detection,
handling duplicate recordings of lectures repeated every year.
Finally, an evaluation of the search performance in comparison
with other database ideas besides the in-memory database is
performed. Additionally, a user acceptability survey for the search
results to increase the learning experience on lecture archives was
performed. As a result, this paper shows how to handle the big
amount of OCR data for a full text live search performed on
an in-memory database in reasonable time. During this search a
fuzzy search is performed additionally to resolve spelling mistakes
and OCR detection problems. In conclusion this paper shows
a solution for an enhanced video lecture archive search that
supports students in online research processes and enhances their
learning experience.

I. INTRODUCTION

The first lecture archives have established in the beginning
of 2000 like the Berkeley Internet Broadcasting System (BIBS)
[1] at the Berkeley Multimedia Research Center. Which is now
known as webcast.berkley!. Another lecture archive approach
has been started in 2002 at the University of Trier with the tele-
TASK [2] system. Over the years the tele-TASK web portal has
grown and currently provides over 5500 lectures which should
be searchable to provide users easy access to the information
they are searching for. Due to, lectures nature they will be rere-
corded every year. This behavior has to be considered while
processing the search result. Furthermore, lectures contain a
lot of information on the slides. This information have to be

Uhttp://webcast.berkeley.edu/

978-1-4673-8297-7/15 $31.00 © 2015 IEEE
DOI 10.1109/CSE.2015.19

176

considered during the search to create a more accurate result
than just by analyzing names and descriptions of lectures. In
order to realize these ideas the slides have to be analyzed to
extract this additional information. Then, all the text has to
be indexed with an appropriate full text index. As users are
impatient when a device reacts slowly [3] the search speed
has to be fast. This is one of the biggest challenges as a lot of
data has to be processed with the content of all lecture slides
from all lectures. In order to handle this speed problem an
in-memory database will be used and special indexes will be
created to reach the required speed up.

This paper is structured into 4 parts. The parts of the paper
are “Related work”, “Approach”, “Evaluation” and “Results
and Future Work™. In the following Section II, related work in
this research area is described. Mainly research in the area of
OCR search in lecture archives, OCR detection and difficulties
in lecture duplicated are considered.

This section is followed by the approach of OCR slide
search using an in-memory database for processing the data.
As in-memory database the HANA is used leading to HANA
specific SQL queries for processing the search. These queries
lead to a search offering different features. One feature is
fuzzy search which leads to reasonable result even when the
user misspelled a word or the OCR detection recognized a
word not completely accurately. Another feature is to use a
full text search over multiple fields in the database to find the
most reasonable lectures by title, description and OCR data.
Beside this approach a currently used search algorithm which
only analyzes lecture names and descriptions will be presented
and the architecture of the lecture archive search with the in-
memory database will be shown.

In the evaluation in Section IV it will be discussed if the
speed up of an in-memory database used in this approach is
powerful enough and if an improvement to the state of the
art search server Elasticsearch is possible. Furthermore, this
section includes a user study to compare if the search results
from the new search approach are more appropriate for users
of the lecture archive platform than before. Therefore survey
participants were asked to decide for five different search
phrases which of both results is more appropriate.

Finally, the paper is concluded with the approach result and
ideas for future work in this area. Considered areas for future
work are the use of Automatic Speech Recognition (ASR),
semantic approaches to search similar and corresponding terms
and different optimization ideas to speed up the search.

@) CO‘ pute
1(!) I
& SOCIety

Detection
and Engineering

and

Martin.Malchow
Text Box
published as: Martin Malchow, Matthias Bauer, Christoph Meinel: Enhance Lecture Archive Search with OCR Slide Detection and In-Memory Database Technology, In Proc. of IEEE 18th International Conference on Computational Science and Engineering (CSE2015), 21-23 October, 2015, Porto (Portugal)

II. RELATED WORK

During the last years, there have been several companies
offering commercial lecture archives like Panopto?, Cisco
Media Experience Engines® or Echo360*. Some of these
services already offer OCR analysis of recorded lectures to
search keywords. Examples for this OCR keyword search are
Cisco Pulse [4] and Panopto Smart Search [5]. These products
analyze the slides and detect keywords. Nevertheless, only the
keywords can be searched. The companies also describe it as
keyword search or search for a specific word in a lecture. The
idea of this paper is to go a step further and create a “search
engine like”-search in the OCR data of all recorded lectures
in the archive.

Important work for the OCR lecture search is the algorithm
for OCR detection in lecture slides [6]. This algorithm made
video data accessible. But there are still some errors because
bullet points can not be processed easily. This is caused by
the missing sentence structure for credibility. Nevertheless, this
algorithm has great results and fault detection can be handled
by using a fuzzy search algorithm.

Another important research area used in this approach is
fuzzy search [7]. Using fuzzy search enables users to find
information for certain topics even when a word is slightly
misspelled. This will avoid frustrations and awkward search of
spelling errors. Furthermore, while searching OCR data fuzzy
search offers additional functionality. Due to, wrongly detected
words by the automatic OCR algorithm searching the OCR
data is a complex task. There are a many unpredictable wrong
detections possible for every word. The fuzzy search solves the
problem satisfactorily by finding typographically close terms
to the search term. This leads to considerable results even when
users and/or OCR detection do not use proper terms.

An important research topic for this approach is the search
engine in general. An established open source search engine
based on Apache Lucene Core’ is Elasticsearch which also
offers, besides numerous other features, a full text search in
the indexed data [8]. The performance of Elasticsearch in
context of the search in OCR slide data to find lectures is
analyzed more detailed in the following sections of the paper.
An existing approach using Apache Lucene for OCR lecture
search is TalkMiner [9].

In video archives there is a problem with certain videos
that seem to have duplicates in the search results [10]. But
these videos are often not actual duplicates. They are just
lectures repeated every year. Therefore, algorithms for filtering
duplicate videos automatically on the server cannot be applied
in a lecture archive environment. Another approach has to be
developed so that users get important lectures without seeing
only results of one lecture over several years of recording.

I1II. APPROACH

The current lecture archive search is based on a weighted
search of the name and description of lectures, which leads to
reasonable search results with one-term searches. Nevertheless,

Zhttp://www.panopto.com/
3http://www.cisco.com/
“http://ech0360.com/
Shttps://lucene.apache.org/core/

177

TABLE 1. SCORING SYSTEM FOR WEIGHTED SEARCH
Lecture Name
Exact name match: 50 points
Name starts with: 30 points
Contains name match: 20 points

Lecture Description

Exact description match: 20 points
Description starts with: 10 points
Contains description match: S points

it has some drawbacks when it comes to word group search.
The basic algorithm for the weighted approach with a scoring
model operates like described in the following sentences. First,
an additional index table is created in a database. This index
contains all terms and a field in which lecture this term occurs
and at which position in the name or description of the lecture.
This index reduces the computational effort per search request
but it has to be updated when a new lecture is added. Now
every found lecture gets points for matching results like shown
in Table 1. For elimination of the doubled results from lectures
of different semesters this algorithm divided the points by
the age of the lecture. So, older results will be displayed
later in the ranking if there are lectures which are close to
this lecture. Nevertheless, this approach will show doubled
lectures from different semesters in various circumstances and
removes relevant lectures from the top search result which
were archived in the past and not recorded several times just
because they are older.

A. System Architecture

In-Memory OCR Search Extension

Lecture Archive Search Page
(HTML, JavaScript, ...)

1 generated HTML
and JavaScript
| Python |(--)

' A

HANA Database

| HANA DB ODBC Driver

| MySQL Database Driver | ¢
¢ § | HANA Database ODBC Driver |
;
oq
a
a Synchronization of lecture
o |€>» name, description, slide OCR
MySQL Database aiLg § (Python script)
Sync Functionality

Fig. 1. Architecture of the lecture archive with extended HANA Database
Functionality

The current system architecture of the lecture search is
shown on the left side of Figure 1. The core of the current
weighted search is a Python script loading lecture data from
the MySQL database, processing the data and displaying
the results on the lecture archive search page. This MySQL
database is used because of legacy reasons. Due to the use of
the Python framework Django® the Django database model is
used to execute queries. This model currently does not support
the HANA database. To avoid changing the complete source

Shttps://www.djangoproject.com/

code of the lecture archive the MySQL database is still used
and only search-relevant data will be synchronized with the
in-memory database HANA.

On the right side of Figure 1 the extension for the OCR
search with the in-memory database HANA [11] is shown.
To activate and insert data into the in-memory database an
additional Python script for synchronizing the lecture name,
description and OCR data was written. This script uses a
MySQL Driver and a HANA ODBC Driver to communicate
with both databases. This synchronization is shown in the
bright yellow box in the Figure 1.

When a HANA search is going to be performed the Python
script is accessing the synchronized HANA Database by the
HANA ODBC Driver. The Python script handles the lecture
IDs from the result set and gather additional lecture data from
the MySQL database. This merged result will be displayed on
the lecture archive search page.

B. Preparing OCR Data

First, all lectures are going to be analyzed so that the OCR
data can be created with the algorithm described in [6]. This
leads to recorded OCR data which consist of several detected
lines per slide for all slides of a lecture. In the following step
the OCR data out of one slide line is going to be combined
with an additional space. This additional space is necessary to
avoid combination of words to one word. This procedure is
done for every slide by simply adding the lines in the right
order. As a result a full text for the lecture slide is created
and made machine-processable. Now it is possible to do a
full text search for most suitable slides. As the main focus
of the paper is to find lectures in a lecture archive efficiently
another aggregation step is necessary. Now the complete texts
of every slide have to be combined again with an additional
space. This results in a long OCR detected text for a lecture
containing combined bullet points.

C. Search Matching Results in the Database

In the first approach a simple SQL query is used in a
MySQL database to find suitable lectures for an entered word
or word group in the OCR result. This SQL query finds lectures
which contain the word or word group in the OCR result
and counts the number of occurrences and set it into relation
to the number of words. The result is going to show the
importance of the search results. Nevertheless, this approach
has a couple of drawbacks. Considering that the 5500 lectures
in the concerned archive will slow down this way of search
significantly to nearly 80 seconds per request like it is shown in
the measurement in Section IV-A. This is unacceptable when
taking into mind that users expect an instant reaction to their
search request [3].

Furthermore, this approach can only find word groups
in the OCR data if they are found in the submitted order.
If a user searches for “TCP UDP” an occurrence of the
string “advantages of TCP in comparison to UDP” can not be
detected by this approach because linked words can only be
found if they occur with the same linking again. This would
lead to search results with limited coverage of the available
data.

178

Another drawback is that the OCR analysis is not com-
pletely accurate. This leads to the situation that words on
the slides which were not recognized correctly by the OCR
detection are not found and a lecture containing interesting
information of a topic will be missed in a search.

The final drawback of this approach is that there is no
handling of doubled lectures from different semesters. The
resulting order is random which leads to very old lectures
possibly shown first instead of the newest lecture, which would
lead to unsatisfied and outdated search results for the users.

This first approach for the full text OCR search seems to
be inefficient and not useful for the search. Nevertheless, it
shows which issues have to be solved to include OCR data
into the search result. These approaches will be described in
the following sections.

D. Handle Speed Issues of OCR Search and Word Linking
Problem

To handle the full text OCR search in a reasonable time
for users an in-memory database is used. In our case the SAP
HANA [11] which already offers text processing. To work
efficiently in an in-memory database a table is stored as column
table and not as it is known from other databases as row
table. Currently only search relevant data are stored in the in-
memory database. These data consist of the lecture IDs from
the currently used MySQL database, lecture names, the lecture
descriptions and lecture OCR data. Currently a synchronization
is necessary to keep the data from the MySQL database up to
date with the data in the in-memory database. Furthermore,
HANA can automatically create an index for text processing
to decrease the search time. To create a column table with
the necessary fields and the creation of the index the SQL
statement in Listing 1 have to be executed.

Listing 1. HANA SQL statement to create a column table for lecture search
with index creation for full text search

CREATE COLUMN TABLE "LECTURES" (
"LECTURE_ID" INTEGER CS_INT NOT NULL ,
"NAME" NVARCHAR(500),

"DESCRIPTION" NCLOB,
"OCR_TEXT" NCLOB,
PRIMARY KEY ("LECTURE_ID"));

CREATE FULLTEXT INDEX "NAMEIDX" ON
"LECTURES" ("NAME") SYNC;

CREATE FULLTEXT INDEX "DESCRIPTIONIDX" ON
"LECTURES" ("DESCRIPTION") SYNC;

CREATE FULLTEXT INDEX "OCRIDX" ON
"LECTURES" ("OCR_TEXT") SYNC;

After the data were filled to the database a full text search
for OCR data can be performed with the statement in Listing
2. The engine searches on the OCR table for exact matches of
the “SearchTerm” and automatically creates a score which is
going to be ordered by importance.

Listing 2. HANA SQL statement to do an exact full text search with scoring
the result

SELECT "LECTURE_ID", SCORE() AS SCORE

FROM "LECTURES" WHERE
CONTAINS ("OCR_TEXT" ,
ORDER BY SCORE DESC

>searchterm)

The SQL keyword “CONTAINS” additionally offers a
phrase search. This functionality solves the problem of the
linked word search. Instead of searching one term a word group
or phrase can be searched similar to popular search engines.
Additionally it is possible to operate with double quotes, e.g.
"search me" to search for a phrase which is matching without
any terms in between. Furthermore, using a “-” can exclude
results which contains a special word. As example, searching
for “search -term” will show all lectures containing “search”
and do not mention “term”.

E. Handle OCR Defects with Fuzzy Search

As discussed in Section III-C the OCR search is not com-
pletely precise. Moreover, users do not always search terms
without any spelling mistakes. Nevertheless, the lecture search
should be able to show reasonable results even when there
are spelling mistakes in the OCR or user search data. The so
called “Fuzzy Search” solves the “String-to-String Correction
Problem”[12] based on the Levenshtein distance [13] which
calculate how far strings from each other by analyzing the
computational effort to change a string into another. In the in-
memory database HANA a fuzzy search is already included.
To find results with the fuzzy search an SQL query like it is
shown in Listing 3 has to be executed with the corresponding
search term to find a lecture. The fuzzy attribute “0.8” visible
in the listing describes up to which fuzzy score results are
displayed. Smaller numbers will find more blurry results and
bigger numbers more exact results.

Listing 3. HANA SQL statement to do an fuzzy full text search with scoring
the result

SELECT "LECTURE_ID", SCORE() AS SCORE
FROM "LECTURES" WHERE CONTAINS
("OCR_TEXT", ’searchterm’, FUZZY(0.8))
ORDER BY SCORE DESC

The fuzzy search is able to find good results within the
OCR search. Nevertheless, currently the lecture search is still
to slow. This is because the index is just created for full
text search. As a solution HANA offers the search option for
creating an index for fuzzy search to speed up fuzzy full text
search. To activate it the SQL statement in Listing 4 has to be
executed to create the search index optimized for fuzzy search.
Using this special fuzzy search index speeds up the lecture
search with OCR data dramatically to 220ms per search. The
search speed is going to be discussed in detail in Section IV-A.

Listing 4. HANA SQL statement creation of a full text fuzzy search index

CREATE FULLTEXT INDEX "NAMEIDX" ON
"LECTURES" ("NAME") SYNC

FUZZY SEARCH INDEX ON;

CREATE FULLTEXT INDEX "DESCRIPTIONIDX" ON
"LECTURES" ("DESCRIPTION") SYNC

FUZZY SEARCH INDEX ON;

CREATE FULLTEXT INDEX "OCRIDX" ON
"LECTURES" ("OCR_TEXT") SYNC

FUZZY SEARCH INDEX ON;

E. Freestyle Search to find multiple lecture texts

This section describes how to merge the search results for
lecture name, lecture description and OCR data for the lecture
search. The SQL statement for this select operation is shown
in Listing 5. This search is known as freestyle search and
uses “term frequency - inverse document frequency” (tf-idf) to
analyze the importance of a document with a set of data [14].
In case of the lecture search with the in-memory database the
score of a lecture depending on the name, description and slide
OCR data is created.

Listing 5. HANA SQL statement to perform a search over several lecture
information fields with fuzzy search

SELECT "LECTURE_ID", SCORE() AS SCORE
FROM "LECTURES" WHERE CONTAINS
(("NAME" , "DESCRIPTION", "OCR_TEXT"),
>searchterm’, FUZZY (0.8))

ORDER BY SCORE DESC

G. Handling Doubled Lectures from Different Semesters

A final step for selecting lectures out of the in-memory
database is to filter double lectures from different years.
Usually, lectures are almost the same every year with minor
improvements in fact of new research results. Based this
assumption the newest lecture with the same title and lecturer
should be shown in the search result only. Furthermore, lec-
tures which were just recorded once should not be unimportant
in the search order like it happens with the old search approach
described in the beginning of Section III. For realization there
is the presumption that all lectures have a unique name and the
same name when they are repeated in other semesters. Hence,
we can find same lectures by name comparison. Additionally,
we can find out easily the newest lecture because the lecture
IDs are count up by auto increment. So, the newest lecture
of same lectures will be detected by the maximum lecture
ID. The adapted SQL statement to realize this behavior is
shown in Listing 6. The basic SQL statement is already known
from Section III-F. An additional SELECT is added to find
all double lectures by name and select the lecture with the
highest ID. At the end the search result will be joined with
the results of the newest lecture search of this series by an
INNER JOIN. This increase the search time to an justifiable
value of approximately 300ms.

Listing 6. HANA SQL statement to perform a lecture search selecting the
newest lecture

SELECT SCORE() AS SCORE,
T1."NAME", T1."LECTURE_ID"

FROM "LECTURES" AS T1 INNER JOIN
(SELECT "NAME', MAX("LECTURE_ID")
AS "LECTURE_ID" FROM
"LECTURES"
GROUP BY ("NAME")
) AS T2

ON TI."LECTURE_ID"
WHERE CONTAINS
((T1."NAME", "DESCRIPTION",

= T2."LECTURE_ID"

"OCR_TEXT"),

>searchterm’, FUZZY (0.8)) ORDER BY SCORE DESC

H. Combine In-Memory Database Results with the Existing
Database

Finally, the lecture IDs found by the in-memory database
have to be connected to the MySQL data to receive additional
information like lecture URL, lecture duration, comments,
e.g. Depending on the amount of lectures found the search
time increases. This behavior is going to be discussed in the
following experiment Section IV-A

IV. EVALUATION

The quality of the described search approach is measured
by time of the request and by fineness of the search result.
The speed is compared with the OCR approach of a MySQL
Database and the in-memory database in the following section
IV-A. Additionally, the search result is valuated completely
by 78 unique users in a survey comparing the results of the
weighted search described in Section III and the in-memory
database approach. The result is going to be discussed in
Section IV-B.

A. Database Request Time

The request time is compared with a normal database
request counting the number of occurrences of a word in the
OCR data to decide the importance of the search term in
different lectures and the in-memory database approach. The
in-memory database approach is divided into subsets with and
without taking care of repeated lecture appearance as well as
with and without adding the time to select lecture information
from the MySQL database. In Figure 2 only differences of the
in-memory approach are perceptible even when the in-memory
subsets are included. On the x-axis the number of search results
are displayed which are limited by the SQL query and the
y-axis shows the required execution time for this database
request with these amount of results. It is ascertainable that
the number of requests has no impact on the execution time.
This behavior is caused by the search algorithm. To find the
top results performs an overall text analyzes for all lectures and
reducing this result set to a limited number does not interfering
the overall execution time. Even when there are small timing
differences which were caused by other processes and database
caching the processing time of the text search is independent
from the number of requested results.

Figure 2 shows clearly that a full text search with a standard
MySQL database is not manageable. Therefore, the different
steps of the in-memory database approach have been analyzed
to verify if the timing results are reasonable for the user.
In the following Figure 3 the in-memory and Elasticsearch
timing results are visualized. As mentioned in the beginning
the number of results has no influence on the execution time
for a search query in traditional databases or in-memory
databases. Nevertheless, it has an influence when taking into
account that additional lecture data has to be collected from
the database due to the mentioned legacy reasons. In case of
this experiment after processing the SQL query to analyze the
search result, MySQL queries have to be executed to gather
lecture information needed for visualization on the lecture
archive website. This additional gathering of data exceeds
the execution time like it is shown in Figure 3. Additionally,
Figure 3 shows the differences with and without removing

180

S e HANA
90.00

80.00 e HANA with removed
70.00 double entries
60.00 e HANA & MySQL
50.00
= MYSQL without Index

40.00
30.00 MYSQL with Index
20.00
10.00 e==HANA with removed

double entries +

0.00 Tr—— —— " N MysQL
0 20 40 60 80 100 120 140 160 180 200 results

Fig. 2. Request time for MySQL content search compared with HANA
in-memory index search

duplicate lectures. In case the difference is less than 100ms
it is not necessary to spare this functionality in a productive
system. Nevertheless, this result shows that a search should not
show all matching lectures instantly because of the response
time of more than a second. As a solution only the top
5 or top 10 lecture matches should be shown and if users
want to see more results they interact with the website and
get a visual feedback that the search for more lectures is
executed with an animated progress image as example. In
comparison to the in-memory database search the Elasticsearch
execution time is related to the number of selected results.
In the beginning the Elasticsearch engine is faster for up to
20 search results. If more search results are requested the
HANA is obviously faster. Furthermore, the timing results
for Elasticsearch filtering lectures from different years and
getting additional information from the MySQL database are
not measured due to the worse execution compared to the
HANA. Executing these additional tasks will increase the
search time significantly. Finally, also the search results of the
Elasticsearch in the OCR data seem to be worse compared to
the HANA result. Especially, Elasticsearch seems to search for
keywords in the OCR data only without taking into account
that words of a search term are more worth if they are found
next to each other. In addition no search engine search behavior
is implemented implicitly in Elasticsearch. As an example
when a student wants to search for a term where another term
is shall be excluded using a “-” is not processed in the expected
way by Elasticsearch without additional implementation effort.
Due to the mentioned reasons Elasticsearch is not considered
in the following evaluation of this paper.

B. Fineness of Search Results

To analyze the quality of the in-memory search approach
for lecture archives a survey was created where the weighted
search described in Section III and the in-memory approach
results are compared by users. The 5 search terms with the
appropriate result are shown in the tables. 78 users answered
all survey questions. Sometimes there are more then 78 eval-
uations for a question. The reason is that some users did not
answer all 5 questions. The survey is structured in 5 questions.
Every question shows 2 search results with 4 matches for
a specified search term. Now the user has to decide which

1.60

1.40 /
1.20 /

1.00 //
0.80

0.60 /
0.40

s

e HANA

HANA with removed
double entries

e HANA & MySQL

e HANA with removed
double entries +
MySQL

0.20 A

0.00 T 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200

Elasticsearch

results

Fig. 3. Request time for HANA index search with and without sorting out double lectures from different years and MySQL search time for lecture information

out of both search result fits best by their personal feeling
without knowledge about the used search algorithm. The result
is shown in Figure 4. Furthermore, all 5 search results with
lecture name and semester recording information are available
in Tables 2 to 6.

Users answering question 1 were not sure if the new in-
memory approach with OCR analysis is better or the old
weighted search. Reasons for this undecided behavior of the
user group could be the lecture name of the result visible in
Table 2. All lecture names are “TCP / UDP” which seems to
be a very good result at the weighted search. But, taking into
account that these lectures are the same which is indicated by
the same name, same lecturer and the semester when they were
recorded. Viewing all this lectures would not teach students
a variety of information. Typically only minor improvements
are made in lectures over the years. Hence, the HANA search
result is more appropriate in fact of the variety of found
lectures. This overlaps with the survey result even when it
is not so clear for this question.

In the following question 2 “Mobile IP” was searched with
both search algorithms shown in Table 3. Users attending the
survey decided clearly for the HANA result. Properly, in fact
no title of the weighted search contains the words “Mobile
IP” and in the HANA search nearly every match includes the
search term.

“Linux Scheduling” was the search term in question 3. The
results are shown in Table 4. Obvioulsy there seems to be no
lecture describing Linux scheduling exclusively. Nevertheless,
the weighted search is finding Scheduling lectures with Win-
dows connection only. Whereas, the HANA search approach is

181

TABLE II. Q1: SEARCH TERM: UDP (TRANSLATED)

HANA Search

Found Lecture Names Semester
TCP / UDP Summer 2014
Internetworking with TCP / UDP | Summer 2011
Internet Applications Summer 2014
Weaknesses of Internet Protocols Winter 2013

Weighted MySQL Search

Found Lecture Names Semester
TCP / UDP Summer 2014
TCP / UDP Summer 2013
TCP / UDP Summer 2012
TCP / UDP Summer 2010

TABLE III. Q2: SEARCH TERM: MOBILE IP (TRANSLATED)

HANA Search

Found Lecture Names Semester
Mobile IP Summer 2009
Internetworking with IPV6 and Summer 2012
Mobile IPV6

Expanding the Telco Model to Summer 2010
Support IP Smart Objects
Taking Service Providers to IPv6: Summer 2010
Mobile Networks

Weighted MySQL Search

Found Lecture Names Semester
GDI - Definition - Styled Summer 2013
Layer Descriptor
The Principle of SOA Summer 2013
Internetworking with IPV6 Summer 2013

IPv6 - Still in a fledgling stage Winter 2012
or already at the top

Number
of answers

80

70

60

50

40

30

20

10

Ql Q2 Q3 Q4

Fig. 4.

TABLE IV. Q3: SEARCH TERM: LINUX SCHEDULING (TRANSLATED)

HANA Search
Found Lecture Names
Scheduling (3)
Scheduling (2)
Advanced Windows Thread Scheduling
Scheduling Opportunities on
Manycore Architectures

Semester
Winter 2012
Winter 2012
Winter 2013
Winter 2010

‘Weighted MySQL Search
Found Lecture Names
Windows Process and Threads &
Windows Thread Scheduling
Windows Thread Scheduling &
Memory Management
‘Windows Thread Scheduling
Advanced Windows Thread Scheduling

Semester
Winter 2014

Winter 2014

Winter 2013
Winter 2013

going to find general scheduling lectures which probably will
describe Linux scheduling as well. That could be a reason most
users decided for the HANA search approach at this question.

Like in the previous examples it was already visible search-
ing phrases mostly does not lead to satisfiable results with
the weighted search. This is similar for the search result of
question 4 visible in Table 5. In the weighted search the lecture
names do not mention any marketing aspect. In contrast, the
HANA search has marketing relations in the lecture names of
the search result. A similar behavior is also noticeable in the
last question 5. The search results are shown in Table 6. Likely,
these vague search results are the reason that users decide in
question 4 and 5 in the survey for the HANA search approach
as well.

182

TABLE V.

m Weighted
MySQL Search

m HANA Search

Questions

Prefered search result of users. Red new HANA OCR approach against blue old MySQL weighted search approach

(TRANSLATED)

Q4: SEARCH TERM: MARKETING INTERNET

HANA Search

Found Lecture Names

Semester

On the Effects of Reputation
in the Internet of Service

Winter 2012

Internet Security

Winter 2010

Information Management in the Internet

Summer 2010

eBusiness Marketing

Summer 2010

‘Weighted MySQL Search

Found Lecture Names

Semester

Internetworking with IPV4

Summer 2013

Weaknesses of Internet Protocols

Winter 2013

Internet Security

Summer 2014

Internet Security - Law and Ethics

Winter 2013

TABLE VI

Q5: MEMORY MANAGEMENT (TRANSLATED)

HANA Search

Found Lecture Names

Semester

Memory Management

Winter 2012

Memory Management - Concepts (1)

Winter 2012

Memory Management -
Implementation (2)

Winter 2012

Memory Management - Concepts (3)

Winter 2012

Weighted MySQL Search

Found Lecture Names

Semester

Process Management in Companies

Winter 2013

Virtualized Resource Management

Summer 2014

Stages of Operational
Process Management

Winter 2014

Sustainable Innovation Management

Winter 2013

V. RESULTS AND FUTURE WORK

This paper deals with the approach to use an in-memory
database and the extracted OCR data to extend the search
capabilities of lecture archives. Additionally, it has to be
taken into account that the search processing time should be
as short as possible. Furthermore, the search results should
offer better matching results for the user and “search engine
like”-functionality like excluding terms or search for a special
phrase. As seen in the evaluation the OCR data search of
lecture slides for big amounts of lectures can be done in
a reasonable time of approximately 300ms with removing
repeated lectures from old years. Moreover, the results out
of 78 completed surveys show the obvious confirmation that
the OCR analysis approach with support by an in-memory
database detects more clear results under tested circumstances.
This result shows that the approach has proven to be used
in lecture archives to enhance the user experience by finding
lectures efficiently.

Even when the search results are very reasonable, there
is still a lot of future work to do. After analyzing “Optical
Character Recognition” (OCR) data also “Automatic Speech
Recognition” (ASR) data which we have already can be
included for the search. This approach would make the search
even more precise. Another idea is to integrate semantic web
technologies into the search to find lectures with synonyms
automatically and add the option to search for semantically
connected words. Furthermore, lecturers should be able to
upload PDF files containing additional lecture material. This
material can be additionally analyzed by the database and
shown in the search result together with the lecture. Moreover,
the search can be optimized in different areas. The database
give suggestions based on commonly used search terms. These
commonly used search terms can be cached additionally to
remove the database workload. Finally, all data which is search
related should be stored in the in-memory database. This will
decrease execution time for collecting additional lecture data
from the MySQL database. This would remove the current
bottleneck shown in Figure 3.

183

[1]

[2]

[3]

[4]

[51
[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

REFERENCES

L. A. Rowe, D. Harley, P. Pletcher, and S. Lawrence, “Bibs: A lecture
webcasting system,” Center for Studies in Higher Education, 2001.

V. Schillings and C. Meinel, “tele-task: Teleteaching anywhere
solution kit,” in Proceedings of the 30th Annual ACM SIGUCCS
Conference on User Services, ser. SIGUCCS ’02. New York,
NY, USA: ACM, 2002, pp. 130-133. [Online]. Available:
http://doi.acm.org/10.1145/588646.588673

R. B. Miller, “Response time in man-computer conversational
transactions,” in Proceedings of the December 9-11, 1968, Fall Joint
Computer Conference, Part I, ser. AFIPS *68 (Fall, part I). New
York, NY, USA: ACM, 1968, pp. 267-277. [Online]. Available:
http://doi.acm.org/10.1145/1476589.1476628

Cisco, 15-Minute Guide to Pulse
Video Analytics, 2012. [Online]. Auvailable:
http://www.cisco.com/c/dam/en/us/products/collateral/conferencing/show-
share/at_a_glance_c45-708001.pdf

Panopto, Smart Search by Panopto, 2014.

H. Yang, M. Siebert, P. Luhne, H. Sack, and C. Meinel, “Lecture
video indexing and analysis using video ocr technology,” in Signal-
Image Technology and Internet-Based Systems (SITIS), 2011 Seventh
International Conference on, Nov 2011, pp. 54-61.

R. Vernica and C. Li, “Efficient top-k algorithms for fuzzy search
in string collections,” in Proceedings of the First International
Workshop on Keyword Search on Structured Data, ser. KEYS ’09.
New York, NY, USA: ACM, 2009, pp. 9-14. [Online]. Available:
http://doi.acm.org/10.1145/1557670.1557677

C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide. "
O’Reilly Media, Inc.", 2015.

J. Adcock, M. Cooper, L. Denoue, H. Pirsiavash, and L. A. Rowe,
“Talkminer: a lecture webcast search engine,” in Proceedings of the
international conference on Multimedia. ACM, 2010, pp. 241-250.

X. Wu, A. G. Hauptmann, and C.-W. Ngo, “Practical elimination
of near-duplicates from web video search,” in Proceedings of the
15th International Conference on Multimedia, ser. MULTIMEDIA °07.
New York, NY, USA: ACM, 2007, pp. 218-227. [Online]. Available:
http://doi.acm.org/10.1145/1291233.1291280

F. Farber, S. K. Cha, J. Primsch, C. Bornhovd, S. Sigg, and
W. Lehner, “Sap hana database: Data management for modern business
applications,” SIGMOD Rec., vol. 40, no. 4, pp. 45-51, Jan. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2094114.2094126

R. A. Wagner and M. J. Fischer, “The string-to-string correction
problem,” J. ACM, vol. 21, no. 1, pp. 168-173, Jan. 1974. [Online].
Available: http://doi.acm.org/10.1145/321796.321811

V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” in Soviet physics doklady, vol. 10, 1966, p. 707.

S. Robertson, “Understanding inverse document frequency: on
theoretical —arguments for idf,” Journal of Documentation,
vol. 60, no. 5, pp. 503-520, 2004. [Online]. Available:

http://dx.doi.org/10.1108/00220410410560582

