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Abstract. Within today’s organizations, a Security Information and
Event Management (SIEM) system is the centralized repository expected
to aggregate all security-relevant data. While the primary purpose of
SIEM solutions has been regulatory compliance, more and more or-
ganizations recognize the value of these systems for threat detection
due to their holistic view of the entire enterprise. Today’s mature Se-
curity Operation Centers dedicate several teams to threat hunting, pat-
tern/correlation rule creation, and alert monitoring. However, traditional
SIEM systems lack the capability for advanced analytics as they were de-
signed for different purposes using technologies that are now more than
a decade old. In this paper, we discuss the requirements for a next-
generation SIEM system that emphasizes analytical capabilities to allow
advanced data science and engineering. Next, we propose a reference
architecture that can be used to design such systems. We describe our
experience in implementing a next-gen SIEM with advanced analytical
capabilities, both in academia and industry. Lastly, we illustrate the im-
portance of advanced analytics within today’s SIEM with a simple yet
complex use case of beaconing detection.

Keywords: reference architecture; next-gen SIEM, advanced analytic,
big data, cybersecurity

1 Introduction

Nowadays, an indispensable tool in any organization’s arsenal is a Security Infor-
mation and Event Management (SIEM) system, used as a centralized repository
of all aggregated security-related data. The primary source of these data is log
data, produced by IT systems across the enterprise’s landscape, such as security
devices, network infrastructure, host and endpoint systems, applications, and
cloud services. Other sources of data include network telemetry, information
about inventories, users, assets, and vulnerabilities.

Although originally, the primary purpose of SIEM solutions was to meet reg-
ulatory and compliance requirements (e.g., PCI DSS, HIPAA, and SOX), their
capability to assist in heterogeneous data correlation, threat hunting, and moni-
toring [16] would soon come to play, having more and more companies realizing
their ability to detect early, targeted attacks and advanced persistent threats [11].
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This would become increasingly important as the years passed since cyber at-
tacks had advanced in sophistication and complexity, rendering the perimeter
defenses used by companies at the time insufficient. Therefore, SIEM solutions
would come to fill that gap by providing visibility when the traditional defenses
(e.g., Antivirus, Firewalls, Intrusion Detection Systems, etc.) are insufficient.

The assumption here is that if a threat has managed to bypass traditional
defense perimeters, we expect to see traces of its activities somewhere in the
events and logs captured within the SIEM system. Thus, the analysis of such
data can be the last safety net to catch potential threats that might slip through.

In the last few years, there has been an increasing interest in analyzing such
data for malware detection, both in academia and industry. The industry has
taken a more heuristic-based approach [4]. For instance, defining specific patterns
and rules such as alert if Microsoft Word spawns Command-line. In comparison,
the research community has been evaluating statistical, machine learning [18,31]
as well as data [28] and graph mining-based approaches [8, 13,14].

While these approaches have proven to be effective and successful in academia,
their adaptation is yet to be done by industry. The majority of today’s SIEM
solutions are unable to perform the necessary data analysis. Their architectures
are based on proprietary technologies designed in the early 2000s. Since then, we
have experienced significant technological advancement, especially in the realm
of big data analytics and deep learning. Technologies such as Spark and Hadoop
can support heavy data computation and processing and have found applica-
tion in many industries. Many of today’s organizations utilize big data pipelines
and analytics to enable data-driven decision making, e.g., LinkedIn [26], Face-
book [27]. Therefore, the translation of such work in the cybersecurity industry
could be proven invaluable in meeting the ever-changing threat landscape.

In this paper, we outline the requirements needed to build a next-generation
SIEM system that would enable advanced analytics whilst supporting traditional
SIEM capabilities (Section 4.1). Subsequently, we describe the reference archi-
tecture allowing individuals to build such systems (Section 4.2). Next, we present
our experimental setups in two scenarios: an in-house research workbench and a
real-world enterprise setup (Section 5). Lastly, we discuss a case study highlight-
ing the need for next-gen SIEM with advance analytical capabilities (Section 6).

The main contributions of this paper are summarized below:

– Describing the main requirements for a next-gen SIEM with advanced an-
alytical capabilities, hence, Security Information/Event Management and
Analytics (SIEMA).

– Outlining the Reference Architecture (RA) for SIEMA with the description
of the main components.

– Providing our learnings when implementing and deploying a SIEMA system
in a real-world setting.

– Presenting beaconing detection as a case study to highlight the need and
value of a SIEM system with analytical capabilities.
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2 Background

2.1 Intrusion Detection System

An Intrusion Detection System (IDS) is a monitoring system that is typically
installed on a single system attempting to detect suspicious activities and gener-
ates alerts that will be consumed by a Security Operator Center (SOC) analysts
for further investigation. IDS systems are usually categorized into Host-Based
IDS (HIDS) and Network-Based IDS (NIDS) [19]. While HIDs are typically in-
stalled on endpoints (hosts) to monitoring operating system resources, NIDs are
typically deployed on intermediary network nodes to monitor network traffic.

2.2 Security Information and Event Management

A SIEM system integrates two formerly heterogeneous systems, a Security In-
formation Management (SIM) system and a Security Event Management (SEM)
system. SEM systems were originally designed as a tool to provide real-time mon-
itoring for security events and alerts oriented to identify and manage threats. In
comparison, SIM systems were designed as a log management tool for record-
keeping and reporting of security-related events supporting compliance, forensic
investigation, and analysis of security threats [1]. SIEM systems were raised as
the result of integrating SIM and SEM to simplify the IT landscape. Since then,
these systems have evolved to support a wide variety of needs.

One of the limitations of IDS systems is their limited ability to have a holistic
view of the IT landscape to support better decision making, i.e., event correla-
tion. For instance, while a failed login event is nothing to concern with, multiple
failed logins to a different host by a single user is concerning. This can only
be recognized while correlating events from various endpoints. That is why over
time, SIEM systems have evolved to also act as an IDS system supporting threat
detection as the last perimeter of defense.

Gartner research group [24] characterized the main requirements for Security
Information and Event Management systems as follows:

Information and Event Managemen: The main requirement for SIEM
systems remains as the collection and storage of events and logs from het-
erogeneous devices in the organization, allowing SOC analysts to monitor
the landscape, providing visualization, reporting, and alerting mechanisms.
These trends can be created based on real-time and/or historical data to
identify patterns that can aid in gaining insight into high-risk behavior. The
report can also be used to measure the status against compliance regulations
and standards such as PCI DSS, GDPR, HIPAA, and SOX.

Threat Hunting and Investigation: SIEM systems are expected to be
the centralized repository holding all security-relevant information and event.
These systems are used by SOC analysts to freely explore and analyze data,
hunting for threats, or investigating known security incidents. Thus the



4 P.Najafi et al.

search features and functionality is fundamental in a SIEM tool. This re-
quires the platform to run efficient ad-hoc queries against massive amounts
of data.
Rule-based Pattern Matching for Signature-based Threat Detec-
tion: Today’s SIEM systems are highly utilized for threat detection using a
rule-based correlation engine [16]. These rules (patterns and signatures) can
be as simple as: ”alert if there are more than k authentication failures” or
as sophisticated as multi-step patterns with dynamic conditions.
Automated Correlation and Enrichment: One of the other most es-
sential features of SIEM systems is the capability to correlate events from
disparate sources allowing analysts to see the bigger picture. While the SOC
analyst may correlate and join data as part of their hunting/investigation,
the ability of the system to automatically enrich certain data points with
others may enhance the SOC hunting and investigation activities. For ex-
ample, the real-time correlation of proxy logs, asset/user information, and
DHCP logs would significantly assist during incident handling and response.
Cyber Threat Intelligence (CTI) and Open-Source Intelligence
(OSINT): Due to the value of OSINT and CTI, the majority of today’s
SIEM systems have evolved to support the ingestion of Cyber Threat Intel-
ligence, such as lists of known malicious file hashes, IPs, domains, or other
Indicators of Compromise (IOCs), as well as Open-Source Intelligence such
as vulnerability data, common weaknesses, domain registrars, etc. The in-
gested CTI and OSINT enable the development of additional use cases, such
as correlation rules based on the IOCs or risk assessment via vulnerability
analysis.

3 Related Work

There are numerous commercial SIEM tools. Gartner [16] provides a good overview
of the major providers in the SIEM market. The majority of the leading solu-
tions are still based on legacy technologies and architectures. Nevertheless, there
are those new players that attempt to bring big data architectures and analytics
into Security Information and Event Management.

Gartner [16] identifies Exabeam1 and Securonix2 as the top contender for
complex security monitoring use cases with advanced threat detection capa-
bilities. The community also identifies these SIEM systems as one of the first
truly scalable next-gen SIEM systems, as they both utilize big data technolo-
gies such as Hadoop, Apache Spark, Apache Kafka, and trends such as Data
Lake, Lambda architecture, stream and batch processing, advanced analytics,
and User and Entity Behavior Analytics (UEBA).

There also several open-source attempts to bring SIEM and big data archi-
tectures and analytics closer together. Excellent examples of such projects are:
Apache Metron [6], Wazuh [32], Apache Spot [7], and Apache Eagle [5].

1 Exabeam, https://www.exabeam.com/
2 Securonix, https://www.securonix.com/
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SANS Institute provides an overview and a guide for the critical features
of next-gen SIEM [11]. Menges et al. [20] discuss the shortcoming of traditional
SIEM systems such as advanced forensic analysis and propose an extended archi-
tecture addressing those shortcomings. Wheelus et al. [33] propose and evaluate
a big data architecture for real-time network traffic processing. The authors dis-
cuss several case studies highlighting the potential values in big data analytics
in the context of cybersecurity.

In this paper, we provide a reference architecture that abstracts the major-
ity of the above works’ capabilities. Ullah et al. [29] provides a comprehensive
systematic literature review of frequently reported quality attributes and archi-
tectural tactics for big data cybersecurity analytic systems. Each of these tactics
can be abstracted by the proposed RA in this paper.

To the best of our knowledge, there are no previous efforts in addressing the
limitation of today’s SIEM systems, particularly in terms of advanced analytical
capabilities.

4 SIEMA

In this section, we first provide an overview of the next-gen SIEM system’s main
business and architectural requirements. Having covered the main requirements,
we provide our reference architecture while highlighting the main components
of the blueprint for anyone who wishes to design such systems.

4.1 Requirements

Before proceeding to the reference architecture, it is crucial to outline the added
requirements for the next-gen SIEM system. We categorized the main require-
ments into two groups: Business requirements (BR) and Architectural Require-
ments (AR).

BR1. Data Science (Advanced Analytics): One of the main limitations
of traditional SIEM systems is their reliance on signature/heuristic-based threat
detection, limiting the detection only to previously known threats. Finding truly
unknowns requires the utilization of state-of-the-art data science (statistics, ma-
chine learning, and data mining algorithms). In this regard, the platform should
acknowledge state-of-the-art data science tools and techniques [3].

Data science can also be used to eliminate static rules which pose high
false-positive rates. For example, instead of looking at 10 authentication fail-
ures within 1 minute (i.e., attempt to find brute force attacks), one could learn
the threshold per user and endpoint, thus reducing false positives.

BR2. Data Engineering (Complex Data Processing): As different use
cases may require different shapes of data, the platform should be able to han-
dle data engineering pipelines. This can include data aggregation, correlation,
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enrichment, normalization, parsing, validation, tagging, duplication, and trans-
formation. In this regard, a next-gen SIEM should allow data scientists, data
engineers, and SOC analysts to seamlessly develop, combine, manage, and main-
tain different data processing pipelines.

AR1. Distributed, Scalable, And Fault-tolerant: A next-gen SIEM is
expected to handle big data with 3Vs: large volume, high rate of generation
(velocity), and heterogeneity of the types of structured and unstructured data
(variety). Hence, to cope with the volume, velocity, and variety of data pro-
duced by today’s enterprises, the platform should be scalable and elastic. To
achieve this, the best practices in distributed systems (e.g., distributed storage
and processing) should be followed and adhered across all architectural levels of
the platform.

In a distributed setting, availability and resilience to failure become a chal-
lenging yet crucial aspect of the system. In this regard, the platform is also
expected to be fault-tolerant and available during a failure/outage, such as net-
work outages or hardware failures.

AR2. Extensible: Today’s technology landscape is evolving faster than ever.
The most relevant technologies or solutions of today may be irrelevant in a few
years. A next-gen SIEM should be able to undergo numerous modifications and
extensions to stay relevant in an ever-changing technological world, e.g., able to
adopt a new distributed processing framework.

AR3. Open: Today’s open-source community is very active and often ahead
of its commercial competitors. Therefore, the platform needs to respect open-
source solutions and technologies by allowing the adoption of open-source. This
will ensure the system’s relevance with state-of-the-art technologies.

Furthermore, one of the main criticisms of today’s legacy SIEMs is their
locked-in data model. A next-gen SIEM should have an open data model re-
specting the users and data portability.

AR4. Integration: The platform should have standard methods to interface
and integrate with other external tools or systems via APIs. This allows other
tools to better appreciate the values provided by the next-gen SIEM.

AR5. Data Lake for All Storage Requirements: Storage is a core aspect
of a next-gen SIEM. Different use cases require different storage systems, from
a relational database to a distributed file store. Particularly, to enable advanced
analytics, new data lake architectures are needed.

AR6. Modular Data Ingestion: A next-gen SIEM is expected to ingest a
variety of data. These data can be from external sources, such as vulnerability



Security Information/Event Management and Analytics (SIEMA) 7

Security

Ingestion Preprocessing Storage

UI
Access

Orchestration, Management, Monitoring

Users
Processing

Information Flow Control

Data
Sources

SIEMA

Fig. 1: Module Decomposition of the Reference Architecture

data, indicators of compromise, related OSINT. It can also be from internal
sources, such as event logs from network and security systems (e.g., Intrusion
detection systems, endpoint security, firewalls, VPN, proxy, DNS), applications,
endpoints, assets, network topologies, security configuration, and policies. Thus,
a next-gen SIEM is expected to ingest data from both external and internal
sources. The ingestion should mainly expect authenticated incoming data and
the possibility of crawling or collecting, e.g., to crawl related OSINT.

AR7. Security and Privacy: A next-gen SIEM is also expected to guaran-
tee security (security by design). This includes but is not limited to: privilege
separation, access control, encryption at rest and transit, privacy, anonymiza-
tion/pseudonymization, least privilege principle, access, and audit logging.

4.2 Reference Architecture

We design our RA based on decade-long experience and knowledge revolving
around the best practices in designing big data architectures and pipelines, e.g.,
LinkedIn [26], Facebook [27], and other reference architectures [17]. Figure 1
shows the high-level reference architecture for the proposed SIEM. Figure 2
illustrates the system workflow consisting of five main stages.

PreprocessCollect Store Process
Analyze Consume

1 2 3 4 5

Fig. 2: SIEMA proposed workflow

Data Ingestion and Collection: This layer is expected to consist of a collec-
tion of extendable ingestors and collectors, each designed to ingest a particular
data source. Data sources can be internal data, such as event logs, telemetries,
inventories, or external data, such as OSINT, and vulnerability data.
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These modules can either accept authenticated data being forwarded (push
model) or pull particular data points. Data being forwarded can either come
directly from the data sources or being forwarded by a remote ingestor node.
The pull mechanism is expected to be limited due to the lack of a dedicated agent.
In section 7, we discuss the extension of SIEMA to allow better collection and
response, hence introducing Security Orchestration, Automation and Response
(SOAR) like capabilities.

Pre-Processing: The next stage in the system is pre-processing, i.e., data val-
idation, cleansing, optimization (e.g., de-duplication), parsing, and basic trans-
formation (e.g., standardizing the timestamps), and basic enrichment/tagging
(e.g., tagging the events according to their type and source).

All pre-processing steps are expected to be simple, efficient, and scalable.
Further enrichment and correlation are expected to be carried out by the ana-
lytic/processing modules.

After pre-processing, the data shall be dumped on messaging queues or di-
rectly to file storage where the primary data processing pipelines could take the
lead for more advanced data processing (e.g., normalization), storage (e.g., ETL,
indexing, etc.) or analytics.

Storage: Similar to the data lake architectural pattern, storage is a key and
fundamental component for RA. The main objective of the data storage layer is
to provide reliable and efficient access to persisted data. Part of this is to offer
multiple representations for single data records to accommodate different use
cases, e.g., OLAP style data analytics, OLTP queries, or string searches.

Note that the storage system of such next-gen SIEM is expected to be highly
scalable and agile. This is integral, as organizational and business needs change
over time, calling for adjustments in technologies and environment setups.

One can categorize storage needs based on latency, throughput, access pat-
terns, and data type. Some examples of storage needs in the context of a next-gen
SIEM are: NoSQL transactional database for results. Index store and search en-
gine to allow string search on event logs for efficient ad-hoc threat hunting and
investigation. A Distributed file/object-store to satisfy data lake requirements
for advanced and distributed analytics and machine learning models. A queuing
mechanism to enable the reliable transmission of data across different processing
layers. For instance, a messaging queue that enables an enrichment module to
enhance the result of an anomaly detection algorithm, i.e., outliers are pushed
to a queue, where the enrichment module is subscribing to, enriching the out-
liers with related contexts. An in-memory caching mechanism to allow multiple
executors or workers within a processing module to exchange data efficiently. A
graph database to store the relationships between various internal and external
entities.

Processing: The Processing layer is responsible for efficient, scalable, dis-
tributed, and reliable processing. At a high level, it can serve two main purposes:



Security Information/Event Management and Analytics (SIEMA) 9

data engineering and data science. The data engineering sub-layer is responsible
for data processing and transformation, e.g., event correlation and enrichment,
normalization, ETL pipelines, storage optimization (compression, partitioning,
bucketing), pattern matching, etc. On the other hand, the data science-based
modules are concerned with knowledge extraction from the data, e.g., machine
learning, data mining, statistical analysis, graph analytics, etc. It is worth noting
that analytical processing can be interactive, batch, and stream.

Access: The access layer is the interaction point of the system with exter-
nal actors. These actors can be SOC analysts, data scientists, data engineers,
administrators, managers, or external APIs. Each actor is expected to require
interaction with a specific part of the platform for a particular reason. The ac-
cess layer is responsible for managing these interactions while ensuring security
and load balancing. For example, a SOC analyst requiring an interactive interac-
tion with the platform’s search capabilities to investigate threats, defining rules
for the correlation engine and dashboard to view the alert, and visualizing the
trends.

UI: The user interface layer is responsible for abstracting actors’ interactions
with storage or processing modules. For instance, a UI that enables SOC analysts
to run their query against the storage system, or the data science notebooks
designed to allow the data scientist to interactively analyze data loaded from
the storage layer in the processing layer.

Orchestration, Management, and Monitoring: This layer has three main
responsibilities: orchestration, management (administration), and monitoring.

The orchestration module is responsible for providing configuration, man-
agement, and coordination between the various platform layers and their mod-
ules. This includes job submission, collectors configurations, data engineering
pipelines, etc. In addition, this module is also expected to provide monitoring
capabilities for every module within each layer, e.g., monitoring the analytical
jobs and their status.

The administration/management module is responsible for the configuration,
provisioning, and control of the underlying infrastructure and the platform itself,
e.g., managing the underlying storage system.

Lastly, the platform auditing module supports the health monitoring of the
system and its underlying heterogeneous systems. For instance, it is expected
that the storage layer will consist of multiple systems, e.g., distributed files
system, NoSQL database, a messaging queue. In this regard, this module should
allow administrators to monitor the health and performance of these systems.

Security: Given the nature of our next-gen SIEM system, there are concerns
around the security and privacy of such big data platforms. In this regard, this
layer is responsible for the security of the platform and its underlying data. This
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includes enforcement of access rules, restricting access based on classification or
need-to-know, and securing data at rest or in transit.

5 Experimental Setup and Deployments

We have endeavored two implementations of the proposed RA, in-house aca-
demic research workbench and real-world experimental setup in an international
enterprise’s infrastructure.

5.1 In-house Research Workbench

Our first attempt to develop and deploy a SIEMA system according to the
proposed RA was done on a cluster consisting of two Dell PowerEdge (R730,
R820) and five Fujitsu Primergy RX600 with a total of 1,864 GB RAM, 24
CPUs (200 total cores), and 4 TB storage interconnected via 10 Gb optical
fiber. In addition, an external Network Attached Storage (NAS) connected to
the cluster via 3x 10Gb optical fiber. Table 1 presents the leading underlying
technologies used for this setup.

Table 1: In-house SIEMA as first research POC.

Technology Reference Usage

Kubernetes Orchestration/Management Backbone system and orchestrator
Ansible Orchestration/Management Platform operation and administeration
Zookeeper Orchestration Configuration maintence and synchronization
Apache Spark Processing Distributed processing and analytics engine
Presto Processing Distributed processing (SQL query engine)
Apache Livy Management Multi-tenancy and job management
Apache Kafka Storage Distributed messaging and queueing
Hadoop
HDFS

Storage Distributed file system and object store

Elasticsearch Storage Search engine, index store
Prometheus Storage Time series database for metrics regarding the

platform health
HBase Storage Distributed NOSQL data store on top of HDFS
Apache Nifi Processing, UI Orchestration and data preprocessing
Kibana UI UI for interaction with the search engine
Grafana UI UI for platform health monitoring
Zeppelin UI Notebook for ad-hoc data science
CMAK UI, Orchestration Cluster manager for Apache Kafka
Hue UI Hadoop interface

The platform designed was utilized during multiple successful research to
apply different data mining and machine learning approaches to the problem of
malicious Domain/IP detection using proxy and DNS logs, resulting in multiple
publications [21,22].
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5.2 Real-world Enterprise Setup

We also had the opportunity to explore a SIEMA system in a real-world setting
with a large international company with quite a mature cyber defense. This com-
pany had a cloud-based legacy SIEM continuously utilized for threat hunting,
monitoring, and rule-based threat detection. We attempted to build around it
with analytical capabilities to explore the potential values. We utilized available
cloud-based services compliant with the companies policies, such as Azure Data
Factory, Azure Data Lake Storage, and Databricks, to enable advanced data
engineering and science.

The first significant value of this platform was the ability to run basic ag-
gregation, correlation, and statistical queries over larger time frames (over 100
terabytes of data) which would not be possible with traditional SIEM systems
as they were designed for only interactive investigation and searches.

The next value was the ability to create successful advanced use cases using
the underlying data (EDR, proxy, DNS). Examples of such use cases are beacon-
ing detection, malicious processes detection, suspicious DNS and proxy requests,
windows logon anomalies, and user behavior analytics over weeks of data. The
result of these use cases led to the rise of multiple incidents missed by traditional
rule-based detections.

Lastly, the ability to train a model to rate and prioritize traditional SIEM
alerts according to past experiences. Most of today’s organizations receive 17, 000
alerts per week where more than 51% of the alerts are false positives, and only 4%
of the alerts get adequately investigated [2]. Therefore, prioritization of alerts
can help the SOC analyst to focus their efforts better. This was the last use
case, designed to read past investigated alerts, their artifacts, and the associated
responses (thus labels) to train a model that attempts to prioritize the new
alerts according to their potential to be true positives. This prioritization was
achieved by adding a confidence score to the alert passed to the traditional
SIEM dashboard. The initial impression and qualitative evaluation of this use
case seemed promising.

6 Case Study: Beaconing Detection

To better understand the need for advanced analytical capabilities within today’s
SIEM, we decided to prepare a simplified experiment performed on our real-world
setup. Particularly a heavy yet straightforward use case of beaconing detection.

One of the characteristics of sophisticated cyber threats, such as Advanced
Persistent Threats (APTs), is periodic attempts to reach out to the command
and control (C&C) infrastructure controlled by the adversary to receive further
instructions. Such heartbeat and callback behavior is known as beaconing.

Malware beaconing is typically characterized by two main configurations:
sleep time and jitter (variations from central value). The beaconing frequency
can vary from slow and stealth to fast and aggressive (from a few seconds to
hours or even days sleep time). Nevertheless, generally, it is expected that the
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adversaries maintain regular beacons for better visibility and control of the in-
fected machines [15].

While at first glance, beaconing detection seems simple, it is quite challeng-
ing:

Temporal Analysis in Big Data: In order to detect beaconing, one has
to analyze the traffic behavior of all source and destination pairs over an
extended period of time. This makes beaconing detection a big data problem.
Intentional Randomness and Jitter: One of the other challenges with
beaconing detection is the adversarial strategies to hid the beaconing behav-
ior. One of the common ways the adversaries attempt to prevent detection is
by varying the sleep time to make it appear as normal traffic. Other methods
can include omitting certain beacons or injecting additional random beacons.
False Positives (Benign Applications): While we discussed the mali-
ciousness of beaconing behavior, there are several scenarios in which bea-
coning is an integral part of the communication and does not indicate mali-
ciousness. For instance, Network Time Protocol (NTP), automated software
patching, mailing clients, updates, or keep alive traffic in long-lived sessions
may also appear as beacons.
External Factors: There can be unanticipated external factors that can
introduce errors while looking at the periodicity, such as the host (endpoint)
going offline or network interruptions.

6.1 Detection Approach

Beaconing detection has been studied widely in the literature [12,15,25,30], and
while there are many ways to develop a beaconing detection approach, here we
present one of the simplest ones using statistical methods.

(i) Data Preparation: We start by pre-processing the network connection events
keeping only the source (host unique identifier), the destination (e.g., IP
address and port), and the timestamp fields. One could also validate to
ensure the destinations are valid and timestamps are in Unix Timestamp
format.

(ii) Delta Time Calculations: Next, we group connections by source and desti-
nation and sort them by their timestamp. This will allow us to calculate
the time deltas between connections of each source and destination pair. For
instance, if host H1 connects to destination D1 at the time t1 and t2, the
time delta between these two connections is t2− t1.

(iii) Clean Time Deltas: To ensure the detection quality, we need to filter out bad
entries, e.g., border time delta (nulls) - indicating no previous connections,
or time deltas equal to zero - indicating network issues resulting in multiple
connections in a very short time.
As mentioned, one of the challenges with beaconing detection can also be
external factors such as network interruptions or the host going offline (host
shutting down). We tackle this challenge by filtering out outliers in time
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deltas for each source and destination pair using Interquartile Range [34].
This ensures that when the host has gone offline, the time delta showing the
big gap is treated as an outlier, hence eliminated from further calculations.

(iv) Periodicity via Average and Standard Deviations: While there are more so-
phisticated ways to detect periodicity [9, 10, 23], here we take the simplest
approach. We calculate the average and the standard deviation of time deltas
for each source and destination pair to estimate the periodicity of connec-
tions.

(v) Destination’s Reputation: To tackle the false positives (i.e., benign applica-
tions), we also calculate the prevalence of each destination, i.e., how many
hosts (sources) have connected to this destination during the analysis period.
This can be achieved by simple grouping and counting.

(vi) Scoring : At this point, for each source and destination, we have the average
and standard deviation of time deltas, number of connections (beacons), and
the prevalence of the destination. One can now define certain heuristics to
score the beaconing behavior to prioritize the alerts. For this case study, we
simplify our scoring to three main functions:
– Low Coefficient of Variation: The coefficient of variation is defined as the

ratio of the standard deviation to the mean.
While a low standard deviation of time deltas means perfect periodicity
(almost all time deltas are the same), it does not consider how big the
average is. That is why the relative standard deviation (coefficient of
variation) can help by looking at the ratio.
We utilize an exponential function (Equation 1) to transform the coeffi-
cient of variation into a score. The reasoning here is that all low ratios
(an indication of better periodicity and beaconing behavior) should be
scored closer to 1, and as the ratio gets bigger, it should have a decaying
effect (logarithmic) in the scores, getting closer to 0.

Scv = e−
√

σ
µ (1)

where µ and σ is the average and standard deviation of time deltas
respectively, and Scv is the score derived from the coefficient of variation.

– Low Destination Reputation: Destinations with high reputations (largely
accessed by the majority of the endpoint) typically indicate benignness.
That is why we would prioritize those beaconing alerts whose destination
is rarely observed. More specifically:

Srep = e−
p(dest)
k (2)

where p(dest) indicates the prevalence of the destination (i.e., how many
hosts have been observed connecting to this destination). k is a numer-
ical constant internally determined based on domain knowledge as the
threshold to smooth the curve (i.e., after k the scores should smoothen
as we don’t care anymore). For example, if k is set to 100 that means as
p(dest) gets closer and pass the threshold of 100 hosts, the score should
be low, and there is no significant difference between 300 to 600 to 1000,
as we only care for low numbers (e.g., 1 or 10 hosts).
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– Beaconing Consistency: Sometimes, just the destination prevalence is in-
sufficient to filter out benign applications, particularly updates. In this
regard, one could take yet another attempt to eliminate those beaconing-
like behaviors. A malicious beaconing could be characterized by its con-
sistency, whereas some benign behavior such as an update will only ap-
pear for a certain time. Thus, one could analyze the consistency of the
beaconing behavior by looking at the ratio of the number of the beacons
and their average delta time to the analysis range.

Scon =
b · µ
te − ts

(3)

where b is the number of beacons, µ is the average, te− ts is the analysis
range (e.g., 86400 seconds).

Note that while here we discussed only three simple scoring functions on top
of the information available with our case study, one could design multiple
other heuristics to reduce the false-positive rate. Lastly, we aggregate the
scores via an aggregator function such as weighted average to derive a single
score.

(vii) Alerting : Having a final score for each source and destination pair, we could
sort the alerts descending and take the first k items (where k is set by the
rate the analyst can handle). One could also do further analysis for the
distributions of the scores to dynamically set k.

6.2 Experiment Setup

We carried out our experiment for this case study within the premise of a large
international organization. Particularly, we implemented the described method-
ology for beaconing detection as a use case within the enterprise SIEM system
as well as our analytical platform (discussed in Section 5.2). Therefore, the im-
plementations were identical in terms of their logic.

While we cannot discuss the details of the traditional SIEM system used by
the enterprise due to NDA, we can confirm that the SIEM system is among the
top SIEM leaders identified by the Gartner Research Group [16]. Furthermore,
the setup is among one of the largest enterprise SIEM setups, designed to handle
the ingestion of more than 10 TB per day.

Our analytical platform for this experiment was configured on Databricks
with 5 ”Standard D32s v3” workers. Thus, having a big data platform backed
up by Apache Spark with a total of: 640-GB Memory, 160 vCPU Cores, 1280 GB
temp SSD storage.

We ran our main experiment on one day of network connections collected
from an EDR tool (172.5 million events) which spanned to approximately 102GB.

6.3 Results

Running the described beaconing detection on the traditional SIEM took 45
minutes to go over 89 million events before reaching the disk usage limit (set
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by the enterprise) and return 246 events. This is because traditional SIEMs are
not designed for large-scale analysis (i.e., distributed processing). They tend
to aggregate the events of interest into a single server where the calculations
take place. In contrast, our analytical environment supported by Databricks and
Apache Spark was able to go through all 172.5 million events and finishing the
use case within only 26 seconds.

Although there are many variables in place that make this comparison unfair
(e.g., the clusters sizes not being the same, the implementations of a simple
calculation such as mean, etc.), one can observe the enormous gap between the
capabilities.

One of the other expectations of such analytical platforms is their ability to
scale out. Figure 3 shows the runtime of beaconing detection as we add more
workers to the run the use case.

Fig. 3: Beaconing Detection use case run-time on Databricks based on the number of
workers.

Lastly, while we could not run the use case for 5 weekdays on the traditional
SIEM, we could run it in the analytical environment. In this regard, the described
setup (with 5 ”Standard D32s v3” workers) could analyze approximately 960
million events (over 550 GB) in 126 seconds.

6.4 Discussion and Lessons Learnt

With a simple statistical-based use case, we highlighted that traditional SIEM
systems are not designed for advanced analytics. One could imagine how more
sophisticated analytics, e.g., machine learning, data mining, and graph analytics,
will further challenge traditional SIEMs.

As highlighted by most related work, the ability to run complex data analytics
is one of the most critical capabilities required for the next-gen SIEM systems
to give us a fighting chance against previously unknown threats.
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Nevertheless, we cannot underestimate the need for legacy SIEMs, particu-
larly when investigating incidents and alerts. While the analytical platform will
take a long time to search, as it requires touching almost all files, the legacy
SIEMs are designed for optimized searching, allowing a SOC analyst to run
ad-hoc queries investigating incidents and correlating data on-demand. For in-
stance, in our example, while the legacy SIEM took 23 seconds to search the
context of one of the alerts, the analytical platform took more than 1 minute.
Note that the searches are on one day of data; as the time frame gets bigger,
the analytical platform will take even longer (for random searches). Although
one could argue that there are ways to speed up the search, e.g., partitioning,
bucketing, indexing, and adding meta-data, it still will not be comparable to
traditional SIEMs (i.e., index stores) that are designed for optimized searches.

This highlights the need for next-gen SIEM systems that integrate the capa-
bilities of both big data platforms and legacy SIEMs to provide ultimate value
to today’s SOCs.

7 Future Work

Today’s organizations require more than just a SIEM - they require a fully
managed system that can interact and respond. That is why many vendors try
to close the gap between SIEM systems and Security Orchestration, Automation,
and Response (SOAR) systems.

SOAR systems’ capabilities mainly include automation that usually occures
through playbooks, runbooks, and incident response capabilities such as triage,
containment, and remediation. However, to provide this automation and re-
sponse capability, there is a need for a dedicated agent running on each endpoint.

In this work, we explicitly focused on SIEM and analytical capabilities, thus
putting data collection and incident response out of the scope. However, in our
future work, we would like to extend the reference architecture with an assump-
tion of dedicated agents managed by the platform. This agent can enable new
capabilities, such as better event collection, event pre-processing on the edge,
asset discovery, vulnerability assessment and scanning, policy and configuration
checking, file integrity, service availability monitoring, software inventory, and
incident response.

Lastly, we would like to better benchmark and evaluate our implemented
SIEMA system’s capabilities compared to traditional SIEMs.

8 Conclusion

In this paper, we discussed the limitations of the current SIEM systems, in partic-
ular, their ability to perform advanced analytics and utilize state-of-the-art data
mining, machine learning, and graph mining approaches. With that in mind, we
described the requirements for a next-generation SIEM system with advanced
analytical capabilities, hence SIEMA (Security Information/Event Management
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and Analytics). Next, provided the reference architecture for SIEMA, consider-
ing best practices and patterns in big data architectures and pipelines. Next,
we described our implementation of such SIEMA under two settings. One, as
a research workbench with all open-sources technologies. Second, a version of
the proposed architecture in a real-world setting next to an international orga-
nization’s traditional SIEM system. We also highlighted the value added by the
analytical capabilities of such a system to not only help in pushing the research
in data mining for threat detection but also developing successful advanced use
cases in an industrial setting leading to the detection of genuine threats and
incidents. Lastly, we presented beaconing detection as a case study highlighting
the limitations of the traditional SIEM systems in comparison to those with
analytical capabilities.

We believe the cybersecurity domain, particularly in the industry, is falling
behind when it comes to the advancement in data-driven decision-making and
data science. One of the main contributing factors to this is the long-delayed
evolution of the security systems holding the data (SIEMs), thus limiting the ca-
pabilities of SOC analysts to explore statistical and machine learning approaches
for threat detection. We hope this paper motivates the design and implementa-
tion of next-gen SIEM systems giving more power to SOC analysts, closing the
gap between traditional threat hunters and today’s data scientists/engineers.

References

1. “A Practical Guide to Next-Generation SIEM,” SENSAGE, Tech. Rep.
2. “How many alerts is too many to handle?” [Online]. Available: ”https:

//www2.fireeye.com/StopTheNoise-IDC-Numbers-Game-Special-Report.html”
3. “Improve Threat Detection with Big Data Analytics and AI,” Databricks, Tech.

Rep.
4. R. Anthony, “Detecting security incidents using windows workstation event logs,”

SANS Institute, InfoSec Reading Room Paper, 2013.
5. Apache Software Foundation, “Apache eagle.” [Online]. Available: https:

//eagle.apache.org/
6. ——, “Apache metron.” [Online]. Available: https://metron.apache.org/
7. ——, “Apache spot.” [Online]. Available: https://spot.apache.org/
8. D. H. P. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos, “Polo-

nium: Tera-scale graph mining and inference for malware detection,” in Proceedings
of the 2011 SIAM International Conference on Data Mining. SIAM, 2011, pp.
131–142.

9. M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, “Periodicity detection in time
series databases,” IEEE Transactions on Knowledge and Data Engineering, vol. 17,
no. 7, pp. 875–887, 2005.

10. ——, “Warp: time warping for periodicity detection,” in Fifth IEEE International
Conference on Data Mining (ICDM’05). IEEE, 2005, pp. 8–pp.

11. B. Filkins, “An evaluator’s guide to nextgen siem,” SANS Institute, Information
Security Reading Room, 2013.

12. J. Gardiner, M. Cova, and S. Nagaraja, “Command & control: Understanding,
denying and detecting-a review of malware c2 techniques, detection and defences,”
arXiv preprint arXiv:1408.1136, 2014.



18 P.Najafi et al.

13. W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance analysis for end-
point detection and response systems,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 1172–1189.

14. W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates, “Nodoze:
Combatting threat alert fatigue with automated provenance triage,” in Network
and Distributed Systems Security Symposium, 2019.

15. X. Hu, J. Jang, M. P. Stoecklin, T. Wang, D. L. Schales, D. Kirat, and J. R. Rao,
“Baywatch: robust beaconing detection to identify infected hosts in large-scale
enterprise networks,” in 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2016, pp. 479–490.

16. K. Kavanagh, T. Bussa, and G. Sadowski, “Magic quadrant for security information
and event management,” Gartner Group Research Note, 2020.

17. J. Klein, R. Buglak, D. Blockow, T. Wuttke, and B. Cooper, “A reference archi-
tecture for big data systems in the national security domain,” in 2016 IEEE/ACM
2nd International Workshop on Big Data Software Engineering (BIGDSE). IEEE,
2016, pp. 51–57.

18. B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for classi-
fication of malware system call sequences,” in Australasian Joint Conference on
Artificial Intelligence. Springer, 2016, pp. 137–149.

19. H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system:
A comprehensive review,” Journal of Network and Computer Applications, vol. 36,
no. 1, pp. 16–24, 2013.
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