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Abstract. Inclusion dependencies (INDs) within and across databases
are an important relationship for many applications in data integration,
schema (re-)design, integrity checking, or query optimization. Existing
techniques for detecting all INDs need to generate IND candidates and
test their validity in the given data instance. However, the major dis-
advantage of this approach is the exponentially growing number of data
accesses in terms of the number of SQL queries as well as I/O operations.
We introduce Mind2, a new approach for detecting n-ary INDs (n > 1)
without any candidate generation. Mind2 implements a new character-
ization of the maximum INDs we developed in this paper. This charac-
terization is based on set operations defined on certain metadata that
Mind2 generates by accessing the database only 2 × the number of valid
unary INDs. Thus, Mind2 eliminates the exponential number of data
accesses needed by existing approaches. Furthermore, the experiments
show that Mind2 is significantly more scalable than hypergraph-based
approaches.

Keywords: Mind2 · Inclusion dependency · Data integration · Data
profiling

1 Introduction

Inclusion dependencies (INDs) present an important part of metadata about
relationships between attributes in relational datasets [2]. An IND states that all
tuples of some attribute-combination in one relation are contained in the tuples
of some other attribute-combination in the same or a different relation. This
makes INDs important for many tasks, such as data integration [17], integrity
checking [3], query optimization [4], or schema (re-)design [10].

However, in many real-life databases knowledge about INDs is often
unknown, or is lost, or does not correspond any more to the dataset structure.
Furthermore, a lot of production databases are constantly changing over time
so that metadata quickly become out-of-date. Thus, there is a high demand for
effective and scalable approaches for mining valid INDs from a given dataset.

The problem of n-ary IND discovery (n > 1) is NP-hard [5]. Existing algo-
rithms in related work for exhaustively discovering all INDs in a dataset can
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be divided into two approaches: levelwise-based approaches such as Mind [13]
and hypergraph-based approaches as Find2 [6,7] and Zigzag [14]. But what all
these algorithms have in common is that they apply the projection invariance
of INDs [2,11]: a n-ary valid IND implies sets of k-ary valid INDs (1 ≤ k ≤ n).
Thus, the number of all valid INDs implied by a n-ary valid IND is 2n.

For discovering a single valid IND σ of size n, the levelwise approach [12] has
to discover 2n −1 implied INDs before even considering σ. This means for Mind
that it has to execute 2n SQL queries for validation. Experiments conducted
by [6,14] show that levelwise algorithms do not scale beyond a maximum IND
size of 8.

Attempting to reduce the exponential number of database accesses needed
by the Apriori-based approach, Find2 and Zigzag transform the IND discovery
problem into a discovery problem in a hypergraph whose nodes are all valid unary
INDs, respectively. Find2 maps the IND discovery problem to the hyperclique
discovery problem while Zigzag maps it to the minimal traversal discovery
problem. Both problems are polynomial in the number of edges, and therefore
exponential in the number of nodes in the hypergraph because the number of
edges in a hypergraph of n nodes is bounded by 2n. In principle, both algorithms
first discover unary and binary INDs by enumeration and validation. Then opti-
mistically assume that all high-arity INDs constructed from validated unary and
binary INDs (or in general, from validated INDs in the previous iteration) are
likely to be valid. That assumption makes both algorithms extremely sensitive
to an overestimation of valid unary and binary INDs. A high number of such
small INDs can cause many invalid larger IND candidates to be generated and
validated against the database. Furthermore, hypergraph-based algorithms have
high complexity, and are scalable only for sparse hypergraphs [6,8].

Research Question. The research question we address in this paper is how we
can find all n-ary valid INDs (n > 1) between two relations without generating
candidates and testing them against the database.

Contributions. We answer the research question by developing Mind2 (short
for Maximum INclusion Dependency Discovery), a novel approach for mining
all maximum INDs without any candidate generation, where a maximum IND
is a valid IND that is not implied by any other valid IND.

Having the set of all valid unary INDs, denoted by Iu, discovered, Mind2

computes the unary IND coordinates Cu for every valid unary IND u ∈ Iu. Unary
IND coordinates is a new concept we introduce in this paper (see Definition 4).
To compute all unary IND coordinates Mind2 executes only 2×|Iu| simple SQL
select queries with an order by clause. After computing all unary IND coordinates
Mind2 does not access the database any more because Mind2 computes the set
of all maximum INDs, denoted by IM , by only applying set operations on the
unary IND coordinates (see Sect. 3). We compare the performance of Mind2 with
that of Find2 using real and synthetic datasets. They experiments show that
Mind2 is much more faster than Find2. Furthermore, they show that Mind2’s



120 N. Shaabani and C. Meinel

scalability, on contrast to Find2’s scalability, is not influenced by a high number
of small valid INDs.

2 Preliminaries

Let A be a finite set of attributes. For A1, . . . , An ∈ A and for a symbol R,
R[A1, . . . , An] is called a relational schema over A1, . . . , An and R is the relation
name. An instance of R, identified by r, is a finite set of tuples over R. A tuple
over R is an element from dom(A1)×· · ·×dom(An), where dom(Ai) defines the
set of the possible values of attribute Ai (1 ≤ i ≤ n). The number of attributes in
R is |R| and the number of tuples in r is |r|. We refer to a tuple in r as ri, where
i (1 ≤ i ≤ |r|) is the tuple-ID in r. IDR indicates the set of all tuple-IDs in r. For
an attribute sequence X = [Ai1 , . . . , Aim ], we define πX(R) as the projection of
R on X. Accordingly, ri[X] = πX(ri) indicates the projection of the tuple ri on
X. Furthermore, we identify the selection of a tuple ri from r with σIDR=i(R).
That is, {ri} is the result of σIDR=i(R). Accordingly, σIDR<i(R) identifies the
set of all tuples in r with an ID less than i. Thus, σIDR<i(R) = {rk ∈ r | k < i}.

Definition 1. (IND). Let R[A1, . . . , A|R|] and S[B1, . . . , B|S|] be two relational
schemata. For n ≥ 1, let X be a sequence of n attributes from R and Y a
sequence of n attributes from S. An inclusion dependency (IND) over R and
S is an assertion of the form R[X] ⊆ S[Y ] where n is the size of the IND. For
n = 1 the IND is called a unary IND (uIND).

Let r and s be instances of R and S, respectively. An IND R[X] ⊆ S[Y ] is
valid according to r and s if and only if ∀ri ∈ r,∃sj ∈ s such that ri[X] = sj [Y ].

In particular, INDs are a prerequisite for foreign keys, which are a necessity
for suggesting join paths, data linkage, and data normalization.

3 Principles of Mind2

We consider two relational schemata R[A1, . . . , A|R|] and S[B1, . . . , B|S|] with
corresponding instances r and s. To formulate the basic ideas of detecting all
maximum INDs between R and S, we identify the set of all unary INDs with Σu

and the set of all INDs with Σ. Furthermore, we introduce the following sets.
The set of all valid unary INDs between R and S according to r and s

Iu = {u ∈ Σu | u is valid according to r and s}

The set of all valid INDs between R and S according to r and s

I = {I ∈ Σ | I is valid according to r and s}

We represent every IND σ = R[X] ⊆ S[Y ] with X = [Ai1 , . . . , Ain ] and
Y = [Bi1 , . . . , Bin ] as a set of all unary INDs implied by it. In other words, we
present σ as the set {Ai1 ⊆ Bi1 , . . . , Ain ⊆ Bin}. Furthermore, we identify the
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set of all attributes occurring on the left hand side of σ with LHS(σ) and the set
of all attributes occurring on the right hand side of σ with RHS(σ). Thus, we
have LHS(σ) = {Ai1 , . . . , Ain} and RHS(σ) = {Bi1 , . . . , Bin}. Representing an
IND as a set allows us to characterize the computation of the set of all maximum
INDs IM as set operations.

Based on the set presentation, we introduce the concept of a maximum IND.

Definition 2 (Maximum IND). Let I ∈ I be a valid IND between R and S. I
is a maximum IND if and only if there is no I ′ ∈ I such that I ⊂ I ′ holds. We
denote the set of all maximum INDs between R and S with IM .

Having IM discovered, we can derive the set of all valid INDs I as

I = {I | ∃M ∈ IM : I ⊆ M}
The set IM can be considered as a concise representation of the set I. Thus, our
goal in this work is to directly compute IM without any intermediate IND sets.

Table 1. Running Example

R

IDR A1 A2 A3 A4 A5

1 a b c d e
2 f g i j k

S

IDS B1 B2 B3 B4 B5

1 a b c d ⊥
2 ⊥ ⊥ c d ⊥
3 ⊥ ⊥ c d e
4 f g i ⊥ ⊥
5 f g ⊥ j k

Example 1. According to the two relations presented in Table 1, we have

Iu = {ui = Ai ⊆ Bi | 1 ≤ i ≤ 5}
I = {{u1, u2}, {u1, u3}, {u2, u3}, {u1, u2, u3}, {u1, u4}, {u2, u4}, {u1, u2,
u4}, {u4, u5}} ∪ Iu

IM = {{u1, u2, u3}, {u1, u2, u4}, {u4, u5}}
E.g. σ = {u1, u5} 
∈ I (i.e. not valid) because r1[LHS(σ)] = r1[{A1, A5}] =
{(a, e)} 
⊆ πRHS(σ)(S).

The first principle of computing IM is formulated as follows.

Principle 1. For every tuple pair ri ∈ r and si ∈ s, we compute M ij , the
maximum IND between σIDR=i(R) and σIDS=j(S) according to ri and sj (1 ≤
i ≤ |r| and 1 ≤ j ≤ |s|). To characterize the set M ij we introduce two new
concepts: attribute value-positions and unary valid IND coordinates.

Definition 3 (Attribute Value-Positions). The value positions of an attribute
A ∈ U , U ∈ {R,S}, is the set PA = π{IDU ,A}(U)
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Definition 4 (Unary IND Coordinates). The coordinates of a valid unary IND
u ∈ Iu is the set Cu = {(i, j) | ∃(i, v) ∈ PLHS(u) and ∃(j, v′) ∈ PRHS(u) : v = v′}

The coordinates of a valid unary IND u ∈ Iu is the set of all tuple-ID pairs
(i, j) where the value of attribute LHS(u) in the tuple ri ∈ r is identical with
the value of attribute RHS(u) in the tuple si ∈ s. In other words, (i, j) ∈ Cu if
and only if ri[LHS(u)] = sj [RHS(u)].

Having the coordinates of all unary INDs generated, we can compute the
maximum IND M ij between any tuple pair (ri, sj) without any database access
based on the following lemma.

Lemma 1. M ij consists of all unary INDs u ∈ Iu with (i, j) ∈ Cu. In other
words, M ij = {u ∈ Iu | (i, j) ∈ Cu}.
Proof. Let M ij = {u1, . . . , un} be the set of all valid uINDs with (i, j) ∈ Cuk

where 1 ≤ k ≤ n. Based on Definition 4, there is (i, vk) ∈ PLHS(uk) and (j, v′
k) ∈

PRHS(uk) with vk = v′
k for every k ∈ {1, . . . , n}. This means that (v1, . . . , vn) =

(v′
1, . . . , v

′
n). In other words, ri[LHS(M ij)] = sj [RHS(M ij)]. Based on Defin-

ition 1, M ij is a valid IND between σIDR=i(R) and σIDS=j(S) according to ri

and sj .
We now have to show that M ij is maximum. We assume that M ij is not

maximum. This means based on Definition 2 that there is a valid IND M ij
1 with

M ij ⊂ M ij
1 . Thus, M ij

1 contains some u′ ∈ Iu with (i, j) 
∈ Cu′ . This means
that the value of attribute LHS(u′) in ri is different from the value of attribute
RHS(u′) in sj . Thus, ri[LHS(M ij

1 )] 
= sj [RHS(M ij
1 )] which means that M ij

1 is
not valid. Thus, our assumption is wrong. ��

Table 2. The coordinates of all valid uINDs between R and S in Table 1

i PAi PBi CAi⊆Bi

1 {(1, a), (2, f)} {(1, a), (2,⊥), (3,⊥), (4, f), (5, f)} {(1, 1), (2, 4), (2, 5)}
2 {(1, b), (2, g)} {(1, b), (2,⊥), (3,⊥), (4, g), (5, g)} {(1, 1), (2, 4), (2, 5)}
3 {(1, c), (2, i)} {(1, c), (2, c), (3, c), (4, i), (5,⊥)} {(1, 1), (1, 2), (1, 3), (2, 4)}
4 {(1, d), (2, j)} {(1, d), (2, d), (3, d), (4,⊥), (5, j)} {(1, 1), (1, 2), (1, 3), (2, 5)}
5 {(1, e), (2, k)} {(1,⊥), (2,⊥), (3, e), (4,⊥), (5, k)} {(1, 3), (2, 5)}

Example 2. Based on our running example, the second column in Table 2 lists
the value positions PAi

of R’s attributes while the value positions PBi
of S’s

attributes are listed in the third column. The last column in this table shows
the coordinates of all valid unary INDs between R and S (see Example 1). E.g.
for A5 ⊆ B5, we have (1, e) ∈ PA5 and (3, e) ∈ PB5 . Therefore, CA5⊆B5 contains
the pair (1, 3). Also, (2, 5) ∈ CA5⊆B5 because (2, k) ∈ PA5 and (5, k) ∈ PB5 .
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The maximum INDs M ij between ri and sj (1 ≤ i ≤ 2 and 1 ≤ j ≤ 5) are

M1,1 = {u1, u2, u3, u4}, M1,2 = {u3, u4}, M1,3 = {u3, u4, u5}, M1,4 = M1,5 = ∅
M2,1 = M2,2 = M2,3 = ∅, M2,4 = {u1, u2, u3}, M2,5 = {u1, u2, u4, u5}

E.g. let us explain the content of the maximum IND M1,2 between r1 and
s2. We have (1, 2) ∈ Cu3 . Therefore, u3 ∈ M1,2. Also, u4 ∈ M1,2 because
(1, 2) ∈ Cu4 . But u1, u2, u5 
∈ M1,2 because (1, 2) 
∈ Cu1 , (1, 2) 
∈ Cu2 , and
(1, 2) 
∈ Cu5 .

In the next step, we compute the set of all maximum INDs between every tuple
ri ∈ r and the relation s based on the following principle, respectively.

Principle 2. For every tuple ri ∈ r, we compute Ii
M , the set of all maximum

INDs between σIDR=i(R) and S according to ri and s. To characterize the set
Ii

M , we introduce the following operator.

Definition 5 (φ-operator). φ : 2Σ → 2Σ , φ(S) = {σ | �σ′ ∈ S : σ ⊂ σ′}
Operator φ takes a set of INDs and returns each IND that is not included in any
other IND in this set. Thus, we conclude: φ(S) ⊆ S for any S ∈ 2Σ .

Lemma 2. Ii
M = φ(Ii), where Ii is the set of all non-empty M ij (1 ≤ j ≤ |s|).

Proof. Every M ij ∈ Ii is a valid (but not necessary a maximum) IND between
σIDR=i(R) and S. But what we want to have is all maximum INDs from Ii.
Based on Definition 5, φ-operator solves this task. Thus, Ii

M = φ(Ii) is the set
of all maximum INDs between σIDR=i(R) and S. ��
Example 3. Based on Example 2, we have

I1 = {M1,1,M1,2,M1,3}, I1
M = φ(I1) = {M1,1,M1,3}

I2 = {M2,4,M2,5}, I2
M = φ(I2) = {M2,4,M2,5}

We can now compute IM , the set of all maximum INDs between R and S,
from the sets Ii

M (1 ≤ i ≤ |r|) based on Principle 3.

Principle 3. To explain the main idea behind Principle 3, let us consider the
two relations in Table 1. What are the maximum INDs between them if we
know I1

M and I2
M computed in Example 3? First, the intersection between any

two INDs M1 ∈ I1
M and M2 ∈ I2

M is a valid IND between R and S. E.g.,
M1,1 ∩ M2,4 = {u1, u2, u3} is a valid IND between R and S. Second, after
computing the intersection between each pair (M1,M2) ∈ I1

M × I2
M , taking

all maximum sets from the result gives us the set of all maximum INDs (see
Example 4). We generalize these two ideas as follows.

Definition 6 (ψ-operator). ψ : 2Σ × 2Σ → 2Σ , ψ(S1,S2) = {σ | ∃(σ1, σ2) ∈
S1 × S2 : σ = σ1 ∩ σ2 and σ 
= ∅}



124 N. Shaabani and C. Meinel

In words, for two sets S1 and S2 of INDs the ψ-operator takes every tuple (σ1, σ2)
from S1 × S2 and computes the intersection between σ1 and σ2. To characterize
the computation of the set IM , we define the ρ-operator.

Definition 7 (ρ-operator). Let IM be the set of all Ii
M (1 ≤ i ≤ |r|).

ρ(IM) =

{
S if |IM| = 1 and S ∈ IM
φ(ψ(S, ρ(IM \ {S}))) if |IM| > 1 and S ∈ IM

Now, we can compute IM as follows.

Lemma 3. IM = ρ(IM)

Proof. We prove the lemma by induction on the number of tuples i in r.
Basis Step: For i = 1, we have IM = {I1

M}. Thus, ρ({I1
M}) = I1

M = IM

based on the construction of the set I1
M .

Induction Assumption: For 1 ≤ i < |r|, let I ′
M be the set of all Ii

M and I ′
M

be the set of all maximum INDs between σIDR<|r|(R) and S. We assume

I ′
M = ρ(I ′

M) (1)

Inductive Step: Let I |r|
M be the set of all maximum INDs between σIDR=|r|(R)

and S. Thus, IM = I ′
M ∪ I |r|

M . Based on assumption (1), we have to show

IM = ρ(IM) = φ(ψ(I |r|
M , ρ(I ′

M))) = φ(ψ(I |r|
M , I ′

M ))

Every set in ψ(I |r|
M , I ′

M ) is a valid IND between R and S because the inter-
section of two valid INDs is a valid IND. We assume that there is a valid IND I
with

I 
∈ ψ(I |r|
M , I ′

M ) (2)

Because I is a valid IND, there is I1 ∈ I |r|
M with I ⊆ I1 and I2 ∈ I ′

M with
I ⊆ I2. Thus, I ⊆ I1 ∩ I2, but I1 ∩ I2 ∈ ψ(I |r|

M , I ′
M ). This means that assumption

(2) is wrong. Consequently, ψ(I |r|
M , I ′

M ) contains all valid INDs between S and
R. Based on Definition 5, φ(ψ(I |r|

M , I ′
M )) is the set of all maximum INDs in

ψ(I |r|
M , I ′

M ). Thus, IM = φ(ψ(I |r|
M , I ′

M )). ��
Example 4. Based on Example 3, we have IM = {I1

M , I2
M}. Accordingly,

ψ(IM) = {M1,1 ∩ M2,4,M1,1 ∩ M2,5,M1,3 ∩ M2,4,M1,3 ∩ M2,5}
ψ(IM) = {{u1, u2, u3}, {u1, u2, u4}, {u3}, {u4, u5}}
IM = ρ(IM) = φ(ψ(IM)) = {{u1, u2, u3}, {u1, u2, u4}, {u4, u5}}

(compare with Example 1).

In the following section, we formulate Mind2 algorithmically. We also present
its data structures. This formulation is the basis of our implementation of Mind2.
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4 Mind2

Overall Mind2. Mind2 consists of three major components. Algorithm 1 as the
first component, is responsible for computing the unary IND coordinates Cu of
each valid unary IND u ∈ Iu based on Definition 4. It also stores each generated
set Cu in a separate file in an external repository Repo on a hard drive.

Then Algorithm 2 reads the generated coordinates at once and computes the
set of all maximum INDs IM incrementally according to the ascending order of
the tuple-IDs i ∈ IDR in the left relation r. In other words, it computes the
ρ-operator (see Definition 7) iteratively. Before the iteration in which the set Ii

M

(the set of all maximum INDs between σIDR=i(R) and S) can be generated,
Algorithm 2 computes all maximum INDs between σIDR<i(R) and S and stores
them in IM . In other words, before the computation of Ii

M starts, the set IM

contains the maximum INDs between the tuples {rk ∈ r | 1 ≤ k < i} and
s. Having Ii

M generated, Algorithm 2 replaces the current content of the set
IM with the result of the composite operation φ(ψ(IM , Ii

M )). This procedure
continues until all tuple-IDs i ∈ IDR have been processed. At the end and based
on Lemma 3, the set IM contains all maximum INDs between R and S. At the
beginning, we initialize IM with {Iu} because {{Iu}} is an upper bound of IM .

The third component of Mind2 is Algorithm 3 called by Algorithm 2 to com-
pute the sets Ii

M (1 ≤ i ≤ |r|). It computes them based on Lemmas 1 and 2.
Below, we explain these components in details.

Input : Iu,Repo
Output : Cu for every u ∈ Iu

1 foreach u ∈ Iu do
2 i2jsMap ← createMap(Int, Set)
3 A ← LHS(u); B ← RHS(u)
4 CurA ← createCursor(A)

5 CurB ← createCursor(B)

6 (i, v) ← CurA.next()
7 (j, v′) ← CurB .next()

8 while CurA.hasNext() and CurB .hasNext()
do

9 if v = v′ then
10 IDA ← {}; IDB ← {}
11 (k, w) ← CurA.current()
12 while v = w do
13 IDA = IDA ∪ {k};

(k, w) ← CurA.next()

14 (k, w) ← CurB .current()
15 while v = w do
16 IDB = IDB ∪ {k};

(k, w) ← CurB .next()

17 if IDA �= ∅ and IDB �= ∅ then
18 foreach i ∈ IDA do
19 i2jsMap.put(i, IDB)

20 else if v > v′ then

21 (j, v′) ← CurB .next()
22 else
23 (i, v) ← CurA.next()

24 writer ← createWriter(u,Repo)
25 IDA ← i2jsMap.keys(); sort(IDA)

26 foreach i ∈ IDA do
27 PB ← i2jsMap.get(i); sort(IDB)

28 writer.write(u, i, IDB)

Algorithm 1. genCoordinates

A1 ⊆ B1 1, [1]
2, [4, 5]

A2 ⊆ B2 1, [1]
2, [4, 5]

A3 ⊆ B3 1, [1, 2, 3]
2, [4]

A4 ⊆ B4 1, [1, 2, 3]
2, [5]

A5 ⊆ B5 1, [3]
2, [5]

Fig. 1. The output of Algorithm 1 for
the set of all valid unary INDs between
R and S in the running example
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Generating unary IND Coordinates. To compute the unary IND coordi-
nates of a u ∈ Iu, Algorithm 1 opens two cursors at once (lines 3–5): one for
reading the sorted value positions of the attribute A = LHS(u) and the other
for reading the sorted value positions of the attribute B = RHS(u) (see Def-
inition 3 for the value positions of an attribute). The value positions of every
attribute are sorted according to its values in the corresponding relation. In
other words, for any (i1, v1), (i2, v2) ∈ PA (∈ PB): the tuple (i1, v1) will be read
by the corresponding cursor before the tuple (i2, v2) if the value v1 occurs before
the value v2 in the sort sequence. Otherwise, (i2, v2) will be read before (i1, v1).

In the main while-loop (lines 8–23), Algorithm 1 moves the two cursors in such
a way so that it can associate every tuple-ID i ∈ IDR with the set of all tuple-
IDs j ∈ IDS for which both attributes A and B have the same value. In other
words, the tuple-ID i is associated with the set {j | ∃(j, v) ∈ PB : (i, v) ∈ PA}.
It saves this association temporary in the hash map i2jsMap (lines 17–19).

After finishing the reading of value positions of PA and PB , respectively,
Algorithm 1 creates a file for the current unary IND u in the for -loop (lines 1–
28) and saves every pair (i, {j | ∃(j, v) ∈ PB : (i, v) ∈ PA}) in a line in this file.
The lines (records) are sorted in ascending order by the left tuple-IDs i ∈ IDR

and in every line the IDs j ∈ {j | ∃(j, v) ∈ PB : (i, v) ∈ PA} are also sorted
in ascending order (lines 24–28). This policy of organizing the value positions is
required by Algorithm2.

Mind2 needs only 2 × |Iu| database accesses because every cursor needs
a simple SQL select statement with an order by clause for reading the value
position of an attribute.

Example 5. Based on the attribute value positions listed in Table 2, Fig. 1 illus-
trates the output of the Algorithm refalgo:coordinatesGen. Every row in this
figure represents a file containing the coordinates of an unary IND.

Generating Maximum INDs between R and S. Algorithm 2, as implemen-
tation of Principle 3 (see Sect. 3), generates the set of all maximum INDs IM

by computing the ρ-operator (see Definition 7) incrementally. It opens all files of
the unary INDs coordinates generated by Algorithm1 and reads them at once
(lines 3–4). Every u ∈ Iu is associated with a sequential file reader for reading
its coordinates Cu. The file readers are managed by a priority queue. For any
two readers fr, fr′, reader fr has a higher priority than fr′ in the queue if and
only if the tuple-ID i in the file entry (u, i, L) is smaller than the tuple-ID i′ in
(u′, i′, L′) where (u, i, L) is the entry that fr can currently read and (u′, i′, L′) is
the entry that fr′ can currently read. Managing the readers in this way allows
Algorithm 2 to collect all unary INDs u ∈ Iu that have the same tuple-ID i
(i ∈ IDR) in their coordinates (lines 7–18).

In every pass through the main while-loop (lines 6–29) the algorithm collects
the elements (u,L) in the set L where all unary INDs u in these elements have
the same tuple-ID i ∈ IDR. Every list L in (u,L) is (based on its construction
by Algorithm 1) the list of all tuple-IDs j ∈ IDS , where the values of attribute
RHS(u) in these tuples and the value of LHS(u) in tuple i are identical.
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Input : Iu, Repo
Output : IM

1 Queue ←createPriorityQueue()
2 foreach u ∈ Iu do
3 fr ← createFileReader(u, Repo)
4 Queue.add(fr)

5 IM ← {Iu}
6 while Queue �= ∅ do

7 L ← ∅; Readers ← ∅
8 fr ← Queue.pull()
9 Readers ← Readers ∪ {fr}

(u, i, L) ← fr.current()
10 L ← L ∪ {(u, L)}
11 while Queue �= ∅ do
12 fr′ ← Queue.peek()

13 (u′, i′, L′) ← fr′.current()
14 if i �= i′ then break
15 fr ← Queue.pull()
16 Readers ← Readers ∪ {fr}
17 (u, i, L) ← fr.current()
18 L ← L ∪ {(u, L)}
19 I∗

M ← genSubMaxINDs(L, IM)
20 IM ← φ(ψ(IM , I∗

M ))

21 foreach u ∈ Iu : {u} ∈ IM do
22 IM ← IM \ {{u}}
23 if IM = ∅ then
24 IM ← Iu; break

25 activeU ← ∪M∈IM
M

26 foreach fr ∈ Readers do
27 if fr.hasNext() and
28 fr.u ∈ activeU then
29 fr.next();

Queue.add(fr)

Algorithm 2. genMaxINDs

Input : L, I∗−1
M

Output : I∗
M

1 Queue ←createPriorityQueue()
2 foreach (u, L) ∈ L do
3 lr ← createListReader(u, L)
4 Queue.add(lr)

5 UB ← ∅
6 while Queue �= ∅ do

7 Readers ← ∅
8 lr ← Queue.pull()
9 Readers ← Readers ∪ {lr}

(u, j) ← lr.current()

10 M∗j ← {u}
11 while Queue �= ∅ do
12 lr′ ← Queue.peek()

13 (u′, j′) ← lr′.current()
14 if j �= j′ then break
15 lr ← Queue.pull()
16 Readers ← Readers ∪ {lr}

(u, j) ← lr.current()

17 M∗j ← M∗j ∪ {u}

18 if ∃M ∈ I∗−1
M : M ⊆ M∗j then

19 UB ← UB ∪ {M}
20 if UB = I∗−1

M then

21 I∗
M ← I∗−1

M ; break

22 I∗
M ← I∗

M ∪ {M∗j}
23 foreach lr ∈ Readers do
24 if lr.hasNext() then
25 lr.next(); Queue.add(lr)

26 I∗
M ← φ(I∗

M )

Algorithm 3. genSub-
MaxINDs

After creating the set L in the current pass of the main while-loop for a
certain i, Algorithm 2 calls Algorithm 3 to compute the maximum INDs between
σIDR=i(R) and S (line 19). We donate this set with I∗

M where the symbol ∗ is
a placeholder for any i ∈ IDR.

After computing maximum INDs I∗
M between σIDR=i(R) and S, the set of

all maximum INDs IM will be updated by applying the composite operation
φ(ψ(IM , I∗

M )) in line 20 (see Definition 5 for φ-operator and Definition 6 for ψ-
operator). The set IM is initialized with the set {Iu} (line 5). If the updated set
IM contains only the unary INDs, the algorithm breaks the main while-loop and
returns the set of all unary INDs as the maximum INDs (line 23–24). Otherwise,
Algorithm 2 will update the queue only with readers of those unary INDs u which
are contained at least in one set of IM (lines 25–29).

Generating maximum INDs between σIDR=i(R) and S. Based on Principle
1 and Principle 2, Algorithm3 computes the set of all maximum INDs between
σIDR=i(R) and S from the set L while it exploits the set I∗−1

M to improve the
performance. The set L generated by Algorithm 2 (lines 7–18) contains the ele-
ments (u,L): all unary INDs in these elements have the same left tuple-ID i in
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their coordinates while every list L in (u,L) is the sorted list of all tuple-IDs
j ∈ IDS in the coordinates (i, j) ∈ Cu. The algorithm reads all the lists in the set
L at once and uses a priority queue to manage the list readers in the same way
in which Algorithm 2 manages the file readers of the unary INDs coordinates.

In the main while-loop we collect all unary INDs u in the set M∗j that have
the same tuple-ID j in their coordinates (lines 7–17). The symbol ∗ in M∗j

is a placeholder for the corresponding i. Thus, based on the properties of the
elements (u,L) of the set L, the set M∗j contains all unary INDs u that have
(i, j) in their coordinates Cu. This means, according to Lemma 1, M∗j is the
maximum IND between σIDR=i(R) and σIDS=j(S).

Every computed set M∗j is collected in the set I∗
M (line 22). This means,

updating I∗
M by applying the φ-operator on it gives us, according to Lemma 2,

the maximum INDs between σIDR=i(R) and S (line 26).
The objective of the input set I∗−1

M is to improve the performance of comput-
ing I∗

M . The set I∗−1
M is the set of all maximum INDs between σIDR<i(R) and

S. For every generated set M∗j Algorithm 3 checks if there is a set M in I∗−1
M

such that M is a subset of M∗j (lines 18–19). If such a set exists, it is added to
the set UB. If the set UB contains all sets from I∗−1

M , then the algorithm breaks
the execution and returns I∗−1

M as the maximum INDs between σIDR=i(R) and
S (lines 20–21). This rule does not have any affect on the correctness of Algo-
rithm2. This is because the result of the composite operation φ(ψ(IM , I∗

M )) in
Algorithm 2 is the set IM itself if every set in I∗

M is a superset of a set in IM .

5 Experiments

The main aim of our experiments is to compare the scalability of Mind2 with
that of Find2. This is our focus because Find2 is developed to reduce the number
of IND candidates required by Apriori-based approaches. Although Zigzag is
also designed to handle long INDs, we limited our experiments to Find2. That
is because, as discussed in Sects. 1 and 6, Find2 and Zigzag approach the IND
discovery problem from similar directions and have many properties in common.

The number of rows varies between 500,000 and 16,000,000 rows in these
experiments. The other important variable that has a big impact on the scala-
bility of discovering the n-ray INDs between two relations is the number of the
unary INDs. The number of unary INDs in the experiments varies between 8
and 19 unary INDs in the corresponding table pairs.

Experimental Conditions. We performed the experiments on Windows 7
Enterprise system with an Intel Core i5-3470 (Quad Core, 3.20 GHz CPU) and
8 GB RAM. We used Oracle 11g as the database server installed on the same
machine. We implemented both algorithms in 64-bit Java 7. We implemented
Find2 based on [6]. For Mind2, we set the minimum Java heap size to 4 GB
and the maximum to 6 GB. While for Find2, we set the Java stack size to 4 GB.
Find2 validates IND candidates by applying the SQL query proposed in [15].

Experiment Groups 1. The purpose of these experiments is to compare the
scalability of Mind2 with that of Find2 by using a real-word dataset called
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MusicBrainz1. MusicBrainz is an open music encyclopedia that collects
music metadata and makes them available to the public. MusicBrainz con-
tains 27 GB of data. It contains 206 tables (relations) with 1,165 non-empty
columns (attributes). We found a total of 24,881 valid unary INDs by applying
S-indd [18]. We detected pairs of tables where there is at least one valid n-ary
IND with size greater than 2 between the tables of every pair. The number of
tuples varies between 500,000 and 1,000,500 tuples. The results of these exper-
iments are presented in Table 3. The acronym “TP.” stands for table pair. The
left part of Table 3 shows some statistics about detected INDs: the number of
valid unary INDs (|Iu|), the number of detected maximum INDs (|IM |), the size
of the longest maximum INDs (nmax) accompanied by their number ((x Nr.)),
and the size of shortest maximum INDs (nmin) accompanied by their number ((x
Nr.)). The right part of Table 3 shows the needed time (in minutes) by Mind2

and Find2 for detecting the valid INDs, respectively. The acronym “o.o.M.”
refers to out of memory exception. In most of these experiments, Mind2 outper-
forms Find2 significantly. Furthermore, they show that Mind2’s scalability, on
the contrary to that of Find2, is robust and not sensitive to the high number
of small valid INDs. The reason why Find2 terminates with an out of memory
exception is the complexity of hypergraphs created by Find2. If one of these
hypergraphs is not sparse (irreducible), then the hyperclique-finding subroutine
presented in [6] attempts to simplify the corresponding hypergraph by removing
hyperedges from it. The removing of hyperedges performed by this subroutine
of Find2 is not defined deterministically. This behavior causes a lot of recur-
sive calls and consumes a huge amount of memory. Find2 needed less time than
Mind2 only for the table pair 5 and 7, respectively. This is because the created
hypergraphs for these table pairs are sparse, respectively.

Table 3. Comparing Mind2’s runtime with Find2’s runtime using MusicBrainz data-
base (o.o.M. = out of memory, m = minutes)

TP. |Iu| |IM | nmax (x Nr.) nmin (x Nr.)

1 19 75 5 (x 2) 2 (x 4)

2 17 25 3 (x 13) 2 (x 12)

3 15 28 3 (x 17) 2 (x 11)

4 15 56 3 (x 56) -

5 14 28 3 (x 20) 2 (x 8)

6 13 23 3 (x 6) 2 (x 17)

7 12 26 3 (x 19) 2 (x 7)

8 12 11 3 (x 11) -

TP. Mind2 Find2

1 184 m o.o.M. after 250 m

2 4 m o.o.M. after 40 m

3 2 m o.o.M. after 33 m

4 1.5 m o.o.M. after 322 m

5 15 m 4 m

6 15 m o.o.M. after 33 m

7 22 m 6 m

8 11 m 30 m

Experiment Groups 2. The purpose of these experiments is to compare
Mind2’s performance with the performance of the best case for Find2. The
best case for Find2 (also for Zigzag) is when Find2 needs to build only the
1 https://musicbrainz.org.

https://musicbrainz.org
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Table 4. Results of the experiments in groups 2 and 3 (# = number of, m = minutes)

DB |IM | nmax (x Nr.)

1 1 9 (x 1)

2 1 10 (x 1)

3 8 8 (x 8)

4 9 9 (x 9)

#DB-Accesses Runtime

DB Find2 Mind2 Find2 Mind2

1 37 18 57 m 11 m

2 46 20 100 m 12 m

3 509 18 263 m 9.5 m

4 1021 20 906 m 11.5 m

2-hypergraph and then finds only one clique representing a valid IND. This hap-
pens for example when the database contains only one valid IND σ of size n > 2.
In this case, Find2 needs n × (n − 1)/2 database access to enumerate the valid
binary INDs and one access to validate the clique. To demonstrate this case,
we generated two synthetic databases DB 1 and DB 2. Both databases contain
16,000,000 tuples. DB 1 contains one valid maximum IND in size 9. While DB
2 contains one valid maximum IND in size 10. The results of these experiments
are presented in Table 4 (rows 1 and 2 in each part of Table 4). Find2’s runtime
is dominated by the runtime of the required SQL queries for enumerating the
valid binary INDs. Therefore, Mind2 is up to 8x faster than Find2.

Experiment Groups 3. The purpose of these experiments is to show that
in some cases Find2 needs the same exponential number of database accesses
as needed by the Apriori approach. Let σ = {u1, . . . , un} be an invalid n-ary
IND with the property that every (n − 1)-ary IND contained in σ is a valid
IND. In this case, Find2 builds n − 2 k-hypergraphs (2 ≤ k ≤ n − 1) where
every k-hypergraph has

(
n
k

)
edges and contains only the same clique, namely

{u1, . . . , un}. Thus, Find2 needs
(
n
2

)
+ · · ·+(

n
n−1

)
+(n−1) = 2n −3 SQL queries

to discover the n valid (n−1)-ary INDs contained in σ. To illustrate this case, we
also generated two synthetic databases DB 3 and DB 4, where every database
has 10,000,000 tuples in average. DB 3 contains 8 valid INDs in size 8. While DB
4 contains 9 valid INDs in size 9. Table 4 (rows 3 and 4 in each part of this table)
presents the results of these experiments. The Find2’s runtime is dominated by
the exponential number of the database accesses needed for the validation of the
IND candidates. Therefore, Mind2 is much more (up to 82x) faster than Find2.

6 Related Work

Kantola et al. [5] give an upper bound for the complexity of the IND-detecting
problem and proof of its NP-completeness. Casanova et al. [3] formulate the
simple axiomatization for INDs and prove that the decision problem for INDs
is PSPACE-complete. Köhler and Link [9] investigated INDs and NOT NULL
constraints under simple and partial semantics from theoretical point of view.

N-ary INDs. Find2 proposed by Koeller and Rundensteiner [6,7] begins by
exhaustively validating unary and binary INDs, forming a 2-uniform hyper-
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graph using unary INDs as nodes and binary INDs as edges. Then the algorithm
proceeds in stages enumerated by a k = 2, 3, . . . . In every stage k, all hyper-
cliques are detected by HYPERCLIQUE algorithm [6] in the k-hypergraph,
where every hyperclique represents an IND candidate. Then IND candidates
are checked for validity in the database. Each invalid IND corresponding to
hyperclique in the k-hypergraph is broken into (k + 1)-ary INDs contained
in it. Then the (k + 1)-ary INDs form the edges of a (k + 1)-hypergraph.
Edges corresponding to invalid (k + 1)-ary INDs are removed from the (k + 1)-
hypergraph. The process is repeated for increasing k until no new cliques are
found. DeMarchi and Petit [14] developed Zigzag algorithm based on borders
of theories [12]. Initially and for a k specified by the user, Zigzag initializes the
positive border and the negative border by applying an adaptation of the level-
wise algorithm Mind until the level k is reached. Furthermore, Zigzag intro-
duces the optimistic positive border computed by finding minimal hypergraph
traversals in a hypergraph generated from the negative border. The algorithm
iteratively updates the three borders as long as the optimistic positive border
contains INDs that are not contained in the positive border. Every updating
process combines a pessimistic bottom-up with an optimistic top-down search.
In the bottom-up search Zigzag validates IND candidates against the database.
While in the top-down approach it estimates the distance between invalid INDs
and the positive border by counting the number of tuples that do not satisfy
these invalid INDs. Mind proposed by Marchi et al. [13] applies the level-wise
approach to generate IND candidates. Mind generates all (k + 1)-IND can-
didates from the valid k-INDs and the valid unary INDs. It is based on the
view that the validity of σ1 = R[A1, . . . , Ak] ⊆ S[B1, . . . , Bk] and the valid-
ity of σ2 = R[Ak+1] ⊆ S[Bk+1] are necessary but not sufficient conditions for
σ = R[A1, . . . , Ak, Ak+1] ⊆ S[B1, . . . , Bk, Bk+1] to be valid. That is, if σ1 or σ2

is invalid, then it is impossible for σ to be valid. In this case, σ is pruned and
no testing for its validity is necessary. In the other case, if both of σ1 and σ2

are valid, then σ has a chance to be valid and therefore becomes a candidate of
size k + 1. This candidate is then validated against the database. After all the
(k + 1)-ary IND candidates are generated and tested, the algorithm generates
and tests (k + 2)-ary IND candidates.

Unary INDs. Shaabani and Meinel developed S-indd [18], a scalable algo-
rithm for discovering unary INDs in large datasets. S-indd introduces the con-
cept of attribute clustering. Deriving unary INDs from the attribute clustering
eliminates the redundant intersection operations resulting from deriving them
from the inverted index applied in [13]. Furthermore, Shaabani and Meinel
have shown that Spider [1] is a special case of S-indd and that S-indd is
much more scalable than Spider. Spider [1] is presented by Bauckmann et
al. The algorithm first sorts the distinct values in all columns and then uses
a parallel merge-sort like algorithm to compute all unary INDs simultaneously.
Papenbrock et al. presented Binder [19]. Binder applies a divide and conquer
technique for discovering unary INDs. The main goal of Binder’s approach
was to improve Spider’s performance. Binder takes a further step to generate
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all n-ary INDs by applying string concatenations and the same Apriori strat-
egy applied by Mind [13]. This approach results in an exponential number of
I/O-operations and exponentially increases the original data size.

Foreign Key Discovery. Zhang et al. [20] applied approximation techniques for
profiling foreign keys. Memari et al. [16] proposed algorithms for profiling foreign
keys under the different semantics for NULL markers of the SQL Standard.

7 Conclusion and Future Work

We developed Mind2, a new approach for mining maximum inclusion depen-
dency between two relations. Mind2 is based on a new characterization of max-
imum INDs. We achieved this characterization by only defining set operations
on unary IND coordinates, a new concept we also introduced in this paper.
Applying these set operations on unary IND coordinates enables discovering
maximum INDs without any candidate generation, which has a big impact on a
scalable discovery of long n-ary INDs. This work is the main milestone for our
further works: as Mind2’s performance is quadratically bounded by the number
of tuples, we work in a distributed version of Mind2 in order to parallelize both
the computation of unary IND coordinates and the computation of maximum
INDs.
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Modeling. LNCS, vol. 9381, pp. 229–243. Springer, Heidelberg (2015)

17. Miller, R.J., Hernández, M.A., Haas, L.M., Yan, L., Howard Ho, C.T., Fagin,
R., Popa, L.: The clio project: Managing heterogeneity. SIGMOD Rec. 30, 78–
83 (2001)

18. Shaabani, N., Meinel, C.: Scalable inclusion dependency discovery. In: Renz, M.,
Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA 2015. LNCS, vol. 9049, pp.
425–440. Springer, Heidelberg (2015)

19. Papenbrock, T., Sebastian Kruse, J.: Divide & conquer-based inclusion dependency
discovery. VLDB 8, 774–785 (2015)

20. Zhang, M., Hadjieleftheriou, M., Ooi, B.C., Procopiuc, C.M., Srivastava, D.: On
multi-column foreign key discovery. VLDB 3, 805–814 (2010)


	Detecting Maximum Inclusion Dependencies without Candidate Generation
	1 Introduction
	2 Preliminaries
	3 Principles of Mind2
	4 Mind2
	5 Experiments
	6 Related Work
	7 Conclusion and Future Work
	References


