
MeliusNet: An Improved Network Architecture for Binary Neural Networks

Joseph Bethge1, Christian Bartz1, Haojin Yang1,2, Ying Chen2, Christoph Meinel1
1Hasso Plattner Institute, University of Potsdam, Germany {firstname.surname}@hpi.de

2AI Labs, Alibaba Group {haojin.yhj,chenying.ailab}@alibaba-inc.com

Abstract

Binary Neural Networks (BNNs) are neural networks which
use binary weights and activations instead of the typical 32-
bit floating point values. They have reduced model sizes and
allow for efficient inference on mobile or embedded devices
with limited power and computational resources. However,
the binarization of weights and activations leads to feature
maps of lower quality and lower capacity and thus a drop in
accuracy compared to their 32-bit counterparts. Previous
work has increased the number of channels or used multi-
ple binary bases to alleviate these problems. In this paper,
we instead present an architectural approach: MeliusNet.
It consists of alternating a DenseBlock, which increases
the feature capacity, and our proposed ImprovementBlock,
which increases the feature quality. Experiments on the Im-
ageNet dataset demonstrate the superior performance of
our MeliusNet over a variety of popular binary architec-
tures with regards to both computation savings and accu-
racy. Furthermore, BNN models trained with our method
can match the accuracy of the popular compact network
MobileNet-v1 in terms of model size and number of opera-
tions. Our code is published online:
https://github.com/hpi-xnor/BMXNet-v2

1. Introduction
The success of deep convolutional neural networks in a va-
riety of machine learning tasks, such as image classification
[17, 26], object detection [35, 36], text recognition [23], and
image generation [2, ?], has led to the design of deeper,
larger, and more sophisticated neural networks. However,
the large size and high number of operations of these ac-
curate models severely limit the applicability on resource-
constrained platforms, such as those associated with mo-
bile or embedded devices. There are many existing works
aiming to solve this problem by reducing memory require-
ments and accelerating inference. These approaches can be
roughly divided into a few research directions: knowledge
distillation [9, 33, 40], network pruning techniques [15, 16],
compact network designs [18, 19, 22, 37, 44], and low-bit

quantization [8, 34, 45], wherein the full-precision 32-bit
floating point weights (and in some cases also the activa-
tions) are replaced with lower-bit representations, e.g. 8
bits or 4 bits. The extreme case, Binary Neural Networks
(BNNs), was introduced by [21, 34] and uses only 1 bit for
weights and activations.

It was shown in previous work that the BNN approach
is especially promising, since a binary convolution can be
sped up by a factor higher than 50× while using only less
than 1% of the energy compared to a 32-bit convolution on
FPGAs and ASICs [32]. This speed-up can be achieved by
replacing the multiplications (and additions) in matrix mul-
tiplications with bit-wise xnor and bitcount operations
[32, 34], processing up to 64 values in one operation. How-
ever, BNNs still suffer from accuracy degradation compared
to their full-precision counterparts [13, 34]. To alleviate this
issue, there has been work to approximate full-precision ac-
curacy by using multiple weight bases [27, 48] or increasing
the channel number in feature maps [32, 38]. We briefly re-
view the related work in more detail in Section 2.

Furthermore, alternative approaches to BNNs, such as
the compact network structure MobileNet-v1 [19] have
achieved higher accuracy in the past. More recent work
on compact network structures, such as MobileNet-v2 or
-v3 [18, 37] further widened the gap in accuracy between
BNNs and compact networks. Since this gap has reduced
the practical applicability of BNNs, one of the goals in this
work is to show that it is possible to achieve the milestone
of MobileNet-v1-level accuracy.

Prior work has been using full-precision architectures,
e.g., AlexNet [26] and ResNet [17], without specific adap-
tations for BNNs. To the best of our knowledge, only two
works are exceptions: Liu et al. added additional resid-
ual shortcuts to the ResNet architecture [30] (the resulting
model was reused in more recent work [13, 31, 48]) and
Bethge et al. adapted a DenseNet architecture with dense
shortcuts for BNNs [5]. In our work, we use another ar-
chitectural approach MeliusNet with designated building
blocks to increase quality and capacity of features through-
out the whole network (see Section 3). Further, a large
share of operations in previous BNNs stems from a few lay-

ers which use 32-bit instead of 1-bit. To solve this issue,
we propose a redesign of these layers which saves opera-
tions and improves the accuracy at the same time (see Sec-
tion 3.2).

We evaluate MeliusNet on the ImageNet [10] dataset and
compare it with the state-of-the-art (see Section 4). To con-
firm the effectiveness of our methods, we also provided ex-
tensive ablation experiments. During this study, we found
that our training process with Adam [25] achieves much
better results than reported in previous work. To allow for
a fair comparison, we also trained the original (unchanged)
networks and clearly separated the accuracy gains between
the different factors in our ablation study (also within Sec-
tion 4). Finally, we conclude our work in Section 5.

Summarized our main contributions in this work are:

• A novel BNN architecture MeliusNet which counters
the lower quality and lower capacity of binary feature
maps efficiently. It achieves state-of-the-art perfor-
mance on ImageNet compared to other BNN networks.

• A more accurate and efficient initial set of grouped
convolution layers for all binary networks.

• The first BNN models that match the accuracy of
MobileNet-v1 0.5, 0.75, and 1.0.

2. Related Work

Alternatives to binarization, such as compact network struc-
tures [18, 19, 22, 37, 44], knowledge distillation [9, 33, 40],
and quantized approaches [8, 24, 34, 41, 45, 43] have been
introduced in the past. In this section, we take a more de-
tailed look at approaches that use BNNs with 1-bit weights
and 1-bit activations. These networks were originally in-
troduced by Courbariaux et al. [21] with Binarized Neu-
ral Networks and improved by Rastegari et al. who used
channel-wise scaling factors to reduce the quantization error
in their XNOR-Net [34]. The following works tried to fur-
ther improve the network accuracy, which was much lower
than the accuracy of common 32-bit networks, with differ-
ent techniques:

For instance, they modified the loss function (or added
new loss functions) instead of using a simple cross-entropy
loss to train more accurate BNNs [13, 31, 41].

WRPN [32] and Shen et al. [38] increased the number
of channels for a better performance. Their work only in-
creases the number of channels in the convolutions and the
feature maps, but does not change the architecture.

Another way to increase the accuracy of BNNs was pre-
sented by ABC-Net [27] and GroupNet [48]. Instead of us-
ing a single binary convolution, they use a set of k binary
convolutions to approximate a 32-bit convolution (this num-
ber k is sometimes called the number of binary bases). This
achieves higher accuracy but increases the required memory

and number of operations of each convolution by the fac-
tor k. These approaches optimize the network within each
building block.

The two approaches most similar to our work are
Bi-RealNet [30] and BinaryDenseNet [5]. They use only
a single binary convolution, but adapt the network archi-
tecture compared to full-precision networks to improve the
accuracy of a BNN. However, they did not test whether
their proposed architecture changes are specific for BNNs
or whether they would improve a 32-bit network as well.

3. MeliusNet
The motivation for MeliusNet comes from the two main dis-
advantages of using binary values instead of 32-bit values
for weights and inputs.

On the one hand, the number of possible weight values
is reduced from up to 232 to only 2. This leads to a certain
quantization error, which is the difference between the re-
sult of a regular 32-bit convolution and a 1-bit convolution.
This error reduces the quality of the features computed by
binary convolutions compared to 32-bit convolutions.

On the other hand, the value range of the inputs (for the
following layer) is reduced by the same factor. This leads
to a huge reduction in the available capacity of features as
well, since fine-granular differences between values, as in
32-bit floating point values, can no longer exist.

In the following section, we describe how MeliusNet in-
creases the quality and capacity of features efficiently. Af-
terwards, we describe how the number of operations in the
remaining 32-bit layers of a binary network can be reduced.
Finally, we show the implementation details of our BNN
layers.

3.1. Increasing Capacity and Improving Quality

The core building block of MeliusNet consists of a Dense
Block followed by an Improvement Block (see Figure 1).
The DenseBlock increases feature capacity, whereas the Im-
provement Block increases feature quality.

The Dense Block was inspired by the BinaryDenseNet
architecture [5], which is a binary variant of the DenseNet
architecture [20]. It consists of a binary convolution which
derives 64 channels of new features based on the input fea-
ture map, with, for example, 256 channels. These features
are concatenated to the feature map itself, resulting in 320
channels afterwards, thus increasing feature capacity.

The novel Improvement Block increases the quality of
these newly concatenated channels. It uses a binary con-
volution to compute 64 channels again based on the input
feature map of 320 channels. These 64 output channels are
added to the previously computed 64 channels through a
residual connection, without changing the first 256 chan-
nels of the feature map (see Figure 1). Thus, this addition
improves the last 64 channels, leading to the name of our

+

c = 320

c = 256

c = 320

in: 256

out: 64

3⨉3

in: 320

out: 64

3⨉3

Im
pr

ov
em

en
t B

lo
ck

D
en

se
 B

lo
ck

BatchNorm

BinaryConv

Sign

c = 256 64

Figure 1: Building block of MeliusNet (c denotes the number of
channels in the feature map). We first increase the feature capacity
by concatenating 64 newly computed channels to the feature map
(yellow area) in the Dense Block. Then, we improve the quality
of those newly added channels with a residual connection (green
area) in the Improvement Block. The result is a balanced increase
of capacity and quality.

network (melius is latin for improvement). With this ap-
proach each section of the feature map is improved exactly
once.

Note that we could also use a residual connection to im-
prove the whole feature map instead of using the proposed
Improvement Block. However, with this naive approach, the
number of times each section of the feature map is improved
would be highly skewed towards the initially computed fea-
tures. It would further incur a much higher number of oper-
ations, since the number of output channels needs to match
the number of channels in the feature map. With the pro-
posed Improvement Block, we can instead save computa-
tions and get a feature map with balanced quality improve-
ments. Our experiments showed that using a regular resid-
ual connection instead of our Improvement Block leads to
∼3% lower accuracy on ImageNet for equally sized net-
works (see the supplementary material for details).

As stated earlier, alternating between a Dense Block and
an Improvement Block forms the core part of the network.
Depending on how often the combination of both blocks
is repeated, we can create models of different size and
with a different number of operations. Our network pro-
gresses through four stages, with transition layers in be-
tween, which halve the height and width of the feature map
with a MaxPool layer. Furthermore, the number of channels
is also roughly halved in the 1× 1 downsampling convolu-

4 ⨉

initial layers

Improvement Block

Dense Block

5 ⨉
Improvement Block

Dense Block

BatchNorm
MaxPooling

2⨉2 (stride=2)

transition

64 channels

320 channels

160 channels

32-bit Conv
1⨉1

ReLu

4 ⨉
Improvement Block

Dense Block

transition

480 channels

224 channels

4 ⨉
Improvement Block

Dense Block

transition

480 channels

256 channels

512 channels

final layers

BatchNorm

AvgPooling
7⨉7

32-bit FC
(1000)

ReLu

7⨉7

14⨉14

56⨉56

28⨉28

ReLu

input 32-bit Conv
7⨉7 (stride=2)

BatchNorm

MaxPooling
2⨉2 (stride=2)

Figure 2: A depiction of our MeliusNet 22 with a configuration
of 4-5-4-4 blocks between transitions. Details of the Dense Block
and Improvement Block can be seen in Figure 1.

tion during the transition (see Table 1 on page for the exact
factors). We show an example in Figure 2, where we repeat
the blocks 4, 5, 4, and 4 times between transition layers and
achieve a model which is similar to Bi-RealNet18 [30] in
terms of model size.

3.2. Creating an Efficient Stem Architecture

We follow previous work and do not binarize the first convo-
lution, the final fully connected layer, and the 1×1 (“down-
sampling”) convolutions in the network to preserve accu-
racy [5, 30, 48]. However, since these layers contribute a
large share of operations, we propose a redesign of the first
layers. We hypothesize that improving the first set of layers
in an efficient way should generalize well to all BNN archi-
tectures. Note that we refer to the ImageNet classification
task [10] in the following examples.

We compared previous BNNs to the compact network ar-
chitecture MobileNet-v1 0.5 [19], which only needs 1.49 ·
108 operations in total and can achieve 63.7% accuracy on
ImageNet. We found, that the closest BNN result (regarding
model size and operations) is Bi-RealNet34, which achieves
lower accuracy (62.2%) with a similar model size, but it
also needs more operations (1.93 · 108). We presume, that
because of this difference, compact model architectures are

7⨉7 (s=2)

ReLu
MaxPool

input

in: 3
out: 64

(a) The 7× 7 convolution with
1.18 · 108 operations.

in: 3
out: 323⨉3 (s=2)

ReLu

MaxPool

in: 32
out: 323⨉3 (g=4)

ReLu
in: 32
out: 643⨉3 (g=8)

ReLu

input

(b) Our proposed grouped stem with
0.69 · 108 operations.

Figure 3: A depiction of the two different versions of initial layers
of a network (s is the stride, g the number of groups, we use 1
group and stride 1 otherwise). Our grouped stem in (b) can be
applied to all common BNN architectures, e.g., Bi-RealNet [30]
and BinaryDenseNet [5], as well as our proposed MeliusNet to
save operations by replacing the expensive 7 × 7 convolution in
the original layer configuration (a) without an increase in model
size.

more popular for practical applications than BNNs, espe-
cially with more recent (and improved) compact networks
appearing [18, 37]. To find a way to close this gap, we ana-
lyze the required number of operations in the following.

The first 7×7 convolution layer in a Bi-RealNet18 alone
needs 65% (1.18 · 108) of the total operations of the whole
network. The three 1 × 1 downsampling convolutions ac-
count for another 10% (0.18 · 108) of operations. Since in
total about 75% of all 1.81 · 108 operations are needed for
these 32-bit convolutions, we focused on them to reduce the
number of operations.

In previous work the 7 × 7 32-bit convolution uses 64
channels. We propose to replace the 7× 7 convolution with
three 3 × 3 convolutions, similar to the stem network used
by Szegedy et al. [39]. However, their stem network uses
four times as many operations compared to the regular 7×7
convolution. We use grouped convolutions [26] instead of
regular convolutions for a reduction in operations (resulting
in the name grouped stem) and a lower number of channels.
The first convolution has 32 output channels (with a stride
of 2), the second convolution uses 4 groups and 32 output
channels, and the third convolution has 8 groups and 64 out-
put channels (see Figure 3). This layer combination needs
the same number of parameters (and thus model size) as the
7 × 7 convolution, but only 0.69 · 108 instead of the origi-
nal 1.18 · 108 operations, which is a reduction of more than
40%.

Similarly to adapting the stem structure, the 1× 1 down-
sampling convolution can also use a certain number of
groups, e.g., 2 or 4. Since the features in the feature map are
created consecutively with Dense Blocks, we add a chan-
nel shuffle operation before the downsampling convolution
[44], but only if we use groups in our downsampling convo-
lution. This allows the downsampling convolution to com-
bine features from earlier layers and later layers together.

Even though there are certainly other ways to change the
32-bit layers to reach an even lower number of operations,
e.g., using quantization, a different set of layers, etc., our
main goal is to highlight the high influence of these 32-bit
layers on the number of operations in BNNs. The 75% share
of operations in these layers was not clear in previous cost
analyses of BNNs. We hope this insight can direct future
work into considering them for further improvement and
investigate alternatives. However, our proposed redesign
already enables previous works on BNNs to reach a simi-
lar number of operations as MobileNet-v1 and we can test
whether their accuracy can also achieve a similar level (see
Section 4.3 for the results).

3.3. Implementation Details

We follow the general principles to train binary networks
as presented in previous work [5, 30, 34]. The weights and
activations are binarized by using the sign function:

sign(x) =

{
+1 if x ≥ 0,

−1 otherwise.
(1)

The non-differentiability of the sign function is solved with
a Straight-Through Estimator (STE) [3] coupled with gradi-
ent clipping as introduced by Hubara et al. [21]. Therefore,
the forward and backward passes can be described as:

Forward: ro = sign(ri) . (2)

Backward:
∂l

∂ri
=

∂l

∂ro
1|ri|≤tclip . (3)

In this case l is the loss, ri a real number input, and
ro ∈ {−1,+1} a binary output. We use a clipping thresh-
old of tclip = 1.3 as used by [5]. Furthermore, the com-
putational cost of binary neural networks at runtime can be
highly reduced by using the xnor and popcount CPU
instructions, as presented by Rastegari et al. [34].

Previous work [30] has suggested a different backward
function to approximate the sign function more closely,
however, we found no performance gain during our exper-
iments, similar to the results of [4]. Channel-wise scaling
factors have been proposed to reduce the difference between
a regular and a binary convolution [34]. However, it was
also argued, that they are mostly needed to scale the gra-
dients [30], that a single scaling factor is sufficient [45], or
that neither of them is actually needed [4]. Recent work

Table 1: Details of our different MeliusNet configurations, including the number of floating point and binary operations (FLOPs/BOPs),
and their accuracy on the ImageNet classification task [10]. The combined number of operations (OPs) is based on the speed-up factor
of previous work [5, 30]: OPs =

(
1
64
· BOPs + FLOPs

)
. The channel reduction factors are chosen at such specific fractions to keep the

number of channels as multiples of 32.

Name
(block numbers)/

(groups in 1× 1 conv)

Channel
reduction factors

in transitions

BOPs
(·109)

FLOPs
(·108)

OPs
(·108)

Size
(MB)

OPs and Size
similar to

Top-1
(Top-5)

accuracy

MeliusNet22 (4,5,4,4) 160
320

, 224
480

, 256
480

4.62 1.35 2.08 3.9 BDenseNet28 [5] 63.6% (84.7%)
MeliusNet29 (4,6,8,6) 128

320
, 192
512

, 256
704

5.47 1.29 2.14 5.1 BDenseNet37 [5] 65.8% (86.2%)
MeliusNet42 (5,8,14,10) 160

384
, 256
672

, 416
1152

9.69 1.74 3.25 10.1 MobileNet-v1 0.75[19] 69.2% (88.3%)
MeliusNet59 (6,12,24,12) 192

448
, 320
960

, 544
1856

18.3 2.45 5.25 17.4 MobileNet-v1 1.0[19] 71.0% (89.7%)
MeliusNetA (4,5,5,6)/(4) 160

320
, 256
480

, 288
576

4.85 0.86 1.62 4.0 Bi-RealNet18 [30] 63.4% (84.2%)
MeliusNetB (4,6,8,6)/(2) 160

320
, 224
544

, 320
736

5.72 1.06 1.96 5.0 Bi-RealNet34 [30] 65.7% (85.9%)
MeliusNetC (3,5,10,6)/(4) 128

256
, 192
448

, 224
704

4.35 0.82 1.50 4.5 MobileNet-v1 0.5[19] 64.1% (85.0%)

suggests, that the effect of scaling factors might be neutral-
ized by BatchNorm layers [5]. For this reason, and since we
have not observed a performance gain by using scaling fac-
tors, we did not apply them in our convolutions. We use the
typical layer order (BatchNorm→ sign→ BinaryConv) of
previous BNNs [5, 30]. Finally, we replaced the bottleneck
structures, consisting of a 1 × 1 and a 3 × 3 convolution,
which are often used in full-precision networks, as it was
done in previous work [4, 48] and used a single 3×3 (1-bit)
convolution instead.

4. Results and Discussion
We selected the challenging task of image classification on
the ImageNet dataset [10] to test our new model architecture
and perform ablation studies with our proposed changes.
Our implementation is based on BMXNet 21 [42] and the
model implementations of Bethge et al. [5]. Note that ex-
periment logs, accuracy curves, and plots of model struc-
tures for all trainings can be found in the supplementary
material.

To compare to other state-of-the-art networks we created
different configurations of MeliusNet with different model
sizes and number of operations (see Table 1). Our main goal
was to reach fair comparisons to previous architectures by
using a similar model size and number of operations. For
example, we chose the configurations of MeliusNet22 and
MeliusNet29 to be similar to BinaryDenseNet28 and Bina-
ryDenseNet38, respectively. Note that we calculated the
number of operations in the same way as in previous work,
factoring in a 64× speed-up factor for binary convolutions
[5, 30]. For a comparison to Bi-RealNet we further reduced
the amount of operations, by using 2 or 4 groups in the
downsampling convolutions for MeliusNetA and Melius-
NetB, respectively and added a channel shuffle operation

1https://github.com/hpi-xnor/BMXNet-v2

beforehand as described in Section 3.2. Finally, we created
the networks MeliusNetC, MeliusNet42 and MeliusNet59
to be able to fairly compare to MobileNet-v1 0.5, 0.75 and
1.0, respectively. This also shows, that the basic network
structure of MeliusNet can be adapted easily to create net-
works with different sizes and number of operations by tun-
ing the number of blocks.

4.1. Grouped Stem Ablation Study and Training
Details

When training models based on previous architectures with
our proposed grouped stem structure, we discovered a large
performance gain compared to previously reported results.
To verify the source of these gains we ran an ablation study
on ResNetE18 [4] (which is similar to Bi-RealNet18 [30],
except for the addition of a single ReLu layer and a single
BatchNorm), Bi-RealNet34 [30], BinaryDenseNet28/37[5],
and our MeliusNet22/29 with and without our proposed
grouped stem structure (see Table 2).

On the one hand, the results show, that using grouped
stem instead of a regular 7 × 7 convolution increases the
model accuracy for all tested model architectures. The ac-
tual increase by using the grouped stem structure is between
0.4% and 1.1% for each model in addition to saving a con-
stant amount (0.49 · 108) of operations. We conclude, that
not only is using our grouped stem structure highly efficient,
but it also generalizes well to different BNN architectures.

On the other hand, we also recognized that our training
process performs significantly better than previous training
strategies. Therefore, we give a brief overview about our
training configuration in the following:

For data preprocessing we use channel-wise mean sub-
traction, normalize the data based on the standard devia-
tion, horizontally flip the image with a probability of 1

2 and
finally select a random resized crop, which is the same aug-
mentation scheme that was used in XNOR-Net [34]. We

Table 2: Ablation study on ImageNet [10] separating the gains be-
tween the training process and grouped stem. It shows the generic
applicability of both.

Size Network
Architecture

Training
Procedure

Group
Stem

OPs
(·108)

Top-1
acc.

∼
4.

0M
B

ResNetE18
[5]

Original 7 1.63 58.1%
Ours 7 1.63 60.0%
Ours 3 1.14 60.6%

BDenseNet28
[5]

Original 7 2.58 60.7%
Ours 7 2.58 61.7%
Ours 3 2.09 62.6%

MeliusNet22
(ours)

Ours 7 2.57 62.8%
Ours 3 2.08 63.6%

∼
5.

1M
B

Bi-RealNet34
[30]

Original 7 1.93 62.2%
Ours 7 1.93 63.3%
Ours 3 1.43 63.7%

BDenseNet37
[5]

Original 7 2.71 62.5%
Ours 7 2.71 63.3%
Ours 3 2.20 64.2%

MeliusNet29
(ours)

Ours 7 2.63 64.9%
Ours 3 2.14 65.8%

initialize the weights with the method of [12] and train our
models from scratch (without pre-training a 32-bit model)
for 120 epochs with a base learning rate of 0.002. We
use the RAdam optimizer proposed by Liu et al. [29] and
the default (“cosine”) learning rate scheduling of the Glu-
onCV toolkit [14]. This learning rate scheduling steadily
decreases the learning rate based on the following formula
(t is the current step in training, with 0 ≤ t ≤ 1): lr(t) =

lrbase ·
(1+cos(π·t)

2

)
. However, we achieved similar (only

slightly worse) results with the same learning rate schedul-
ing and the Adam [25] optimizer, if we use a warm-up phase
of 5 epochs in which the learning rate is linearly increased
to the base learning rate. Using SGD led to the worst re-
sults overall and even though we did some initial investi-
gation into the differences between optimizers (included in
supplementary material) we could not find a clear reason for
the performance difference (a similar observation was made
by Alizadeh et al. [1]).

4.2. Ablation Study on 32-bit Networks

We performed another ablation study to determine whether
our proposed MeliusNet is indeed specifically better for a
BNN or whether it would also increase the performance of
a 32-bit network. Since our proposed MeliusNet without
the Improvement Blocks is similar to a DenseNet, we com-
pared these two architectures and trained two 32-bit mod-
els based on a DenseNet and a MeliusNet. We used the
off-the-shelf Gluon-CV training script for ImageNet and
their DenseNet implementation as a basis for our experi-

62.4
68.1

88.4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 30 60 90

Epoch

Im
ag

eN
et

 A
cc

ur
ac

y

32-bit MeliusNet 32-bit DenseNet

Training Validation Validation (Top-5)

Figure 4: A comparison between the 32-bit versions of Melius-
Net and DenseNet (best viewed in color). We tuned the number of
building blocks to achieve models of similar complexity: Melius-
Net uses 4,4,4,3 (4.5×109 FLOPs, 20.87 MB) and DenseNet uses
6,6,6,5 (4.0×109 FLOPs, 19.58 MB). We used the off-the-shelf
Gluon-CV training script for ImageNet [14] with identical hyper-
parameters to train both models. The accuracy curves are almost
indistinguishable for the whole training process and our 32-bit
MeliusNet is not able to improve the result compared to a 32-bit
DenseNet, even though it uses slightly more FLOPs and memory.

ment [14]. To achieve a fair comparison, we constructed
two models of similar size and operations. We used 4-4-4-3
blocks (Dense Block and Improvement Block) between the
transition stages for MeliusNet and 6-6-6-5 blocks (Dense
Blocks only) for a DenseNet. The models need 4.5 billion
FLOPs with 20.87 MB model size and 4.0 billion FLOPs
with 19.58 MB model size, respectively. Therefore, we ex-
pect MeliusNet to definitely achieve a slightly better result,
since it uses slightly more FLOPs and has a higher model
size, unless our designed architecture is only specifically
useful for BNNs. Both models were trained with SGD with
momentum (lr = 0.1) and equal hyperparameters for 90
epochs (with a warm-up phase of 5 epochs and “cosine”
learning rate scheduling). Note that additional augmenta-
tion techniques (HSV jitter and PCA-based lightning noise)
were used (in this study only), since we did not change the
original Gluon-CV training script for the 32-bit models.

The result shows basically identical training curves be-
tween both models for the whole training (see Figure 4). At
the end of training, the training accuracy is even between
both architectures at 62.4%. Even though the validation ac-
curacy does not match for the whole training, this is prob-
ably caused by randomized augmentation and shuffling of
the dataset. The accuracy gain of 1% to 1.6% that could be
observed between a binary DenseNet and a binary Melius-
Net (see Table 2) does not occur for the 32-bit version of
networks. Therefore, we conclude, that using our Melius-
Net architecture for 32-bit models does not lead to an im-
provement, and our architecture is indeed only an improve-

Table 3: Comparison to state-of-the-art quantized and binary CNNs on ImageNet [10]. All models were trained with cross-entropy loss.
Methods include low-bit quantization (first section) and approaches with multiple binary bases (second section). The comparison is in
parallel for two size categories (with differing number of layers). The best result in each section is bold.

Method
Bitwidth
(W/A)

ImageNet (≈18 layers) ImageNet (≈34 layers)
Top-1
Acc.

Model
Size

OPs
(·108)

Top-1
Acc.

Model
Size

OPs
(·108)

BWN[34] 1/32 60.8 4MB 18.1 - - -
TTQ[46] 2/32 66.6 5.3MB 18.1 - - -

HWGQ[7] 1/2 59.6 4MB ∼2.4 64.3 5.1MB ∼3.4
LQ-Net[43] 1/2 62.6 4MB ∼2.4 66.6 5.1MB ∼3.4

SYQ[11] 1/2 55.4 4MB ∼2.4 - - -
DoReFa[45] 2/2 62.6 5.3MB ∼2.4 - - -

Ensemble[47] (1/1)×6 61.0 - - - - -
Circulant-CNN[28] (1/1)×4 61.4 - - - - -

ABC-Net[27] (1/1)×5 65.0 8.7MB 7.8 - - -
GroupNet[27] (1/1)×5 67.0 9.2MB 2.68 70.5 15.3MB 4.13

BNN[21] 1/1 42.2

∼4MB

1.57 -

∼5.1MB

-
XNOR-Net[34] 1/1 51.2 1.59 - -
Bi-RealNet[30] 1/1 56.4 1.63 62.2 1.93

XNOR-Net++[6] 1/1 57.1 1.59 - -
Bi-RealNet (our baseline) 1/1 60.6 1.14 63.7 1.43

BinaryDenseNet[5] 1/1 60.7 2.58 62.5 2.71
Strong Baseline[31] 1/1 60.9 1.82 - -

BinaryDenseNet (our baseline) 1/1 62.6 2.09 64.2 2.20
MeliusNetA,B (ours) 1/1 63.4 1.62 65.7 1.96

32-bit baseline (ResNet) 32/32 69.3 46.8MB 18.1 73.3 87.2MB 36.6

ment for BNNs.

4.3. Comparison to State-of-the-art

The results of MeliusNetA and MeliusNetB compared to
the state-of-the-art can be seen in Table 3. Previous work
has often compared two different size categories, BiRe-
alNet18 and BiRealNet34 [30], without taking into ac-
count the cost in operations and model size. For a proper
cross-domain comparison to quantized approaches and ap-
proaches with multiple binary bases we included these num-
bers. In those cases where the authors did not reveal the ex-
act numbers, we calculated them to the best of our knowl-
edge. In addition to the accuracy reported by the original
authors, we also report our baselines of Bi-RealNet [30] and
BinaryDenseNet (BDenseNet) [5] with grouped stem and
our training strategy for a fair comparison between these
works focused on architecture design.

Comparison to other binary networks (one base):

Overall, MeliusNetA and B achieve the best accuracy com-
pared to other approaches with 1-bit activations and 1-bit
weights without additional cost. However, we recognize
that by applying grouped stem to the Bi-RealNet architec-
ture it can also achieve a much lower cost than our Melius-

Net, which could be useful for certain applications despite
its lower accuracy.

We limited the comparison to other works that use cross-
entropy loss as a training objective. We note that Mar-
tinez et al. [31] showed that their approach with multi-stage
knowledge distillation training can further enhance the ac-
curacy and achieve 64.4% over their 60.9% accuracy of the
“Strong Baseline”. However, their approach is orthogonal
to ours, since we focus on the architectural improvement
and purposely use only cross-entropy loss for training. Sim-
ilarly we have not included other work in Table 3, which
uses more sophisticated training techniques, such as CI-Net
[41] and BONN [13]. These works achieved 59.9% and
59.3% accuracy on ImageNet (for a 4 MB model) with their
improved training strategy, respectively.

Comparison to quantized networks:

MeliusNet compares favorably to most quantized ap-
proaches (first section in Table 3), achieving a higher accu-
racy and lower resource cost than DoReFa [45] and HWGQ
[7]. Some quantized approaches can achieve a higher ac-
curacy than MeliusNet, but they also require a signifi-
cantly higher model size or higher number of operations.
TTQ [46] with 2-bit weights and 32-bit activations achieves

66.6% accuracy, but does not save any operations and has a
higher model size. LQ-Net [43] achieves 0.9% higher accu-
racy, but also needs about 75% more operations.

Comparison to other binary networks (multiple bases):

Comparing MeliusNetA and B to approaches with multiple
bases (second section in Table 3) reveals that both ABC-
Net [27] and GroupNet [48] achieve better results. How-
ever, they come at a significant increase in model size and
operations and represent a different approach of using mul-
tiple binary convolutions instead of a single binary convolu-
tion in each layer. Still, the exceptionally high accuracy of
GroupNet partly achieves the level of MobileNet-v1, hence
we examined it further in the next section with a comparison
to the larger MeliusNet models.

Cross-domain comparison between BNNs and compact
networks:

For another challenging comparison, we compared our re-
sults based on Bi-RealNet34, MeliusNetC, MeliusNet42,
and MeliusNet59 to the compact network architecture
MobileNet-v1 [19] in Table 4. Furthermore, we included
the GroupNet approach [48] as an alternative BNN ap-
proach that uses 5 binary bases.

First of all, the comparison between MobileNet-v1 and
MeliusNet shows small accuracy improvements between
0.4% and 0.8% across three different model sizes. For
a model size of ≤5.1 MB, a Bi-RealNet34 trained with
grouped stem also shows the potential to reach the same ac-
curacy with a lower amount of operations. This shows that
our proposed grouped stem structure can effectively reduce
the gap between MobileNet-v1 and previous BNN work.

We note that the GroupNet approach can also achieve an
accuracy similar to MobileNet-v1 1.0, although they have
not shown the same level of accuracy for smaller model
sizes, e.g., MobileNet-v1 0.5 and 0.75. In addition, Group-
Net and MeliusNet differ in their approach. GroupNet re-
placed a single binary convolution with multiple ones while
reusing a regular Bi-RealNet architecture, whereas Melius-
Net uses a novel architecture but with a single binary con-
volution per layer. This also means both approaches could
be combined in future work to achieve even more accurate
BNNs.

We conclude that MeliusNet is a valid alternative to the
decomposition strategy described in GroupNet, since it is
more flexible for creating models with different size and
number of operations. MeliusNet also shows very promis-
ing results to be comparable to MobileNet-v1 since it sur-
passes their accuracy for three different model sizes.

Table 4: Comparison of MobileNet-v1 [19], the GroupNet ap-
proach [48], which uses multiple binary bases, and our results,
based on Bi-RealNet34 [30] and our binary MeliusNet on the Im-
ageNet dataset [10]. With our method BNNs can achieve an accu-
racy similar to or even higher than MobileNet 0.5, 0.75 and 1.0.

Model
size Architecture Bitwidth

(W/A)
OPs

(·108)
Top-1
acc.

9.2MB GroupNet18 [48] (1/1)×5 2.68 67.0%
15MB GroupNet34 [48] (1/1)×5 4.13 70.5%
5.1MB Bi-RealNet34 [30] 1/1 1.93 62.2%
5.1MB MobileNet-v1 0.5 [19] 32/32 1.49 63.7%
5.1MB Bi-RealNet34∗ [30] 1/1 1.43 63.7%
4.5MB MeliusNetC 1/1 1.50 64.1%

10MB
MobileNet-v1 0.75 [19] 32/32 3.25 68.4%

MeliusNet42 1/1 3.25 69.2%

17MB
MobileNet-v1 1.0 [19] 32/32 5.69 70.6%

MeliusNet59 1/1 5.32 71.0%
∗ This result is based on our training using grouped stem.

5. Conclusion

Previous work has shown different techniques to increase
the accuracy of BNNs by increasing the channel numbers
or replacing the binary convolutions with convolutions with
multiple binary bases. The Bi-RealNet and the Binary-
DenseNet approaches were the first to change the archi-
tecture of a BNN compared to a 32-bit network. In our
work, we showed a novel architecture MeliusNet, which is
specifically designed to amend the disadvantages of using
binary convolutions. In this architecture, we repeatedly add
new features and improve them to compensate for the lower
quality and lower capacity of binary feature maps. Our ex-
periments with different model sizes on the challenging Im-
ageNet dataset show that MeliusNet is superior to previous
BNN approaches, which adapted the architecture.

Further, we presented grouped stem, an optimized set of
layers that can replace the first convolution. This has re-
duced the accuracy gap between BNNs and compact net-
works. With our method both previous architectures and
our proposed MeliusNet can reach an accuracy similar to
MobileNet-v1 0.5, 0.75, and 1.0 based on the same model
size and a similar amount of operations. This provides
a strong basis for BNNs to gain popularity and possibly
achieve future milestones, such as reaching an accuracy
similar to MobileNet-v2 or -v3. The higher energy saving
potential of BNNs (based on customized hardware) could
then make them the favorable choice for many applications.

References

[1] Milad Alizadeh, Javier Fernández-Marqués, Nicholas D
Lane, and Yarin Gal. An Empirical study of Binary Neu-

ral Networks’ Optimisation. International Conference on
Learning Representations, 2019.

[2] Martin Arjovsky and Léon Bottou. Towards Principled
Methods for Training Generative Adversarial Networks. In-
ternational Conference on Learning Representations (ICLR),
2017.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron C Courville.
Estimating or Propagating Gradients Through Stochastic
Neurons for Conditional Computation. CoRR, abs/1308.3,
2013.

[4] Joseph Bethge, Marvin Bornstein, Adrian Loy, Haojin Yang,
and Christoph Meinel. Training competitive binary neural
networks from scratch. arXiv preprint arXiv:1812.01965,
2018.

[5] Joseph Bethge, Haojin Yang, Marvin Bornstein, and
Christoph Meinel. BinaryDenseNet: Developing an Archi-
tecture for Binary Neural Networks. In The IEEE Interna-
tional Conference on Computer Vision (ICCV) Workshops,
2019.

[6] Adrian Bulat and Georgios Tzimiropoulos. XNOR-Net++:
Improved binary neural networks. In 30th British Machine
Vision Conference, 2019.

[7] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-
los. Deep learning with low precision by half-wave gaus-
sian quantization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5918–
5926, 2017.

[8] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In Advances in neural
information processing systems, pages 3123–3131, 2015.

[9] Elliot J Crowley, Gavin Gray, and Amos J Storkey. Moon-
shine: Distilling with cheap convolutions. In Advances in
Neural Information Processing Systems, pages 2888–2898,
2018.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 248–255. Ieee, 2009.

[11] Julian Faraone, Nicholas Fraser, Michaela Blott, and Philip
H W Leong. Syq: Learning symmetric quantization for effi-
cient deep neural networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018.

[12] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256, 2010.

[13] Jiaxin Gu, Junhe Zhao, Xiaolong Jiang, Baochang Zhang,
Jianzhuang Liu, Guodong Guo, and Rongrong Ji. Bayesian
Optimized 1-Bit CNNs. In The IEEE International Confer-
ence on Computer Vision (ICCV), 2019.

[14] Jian Guo, He He, Tong He, Leonard Lausen, Mu Li, Haibin
Lin, Xingjian Shi, Chenguang Wang, Junyuan Xie, Sheng
Zha, Aston Zhang, Hang Zhang, Zhi Zhang, Zhongyue
Zhang, and Shuai Zheng. GluonCV and GluonNLP: Deep
Learning in Computer Vision and Natural Language Process-
ing. arXiv preprint arXiv:1907.04433, 2019.

[15] Song Han, Huizi Mao, and William J Dally. Deep Com-
pression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding. In International
Conference on Learning Representations (ICLR), 2016.

[16] Song Han, Jeff Pool, John Tran, and William Dally. Learn-
ing both Weights and Connections for Efficient Neural Net-
works. In Advances in Neural Information Processing Sys-
tems, pages 1135–1143, 2015.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[18] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V Le, and Hartwig
Adam. Searching for MobileNetV3. In The IEEE Interna-
tional Conference on Computer Vision (ICCV), 2019.

[19] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications.
2017.

[20] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, pages 2261–
2269, 2017.

[21] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Binarized neural networks. In
Advances in neural information processing systems, pages
4107–4115, 2016.

[22] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[23] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.
Deep Features for Text Spotting. In Computer Vision –
ECCV 2014, pages 512–528, Cham, 2014. Springer Inter-
national Publishing.

[24] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,
Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and
Changkyu Choi. Learning to Quantize Deep Networks by
Optimizing Quantization Intervals With Task Loss. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[27] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards Accurate
Binary Convolutional Neural Network. In Advances in Neu-
ral Information Processing Systems, number 3, pages 344–
352, 2017.

[28] Chunlei Liu, Wenrui Ding, Xin Xia, Baochang Zhang, Jiaxin
Gu, Jianzhuang Liu, Rongrong Ji, and David Doermann.

Central circulant binary convolutional networks : enhancing
the performance of 1-bit DCNNs with central circulant back
propagation. Cvpr, pages 2691–2699, 2019.

[29] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen,
Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the Vari-
ance of the Adaptive Learning Rate and Beyond. arXiv
preprint arXiv:1908.03265, 2019.

[30] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-Real Net: Enhancing the Perfor-
mance of 1-bit CNNs with Improved Representational Capa-
bility and Advanced Training Algorithm. In The European
Conference on Computer Vision (ECCV), sep 2018.

[31] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tz-
imiropoulos. Training binary neural networks with real-to-
binary convolutions. In International Conference on Learn-
ing Representations, 2020.

[32] Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie
Marr. WRPN: Wide Reduced-Precision Networks. Inter-
national Conference on Learning Representations (ICLR),
2018.

[33] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model
compression via distillation and quantization. International
Conference on Learning Representations, 2018.

[34] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. XNOR-Net: ImageNet Classification Using
Binary Convolutional Neural Networks. In European Con-
ference on Computer Vision, pages 525–542. Springer, 2016.

[35] Joseph Redmon, Santosh Kumar Divvala, Ross B Girshick,
and Ali Farhadi. You Only Look Once: Unified, Real-Time
Object Detection. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 779–788, 2016.

[36] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. In Advances in Neural Informa-
tion Processing Systems 28, pages 91–99, 2015.

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
Residuals and Linear Bottlenecks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, 2018.

[38] Mingzhu Shen, Kai Han, Chunjing Xu, and Yunhe Wang.
Searching for Accurate Binary Neural Architectures. The
IEEE International Conference on Computer Vision (ICCV)
Workshops, 2019.

[39] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alexander A Alemi. Inception-v4, Inception-ResNet and the
Impact of Residual Connections on Learning. In AAAI, vol-
ume 4, page 12, 2017.

[40] Frederick Tung and Greg Mori. Similarity-preserving knowl-
edge distillation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1365–1374, 2019.

[41] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song
Han. HAQ: Hardware-Aware Automated Quantization With
Mixed Precision. In The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2019.

[42] Haojin Yang, Martin Fritzsche, Christian Bartz, and
Christoph Meinel. BMXNet: An Open-Source Binary Neu-

ral Network Implementation Based on MXNet. In Proceed-
ings of the 2017 ACM on Multimedia Conference, pages
1209–1212. ACM, 2017.

[43] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang
Hua. LQ-Nets: Learned quantization for highly accurate and
compact deep neural networks. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages 365–
382, 2018.

[44] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
ShuffleNet: An Extremely Efficient Convolutional Neural
Network for Mobile Devices. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[45] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. DoReFa-Net: Training Low Bitwidth Con-
volutional Neural Networks with Low Bitwidth Gradients.
arXiv preprint arXiv:1606.06160, 2016.

[46] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally.
Trained ternary quantization. International Conference on
Learning Representations (ICLR), 2017.

[47] Shilin Zhu, Xin Dong, and Hao Su. Binary Ensemble Neural
Network: More Bits per Network or More Networks per Bit?
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[48] Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu,
and Ian Reid. Structured Binary Neural Networks for Accu-
rate Image Classification and Semantic Segmentation. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019.

