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Abstract—In this research, we formulate malware detection as
a large-scale data-mining problem within Security Information
and Event Management (SIEM) systems. We hypothesize that
behavioral analysis of executable/process activities, such as file
reads/writes, process creations, network connections, or registry
modifications, enables the detection of advanced stealthy mal-
ware. To achieve this detection, we model processes behaviors
as a set of directed acyclic graph streams and identify outliers
in the set of graph streams. We enable this detection by
conversion of the behavioral graph streams into documents,
embedding using state-of-the-art Natural Language Processing
model, and eventually performing novel outlier detection on the
high dimensional vector representation of the documents. We
evaluate our approach in a real-world setting, next to the SIEM
system of a large-scale international enterprise (over 3TB of EDR
logs). The proposed method has shown the capability to detect
previously unknown threats.

Index Terms—Malware detection, behavior analytics, data
mining, SIEM, NLP, graph-based anomaly detection.

I. INTRODUCTION

Within today’s organizations, a Security Information and
Event Management (SIEM) system is the centralized reposi-
tory that is expected to hold all security-relevant data, support-
ing threat detection, hunting, and investigation. Thereby, SIEM
systems are used to detect threats that might have bypassed a
company’s perimeters of defense.

One of the most valuable data sources ingested into SIEM
systems is Endpoint Detection and Response (EDR) logs.
EDR and similar tools (e.g., Next-Gen Antivirus, Endpoint
Protection Platform, Sysmon) monitor and log API calls of the
operating system processes while running an executable. This
information can include: the executable’s hash, file name, file
path, command line, parent process, sub-process creation, file
writes/reads/deletes, libraries loaded, registry keys touched,
network connections made.

In the last few years, there has been an increasing interest in
the analysis of such data both in academia and industry. The
industry is taking a more heuristic-based approach [1]. For
instance, defining certain patterns and rules such as; Alert if
Microsoft Word spawned Command-line. In comparison, the
research community is evaluating statistical, machine learning

as well as data and graph mining-based approaches [4], [8],
[13], [25], [26].

While there is a large number of features one can use to train
classifiers for maliciousness detection (e.g. file hash and path
prevalence), or command-line analysis, we argue such local
features may fail to identify more advanced and stealthy mal-
ware. For instance, living off the land [14], code injection [6],
[17], script-based applications misuse (PowerShell, Python,
.NET) or exploited vulnerabilities. In all these scenarios, the
executable and process would appear harmless and reputable,
yet carry out sophisticated attacks. Furthermore, usually black-
listing such software across the enterprise is infeasible, thus
making them very popular to carry out malicious intents.

While detecting such stealthy malware via their local fea-
tures can be challenging, the behavioral analysis presents
better chances. Behavior-based malware detection is a well-
studied topic in which one attempts to identify differentiation
from normal behavior, fueled by the knowledge and study
of normal [11]. Classic behavior-based malware detections
solutions such as sandboxes often face scalability issues for
large-scale enterprises, i.e., not every executable can be as-
sessed prior to execution. However, as previously described,
most modern SIEM systems hold event logs that can be used
to model process behavior (e.g. sysmon-like events) [12].
This enables behavior-based malware detection at scale using
process activity logs.

The main contributions of this paper are summarized below:

• Modeling process/executable behaviors as a set of Di-
rected Acyclic Graphs, and discussing the importance of
each behavior in the context of threat detection.

• Propose a Natural Language Processing (NLP) -based
approach to graph-based outlier detection. Particularly,
proposing the conversion of graph streams to documents,
utilizing a state-of-the-art NLP model to embed docu-
ments in high dimensional vector space, and run a novel
outlier detection algorithm to isolate anomalous docu-
ments, hence detect outlier graph streams (i.e., malicious
process behavior).

• Evaluate our hypothesis and approach on a large interna-
tional enterprise landscape, demonstrating the feasibility
and effectiveness for advanced threat detection in a real-
world setting.978-1-6654-4331-9/21/$31.00 ©2021 IEEE
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Fig. 1: Proposed approach workflow.

II. BACKGROUND

A. Dynamic Behavior-Based Malware Detection

In dynamic behavior-based malware analysis, it is essential
to identify the criteria for detecting anomalous behavior. Here
we shortly expand on the intuition behind each behavior of
interest which will be later used to generate the graph streams.

1) Parent and Sub Processes: Sophisticated malware today
is no longer a standalone process executing malicious actions
on a system. It is rather a system of multiple files, processes
and resources that work together to establish an intrusion
that goes undetected by anti-malware engines [7], [19]. We
therefore aim to extract process-to-process relationships, in
particular process-spawns-process from the underlying data.

2) File Access (read, write, delete, load): This set of behav-
iors emphasizes the actions a process takes while touching file
system. Independent of the malware, almost all require some
modification to the file system. That access might be creating a
new file for a later process to execute with higher privileges,
encrypting all available files (Ransomware), or reading files
for data exfiltration [15], [20].

3) Registry Access: Registry entries can be used in various
ways, examples of which include network hooks, auto-start
entries, user credentials, and security properties, therefore
malware has ever-since been abusing them [2]. According
to many research [2], [23], malware can be successfully
detected using its access to the registry, furthermore, many
anti-malware sandboxing environments use access to registry
entries as an identifier for malicious behavior [24], [27]. We,
therefore, integrate this behavior into our approach.

4) Network Connections: Network connections are crucial
to many modern malware. In particular, in cases such as data
exfiltration or botnet Command & Control activities, they are
required by the malware’s core functionality. In the MITRE
ATT&CK Framework1, a set of use cases enabled by network
connections is defined. Anomalous DNS-lookups could also
be used as indicators of maliciousness e.g., spear phishing
scenarios [10], domain shadowing, or domain generating al-
gorithms [22].

III. PROPOSED APPROACH

A. Overview

Figure 1 shows the overview of the proposed approach,
which consists of the five stages: event logs pre-processing,

1https://attack.mitre.org/matrices/enterprise

graph stream generation, graph to document converter, doc-
ument embedding, and outlier detection. In this section, we
briefly discuss the main aspects of each stage.

B. Behavior Graph-stream Creation

Given a repository of system event logs (e.g., Sysmon,
EDR logs), first we create a knowledge graph G = (V, E),
with an object/entity type mapping function τ : V → A
and link/relationship type mapping function ϕ : E → R.
Each object v ∈ V is a system entity, globally identifiable
by certain attributes (e.g. file hash, domain name, IP and port)
and belongs to one particular object type τ(v) ∈ A. Each
relationship e ∈ E is a timestamped system event that belongs
to a particular relation ϕ(e) ∈ R, e.g., fileWrites.

Next, for every given process p identified by its execution
context id, and executable image where p ∈ V, τ(p) =
Process, we generate s(p, k), the graph stream constructed
around p with at most k hops (Ordered k-hop Breadth First
Traversal).

Lastly, we aggregate the set of graph streams ac-
cording to their focus process executable, S(p, k) =
{s(p, k)1, s(p, k)2, ..., s(p, k)n}. For instance, all execution of
powershell.exe and their corresponding OkBFT graph streams.

C. Graph Embedding

1) Graph to Document Converter: With the recent advance-
ments in the field of natural language processing, today’s state-
of-the-art NLP models are not only capable of learning the
co-occurrences of words but also semantic, context, and order
considerations [21].

Therefore, as long as we can meaningfully represent the
graph streams as documents, treating nodes and relationships
as sequences of words forming sentences, we can rely on the
model to maintain the correlation among words (nodes).

In this regard, we convert each graph stream from our set
of behavior graph streams, S(p, k) to a document. This is
achieved by treating every node in the graph stream as a noun,
and each edge as a verb. Note that, each node is globally
identifiable by certain attributes, e.g., a file is identified by
its name and hash, domain by its fully qualified domain
name, IP destination by its IP address and port, (these at-
tributes are highlighted in Figure 2). For instance, if the graph
stream shows powershell.exe making a network connection
to the host 127.0.0.1 on port 80, the following sentence is
generated ”powershell.exe POWERSHELLSHA256 makesNet-
workConnectionTo 127.0.0.1:80”. To clean the sentences, we
follow standard NLP document pre-processing steps, such as
tokenization and normalization.

2) Document Embedding: While we investigated several
embedding techniques for sentences/docs such as Doc2vec
[16], in this work we decided to utilize Universal Sentence
Encoder (USE) [3]. The reasons for this choice are as follows:
First, we were interested in exploring more advanced models
which better takes the context and semantics into considera-
tion. Second, a pre-trained model that we could rely on its
transfer learning capability with slight fitting. Lastly, USE
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Fig. 2: The schema used to generate graph streams.

offers a model that could be scaled and parallelized when it
came to documents embedding.

D. Outlier Detection

Finally, after having, sets of graph streams, converted to
documents and embedded into high dimensional vectors, our
task is to find the outlier documents, i.e., the malicious graph
streams s(p, k)x within the context of p’s executable image.

There are numerous techniques for outlier detection, such
as distribution-based, distance-based, or density-based. Each
poses some challenges in certain setups, e.g., failure to capture
anomalies in uneven distributions, relaying on pre-selection
of specific parameters, inability to scale, working with high
dimensional data, or the ability to distinguish local and global
outliers [5]. All of these are challenges we faced as well.
Therefore, we decided to take advantage of the Isolation
Forest [18]. Isolation Forest is fundamentally different from
other techniques as it does not try to model normality to
identify outliers. It rather explicitly isolates anomalies. Most
importantly, isolation forest has proven to have the capacity
to scale up/out to handle extremely large data size, high-
dimensional problems with a large number of irrelevant at-
tributes, and uneven distributions.

IV. EXPERIMENT

A. Experiment Setup and Data

Due to scalability requirements, we decided to utilize
Apache Spark, which allows us to scale not only our data
processing pipeline, but also the graph generation, document
embedding, and outlier detection. In addition, to ensure com-
pliance with the company’s policies (data processing within
a compliant environment), we decided to build our system
on Azure Databricks, configured with 8 ”Standard D32s v3”
workers. Thus, having a big data platform backed up by
Apache Spark with a total of; 1024-GiB Memory, 246 vCPU
Cores, 2048 GiB temp SSD storage).

For this research, we had access to 1 day of process activity
logs collected by the SIEM System of a large international

enterprise, spanning over 3 TB. These logs were generated
from a commercial tool similar to Sysmon. These logs resulted
in 900 million graph streams. Throughout our experiments, we
kept k equals 1, i.e., the immediate actions of a process. We
leave this to our future work to explore the effect of different
OkBFTs.

Fig 3 shows the focus file frequency distribution, illustrating
there are handful of applications that are widely observed
across the Enterprise landscape such as cmd.exe, reg.exe,
svchost.exe, WmiPrvSE.exe, and powershell.exe.

Fig. 3: File count frequency distribution, illustrating how there is only
a hand full of executables/files that are heavily observed across the
landscape.

B. Evaluation
During the evaluation, we seek to answer whether our pro-

posed approach could be effective to detect malicious events.
In this regard, throughout our data set, we were aware of two
particular cases of incidents. We knew these two incidents
were raised because of malicious powershell.exe and
explorer.exe behavior.

We isolated the graph streams related to those alerts. We
then randomly sampled 100 graph streams whose focus pro-
cess was explorer.exe and 100 for powershell.exe.
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In other words, we assumed 1% contamination (outliers) to test
whether our approach could identify these events correctly.

Fig. 4: The t-SNE plot for the embedded graph streams.

Figure 4 shows the t-SNE plot for powershell.exe and
explorer.exe. One can observe the outliers highlighted in
red within each community.

Next, after running isolation forest with contamination set
to 0.01 we could correctly identify the two outliers. Figure 6
shows the outlier scores distribution.

Lastly, we decided to investigate the next 8 outliers. While
all were intriguing, 6 could be verified as false positives
associated with certain developers’ abnormal behavior. How-
ever, 2 could be validated as true positive, resulting in two
alerts. We repeated our evaluation (above process) 10 times,
and on average, we achieved 0.94 accuracy when manually
investigating top 10 outliers. Table I shows the details of the
experiment results, and Figure 5 shows Receiver Operating
Characteristic (ROC) highlighting 0.98 Area Under a Curve
(AUC).

TABLE I: The details of the evaluation.

Metric Count

Total Number of Samples 200
True Positives 4
True Negatives 190
False Positives 6
False Negatives 0

This experiment was carried on only a sample of data to
test our hypothesis. The results showcased the ability of this
approach to aid in the detection of previously unknown mali-
cious executions, hence potential stealthy/advanced malware.
We would like to explore this approach further in our future
work.

V. RELATED WORK

A large number of works have proposed to leverage prove-
nance graphs for threat detection, below we discuss the most
relevant ones. While we can only provide a short overview, we
would like to encourage the reader to read into the mentioned
works’ for further information.

Wang et al. propose PROVDETECTOR [26], a malware
detection system using kernel-level provenance monitoring to
capture the behavior of each target process. Similar to our
approach, the authors models a program’s runtime behaviors
such as file read, write, execute, or network connections as
a Directed Acyclic Graph (DAG), next the authors utilize
Doc2vec as the embedding technique and eventually pass
through Local Outlier Factor (LOF) to detect anomalous
patterns and thus previously unseen attacks. Motivated by
this work, our effort follows a very similar idea. However,
while PROVDETECTOR extracts rare paths of variable length
from the provenance graph, we consider all immediate k-
hop neighbors of a process as we attempt to model process
behavior rather than building a provenance graph. Further-
more, we focus on scaling the pipeline using big data ar-
chitectures, ensuring the parallelization of each stage. Lastly,
while PROVDETECTOR utilizes Doc2vec, we explore a more
advanced NLP model (Universal Sentence Encoder) which
takes context, semantic, and order into closer consideration.

Hassan et al. [9] propose NoDoze, a threat alert triage
system aiming at reducing the number of false-positive alerts
within the context of threat detection systems by the rareness
of causal path in a provenance graph. The authors later propose
an improved prototype system named, RapSheet [8] by first
matching EDR system logs to MITRE ATT&CK attack pat-
tern, this work distinguishes itself from NoDoze by correlating
alerts that are causally related but appear on different ancestry
paths. While our underlying schema to model process behavior
is very similar to NoDoze and RapSheet, they were originally
designed as an alert triage system, whereas our work focuses
on threat hunting by mining the event logs, i.e., threats that
no alerts have yet been received for.

VI. CONCLUSION AND FUTURE WORK

In this work, we explored the feasibility of behavior-based
malware detection using system event or EDR logs collected
within a typical enterprise SIEM. We proposed modeling
process behavior as a set of observed graph streams. These
graph streams are converted to documents and embedded
using Universal Sentence Encoder. Once brought into high
dimensional vector space, running Isolation Forest enables the
detection of anomalous documents, hence potential malicious
events of interest.

We carried out our experiment in a real-world setting,
next to the SIEM system of a large enterprise showing the
feasibility of the approach. We were successfully capable of
finding two new incidents, thus showing the effectiveness of
this approach with an average accuracy of 0.94.

While our approach has shown the ability to identify outliers
successfully, we acknowledge high numbers of false positives,
as presented in section IV. This is because anomalous behavior
is not necessarily malicious behavior.

Within our future work, we would like to explore the
comparison between different embedding and outlier detection
algorithms. Furthermore, we aim at experimenting with a
larger dataset and performing a thorough analysis of the
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Fig. 5: Outlier scores distribution for the experiment.

Fig. 6: Receiver operating characteristic curve highlighting the per-
formance of the proposed approach when thresholding.

behavioral features and the choice of k, and their impact on
the results with the aim to reduce the false-positive rate.
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