
An Interactive Platform to Simulate Dynamic
Pricing Competition on Online Marketplaces

Sebastian Serth∗, Nikolai Podlesny∗, Marvin Bornstein∗, Jan Lindemann∗, Johanna Latt∗,
Jan Selke∗, Rainer Schlosser‡, Martin Boissier‡, Matthias Uflacker‡

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Email: ∗{firstname.lastname}@student.hpi.de, ‡{firstname.lastname}@hpi.de

Abstract—E-commerce marketplaces are highly dynamic with
constant competition. While this competition is challenging for
many merchants, it also provides plenty of opportunities, e.g., by
allowing them to automatically adjust prices in order to react
to changing market situations. For practitioners however, testing
automated pricing strategies is time-consuming and potentially
hazardously when done in production. Researchers, on the other
side, struggle to study how pricing strategies interact under heavy
competition. As a consequence, we built an open continuous time
framework to simulate dynamic pricing competition called Price
Wars. The microservice-based architecture provides a scalable
platform for large competitions with dozens of merchants and
a large random stream of consumers. Our platform stores each
event in a distributed log. This allows to provide different perfor-
mance measures enabling users to compare profit and revenue
of various repricing strategies in real-time. For researchers,
price trajectories are shown which ease evaluating mutual price
reactions of competing strategies. Furthermore, merchants can
access historical marketplace data and apply machine learning.
By providing a set of customizable, artificial merchants, users
can easily simulate both simple rule-based strategies as well as
sophisticated data-driven strategies using demand learning to
optimize their pricing strategies.

I. E-COMMERCE & DYNAMIC PRICING COMPETITION

The ongoing rise of e-commerce continuously changes the

opportunities and challenges of marketplaces that merchants

have to deal with. Merchants are now able to observe the market

at any given point in time. Thus, they can react to changing

conditions immediately. At the same time, the pressure to

steadily adapt and react is increasing, while most merchants

have only limited experience with such highly competitive

markets and their long-term effects.

In this paper, we present the architecture and the technical

implementation of our open source platform Price Wars that

provides a playground for automated repricing strategies,

also called dynamic pricing. The field of dynamic pricing
is concerned with the creation, analysis, and application of

highly dynamic strategies that change prices of products in

reaction to certain variables such as the competitor’s actions,

demand estimations, or certain consumer behaviors.

Usually, the first strategy being applied in competitive

markets is based on simple rules that the merchant defines

based on his experience (and gut feeling). This approach is

also used by the majority of current repricing services, where

merchants provide thresholds for certain rules (e.g., “set the

second lowest price, unless price is smaller than threshold t”).

But more recently, research and industry started to combine

achievements of price optimization from the research field

of operations research with the achievements in data-driven

procedures from the field of computer science such as machine

learning [1, 2]. This development is basically a catching-up

with similar approaches already being applied in the field

of algorithmic trading or high-frequency trading on stock

exchanges. These approaches are far more sophisticated than

currently observable approaches on marketplaces such as

Amazon, where most merchants thrive to be amongst the

cheapest competitors, eventually leading to a typical race to the
bottom. More sophisticated strategies optimize for long-term

profits, consider restocking, and predict competitor actions.
Unfortunately, for practitioners as well as for researchers,

a common platform to develop, test, and evaluate pricing

strategies is missing. Merchants lack the possibility to test

their strategies appropriately before deploying them in produc-

tion, potentially causing significant economic problems. For

researchers, there are no open platforms for simulating large

pricing competitions with various pricing strategies competing

with each other. More importantly, there are no platforms that

provide the means to deploy data-driven strategies.
We picked up the challenge to create an environment

to imitate different market situations and test how pricing

strategies interact when influencing each other, including simple

rule-based merchants as well as sophisticated data-driven

merchants using machine learning models.
Throughout this paper, we make the following contributions:

• We discuss how a distributed microservice-based architec-

ture helps to achieve two of our mains goals (Section III):

(i) scalability to handle many concurrent merchants and a

large stream of consumers and (ii) flexibility to cover a

wide set of pricing scenarios.

• We present our simulation platform for dynamic pricing

competition. The characteristics of the platform mirror

online marketplaces such as Amazon or eBay in order to

simulate production pricing competition (Section IV).

• We show how to handle communication and data flow in

such a distributed marketplace simulation and present the

provided bootstrap behaviors both for merchants as well

as consumers (Section V).

• We simulate and evaluate the outcome of dynamic pricing

competition with multiple concurrent merchants deploying

a wide range of strategies (Section VII).

2017 IEEE 21st International Enterprise Distributed Object Computing Conference

2325-6362/17 $31.00 © 2017 IEEE

DOI 10.1109/EDOC.2017.17

61

II. RELATED WORK

Simulation platforms have been built in various fields in

order to simulate complex competition scenarios, e.g., in the

field of real-time bidding [3], marketing [4], or electricity

markets [5]. For this work, we focus on competition in e-

commerce applications.

Selling products is a classical application of revenue man-

agement theory. The problem is closely related to the field of

dynamic pricing, which is summarized in the books [6], [7],

and [8]. The surveys [2] and [9] provide an excellent overview

of recent pricing models under competition.

Marketplaces in the real world are characterized by many

competitors, complex offers, and limited demand information.

The derivation of sophisticated pricing strategies is challenging.

Theoretical models with multiple competitors, multiple prod-

ucts, multiple product features and stochastic demand intensities

that are not highly stylized are analytically not tractable. Hence,

simulation approaches have to be used.

With the increasing use of online marketplaces in the last

decades, cf. [10], the dynamic pricing topic got more and more

important due to the possibility to change virtual prices within

seconds, whereas physical prices printed on products in stores

were much harder and slower to influence. In addition, the

consumers’ behavior changes in this context as Kannan and

Kopalle [11] found by comparing the physical value chain with

the virtual-information-based value chain.

This showed that the consumer behavior is just as important

in dynamic pricing contexts as the pricing behavior is. However,

little effort has been made to build simulation platforms that

ease the development and evaluation of pricing algorithms

while taking all of these factors into account. Morris [12]

developed such a platform in 2001. However, it is limited in its

capabilities, especially since it does not allow large e-commerce

simulations. The simulation program runs on a single machine,

offers a limited set of consumer behaviors, simulates solely

finite sales horizons, and seller pricing updates happen only

in discrete time intervals that are predefined by the system.

Therefore, reactions to other merchants are very limited. This

does not represent the current situation on online marketplaces

very well and thus restricts possible simulation scenarios. Other

platforms have similar limitations in their capabilities (e.g.,

Pinto et al. [5] or DiMicco et al. [13]).

III. DESIGN GOALS

Given the current, very limited possibilities to simulate a

huge, dynamic online marketplace, we came up with a set of

specific design goals and restrictions, that we wanted to fulfill

to make the platform and the resulting simulation as realistic,

dynamic, and reactive as possible.

Event-Driven Communication: Allow pricing algorithms to

do fully dynamic price updates and look-ups in continuous

time, i.e., at any time without being refrained by discrete

time intervals to enable event-driven pricing strategies.

All merchants act asynchronously and have to be able to

deal with potentially outdated data (see [14]).

Realism: Allow to define arbitrary streams of customers with

complex buying behavior. Enforce restrictions present in

production marketplaces such as a limited amount of price

updates per time interval to avoid advantages by constantly

changing prices.

Scalability and Adaptability: The system should be scalable

and easily expandable to account for high loads, the

simulation of large marketplaces, or the addition of

completely new components and features.

Flexibility: Provide the required flexibility to make the system

adaptable to user needs, research questions, and new

possible design goals.

Classes of Strategies: Also, the simulation of both, rule-based

and data-driven pricing strategies should be possible, the

latter using machine-learning techniques to model the

customer choices and sales probabilities.

Usability: Allow merchants to directly participate in the

competition with minimal overhead, i.e., by providing a

simple bootstrap merchant written in Python. Furthermore,

access to historical data for learning purposes shall be

easy via a simple interface such as CSV files.

In [15], Hamilton lists additional aspects we had to tackle

with building a microservice-based (or the more recent term

“cloud-native”) application.

IV. ARCHITECTURE

Confronted with the challenge of creating a highly flexible

infrastructure for simulating a marketplace with different

merchants and consumers, a microservice-based architecture

was created allowing the user to scale, exchange, or add

single services ad-hoc and on demand. Each service within our

architecture implements one business artifact. This architecture

pattern comes with the cost of a communication overhead and

requires farsighted API design.

Figure 1 depicts the architecture. We understand a single

instantiation of this architecture as one simulation universe,

meaning that key components are unique in this setup.

When initiating a new simulation universe, it comes along

with the marketplace component, as well as the producer

component and a management user interface (UI) for con-

trolling each service. While the producer offers products, the

marketplace holds the current market situation, handles price

updates and purchases of goods. Each transaction processed by

the producer and marketplace is logged to a stream database,

namely Apache Kafka [16]. Further, those logs are being

analyzed and aggregated through a streaming data processing

component which, in our case, is Apache Flink [17] and

written back into a new Kafka topic. Those details can then be

accessed selectively through a web socket connection or REST

interface provided by our Kafka Reverse Proxy service, which

is responsible for both securing accesses to Kafka as well as

caching. To generate the actual marketplace load, streams of

different kinds of customers are simulated. Merchants may join

and participate in the simulation. By default, six merchants

are deployed with predefined strategies. Their behaviors are

62

described in Section V while the choreography of the single

services is delineated in Section IV-A.

Event Store

ConsumerConsumerConsumer

Buying
Behaviour
Buying

Behaviour
Buying

Behavior

Online
Marketplace

R

R

Log Store
(Kafka)

Producer

R

Management UI

Merchant

R

R

Merchant
Logic

R

R

Demand
Estimation

Pricing
Optimization

Reverse Proxy

Event Aggregation
& Analysis

(Flink)

R

R

Socket

R

Socket

R

Fig. 1. FMC diagram of the platform’s architecture

Our model is characterized by the components displayed in

Figure 1. Their interplay can be described as follows:

Marketplace: Collects and updates the product offers of the

competing merchants. The competitors’ offers include

two features: price and quality. The marketplace manages

interested customers and buying events.

Consumer: Arbitrary (random) streams of interested cus-

tomers can be defined. Various customer choice behaviors

can be defined. The decisions whether a customer buys a

product and which offer/merchant is chosen can be defined

by probabilities that can depend on all parameters of the

current market situation.

Merchants: Update prices of their products based on requests

of current market situations. Rule-based as well as data-

driven strategies can be applied. Data of observed market

situation as well as a merchants’ sales data are stored in

the log store and can be used to estimate sales probabilities

using various machine learning techniques.

Producer: Organizes the replenishment of all merchants.

Merchants are provided with new products according to

a (fair) distribution. This way the performances of com-

peting strategies are not affect by asymmetric reordering

strategies. However, the model would also allow to let

the merchants choose their replenishment policy.

Management UI: Allows to adjust the customer behavior as

well as model parameters such as adjustment limits or

replenishment rules. Secondly, the UI allows to observe the

evolution of current market situations and price trajectories

over time. The strategies’ performances are measured by

different key performance indicators (KPIs), including

average or accumulated profits/revenues, number of sales,

number of price adjustments, and more.

A. Service Choreography

We developed our platform using a microservice-based archi-

tecture. The communication between the various components

is done via RESTful APIs using JSON. This helps to fulfill

the design goal of reactivity, since each service is totally

autonomous and can contact every other service via their

exposed RESTful API at any time. There is no need for explicit

simulation ticks or action requests.

Due to the microservice-based architecture and the design

goal to allow fair competition of different merchants without

fraudulent actions, all important routes are secured by authoriza-

tion tokens. For authenticating all participants in the simulation

without the need of a centralized authentication server, a hash-

based token and identification system was introduced. It enables

the ID-based logging of event messages corresponding to one

merchant or consumer. One of the causes to implement this

decentralized authentication system was to reduce the number

of requests during the simulation.

B. Event Log Analysis with Kafka and Flink

All transactions during the simulation are persisted using the

stream database Kafka. The log is sourced by the marketplace

and the producer with JSON-formatted messages and stored in

so-called topics. Each topic can be consumed independently

with the preserved order of events. For example, Flink jobs

read all messages within a predefined time range (such as

one minute or one hour). Each Flink job aggregates different

events from multiple topics and logs the result in an own Kafka

topic. The jobs are executed every ten seconds or every minute,

depending on the desired aggregation level.

The aggregated messages contain the calculated market share

per merchant per time slice and are used by the management UI

to display corresponding statistics. Because Kafka only offers

stream-based access, the Kafka reverse proxy is responsible for

fetching a preset number of events on request to serve these via

a RESTful API. Amongst other reasons, this additional layer

is required for technical reasons since available Kafka libraries

use timeouts to wait for new events during read or require

a fix number of messages to fetch. The reverse proxy uses

web sockets to push new events directly to the management

UI in browsers for live statistic updates. In addition to being

the main statistic source for the management UI, the reverse

proxy is also responsible for serving a cleaned event log to

merchants and to export topics to CSV files. These exports are

mainly used for data-driven merchants. The messages contain a

specific merchant ID and are filtered for that ID when exporting

data. Therefore, the corresponding merchant token is required

and used to remove sales data of other merchants.

V. BEHAVIORS

The simulation framework provides several behaviors for

merchants, as well as the consumers by default. In this section,

we will outline and describe the underlying behaviors which

are currently available.

63

A. Consumer Behavior

The platform allows to define various consumer behaviors.

In our model, we distinguish between arriving interested

consumers and buying consumers that decide to choose one

of the offers after reviewing all available offers.

In our continuous time framework, we simulate randomized

streams of interested consumers. In our implementation, we

simulate stochastic arrival processes that are based on uniformly

or exponentially distributed random variables. This way, we

obtain randomized waiting times between two occurring

consumers. Furthermore, the intensity, i.e., the average number

of interested consumers within a certain time interval can be

specified to model scenarios with low or high demand.

The buying behavior of consumers is modelled as a weighted

mixture of different predefined selection behaviors. Those

behaviors range from very subtle approaches like “buy the

cheapest offer”, or the nth-cheapest according to a predefined

probability distribution up to more sophisticated methods

allowing to describe more realistic consumer behaviors.

In order to imitate consumers that balance an offer’s features

such as prices and quality according to specific weights, we use

randomized scoring functions. The weighting parameters for

specific markets can be calibrated using real world data. In our

model, we also used coefficients which were extracted from

Amazon market data provided by a big book retail company,

cf. [18]. The authors use a weighted logistic regression model

to quantify the buying behavior for different products. This

model is included as one of the default consumer behaviors.

Other behaviors can be easily added. The decisions whether

a consumer buys a product and which offer/merchant is

chosen can be defined by probabilities that can depend on

all parameters of the current market situation.

Our framework also allows to reconfigure the buying

behavior on-the-fly by adjusting arrival intensities and the

consumer’s selection probabilities.

B. Merchants Strategies

The merchant component has one main task: The price

adjustment for a given product in a current market situation.

This can either be adding a new product purchased from the

producer, or updating an existing product that is already on

the marketplace. This calculation has to trade-off between

maximizing the probability to sell a product and maximizing

the own profit into account. To allow an easy start, the platform

already offers a set of five rule-based strategies and one data-

driven approach that implements a demand learning strategy

based on logistic regression [19].

The replenishment of each merchant is organized as follows.

Whenever an item is sold, a randomized product with a

randomized quality is assigned to the corresponding seller.

This way, the performance comparison of different repricing

strategies is not affected by the sellers’ ordering policies.

1) Rule-Based Strategies: The simple, rule-based behaviors

include response strategies such as “Be the cheapest”, “fixed

price”, “Randomly be the 1st, 2nd or 3rd cheapest (’random

third’)”, and the “gas station strategy” (also called “two-bound”

in our system, cf. [20]). The “two-bound” strategy sets a

minimum and maximum price, or a minimum and maximum

profit margin, respectively, that can be added to the product’s

purchase price. The strategy keeps undercutting the cheapest

competitor price as long as that price exceeds the minimum

bound. If the cheapest competitor price is either below the

minimum bound or above the maximum bound, the strategy

adjusts the price to the upper price bound. If the “two-bound”

strategy is played against, e.g., another “two-bound” merchant

or the “Be the cheapest” merchant, we obtain cyclic price

patterns that are of staircase type.

The rule-based strategies described above can also be refined

such that the quality level of different products is taken into

account, e.g., by using specific mark ups on price. All of these

classes of behaviors have certain base settings that further

determine the behaviors and that can be adjusted during run

time. Minimum profit margins as well as upper price bounds

can also be defined.

Consumer

Merchant

Pricing
Strategy

Demand
Estimation

Price Calculation

Event Store

Online
Marketplace

Consumer

Buying
Behavior

Buying
Behavior

Demand
Model

R

R

Rule-Based Merchant

R

Data-Driven Merchant

Fig. 2. FMC diagram depicting the general process flow of the simulation
platform [21].

2) Data-Driven Strategies: On the one hand, our framework

allows to apply rule-based strategies, which are widely used

in practice as they are transparent and simple to implement.

On the other hand, we supply the means to implement data-

driven strategies by providing access to historical market data.

Data-driven strategies are increasingly used in production and

have the potential to replace rule-based strategies in the future.

The application and computation of data-driven strategies

requires an extended framework which allows to store and

to process market data. Hence, in our framework, merchants

have to be able to exploit their observable data to estimate

demand using various machine learning techniques. As a result

they can set up a “demand model” which allows, e.g., to

quantify sales probabilities for all potential offer prices and

any market situation. This makes it possible to support the price

calculation (see Figure 2). The estimated sales probabilities

can, for instance, be used to optimize expected profits.

To demonstrate the possibility to apply data-driven strategies,

we implemented such a merchant. The merchant has access to

his own sales data and historical market situations for training

the demand model. The access to sales data of other merchants

is restricted by the system, similar to real world marketplaces

(see Section IV-B). The data used to learn a regression model

are past market situations in which the merchant offered his

own products. The key idea is to identify the likelihood of

selling items conditioned on the underlying market situation.

64

The dependent variable will typically be the number of sales

within a certain time interval. The explanatory variables can be

used to describe the attractiveness of an offer compared to the

competitors’ offers. Finally, the estimated sales probabilities

can be used to optimize the pricing strategy.

Our data-driven approach follows a pricing strategy aimed

at maximizing expected short-term profits. To do so, a logistic

regression model is trained, based on features, such as (i) the

distance to the cheapest competitor, (ii) the price- and quality-

rank, (iii) the number of competitors, or (iv) the average price

of the product on the marketplace.

As a result, the logistic regression model outputs the proba-

bility with which a product is sold within a certain period of

time, given a certain market situation and a specific offer price

for that product. To maximize the expected profit, this merchant

comes up with a set of possible prices, calculates the associated

selling probabilities, and multiplies these probabilities with

the corresponding price. The expected profits for all possible

prices are compared and the price adjustment that maximizes

the expected short-term profits is chosen.

A bootstrap merchant in Python was implemented to facilitate

an easy on-boarding and extension of the platform by adding

custom merchants. All default merchants are based on this

bootstrap merchant and included for further reference.

VI. USER INTERFACE

The HTML-based management front-end enables users to

configure, operate, and orchestrate the different microservices

all in one place without any programming effort. Users can start

and stop a simulation, merchants as well as other components

directly using the front-end. All exposed settings for the

individual behavior of each merchant and the consumer can be

viewed and updated. The stateless components of the simulation,

such as the producer and the marketplace, cannot be stopped

or started, but configured here as well.

If a user wants to register a new merchant to participate in

the simulation, they can use the front-end to register a new

endpoint under which the merchant is running, and in return

receive a secret token that is used for authorization.

The front-end consists of several pages where each page

focusses on a particular aspect that practitioners or researchers

might be interested in. The main screen of the platform

is the dashboard. The dashboard visualizes all streaming

sales in real-time and shows which registered merchants are

currently participating. Further, the dashboard allows compare

the revenues that are associated to the merchants’ pricing

strategies. Figure 3, for instance, shows current revenues of

the competing firms over time. This way, it can be observed

how certain changes affect the merchants’ performance. Users

can zoom in and out in this graph, e.g., to analyze long-term

behavior or observe trends.

Furthermore, the front-end visualizes the pricing interaction

of competing merchants, simplifying the process of comparing

different pricing strategies (see [21] for more details). Figure 4

illustrates the price trajectories of three competing merchants

over time. Mutual price reactions typically lead to cyclic pattern

Fig. 3. Screen shot of a platform graph comparing merchant revenues over
time using window aggregations of Flink.

in which competitors keep undercutting each other (so-called

raise to the bottom), a pattern often observed in practice. If

the price level is sufficiently low, some pricing strategies start

to significantly raise the price in order to enable future profits

(cf. the merchant in orange).

Fig. 4. Platform screen shot of price trajectories over time.

VII. EVALUATION

We used the platform to get an overview of the provided

merchants’ behavior and performance. We expect that the

exemplary data-driven approach based on a logistic regression

model to estimate the current demand promises higher profits

than common rule-based behaviors (cf. [18]), due to a better

adjustment to the consumer behavior in pricing (e.g., changing

consumer behaviors over time or willingness to pay for better

product qualities).

First, we performed a one-on-one evaluation of the six

provided merchant behaviors (see Section V-B). We ran each

evaluation for 20 minutes, with one data-driven consumer (see

Section V-A), and one product with 4 (random) qualities.

We observe that the realized profits are significantly influ-

enced by the two competing strategies, where revenues are

65

significantly lower when at least one merchants pursues a rather

aggressive pricing strategy and consumers are price sensitive.

Also, we saw that the data-driven strategy outperforms all

rule-based strategies in the one-on-one evaluation.

Second, we ran an oligopoly evaluation with all merchants

running at the same time to see whether the data-driven

merchant would beat the other rule-based merchants. The

results are shown in Table I. The numbers are the profit gained

by each merchant after 20 minutes of simulation.

TABLE I
OLIGOPOLY: GENERATED PROFITS BY ALL MERCHANTS COMPETING

CONCURRENTLY AGAINST EACH OTHER.

Merchant Generated Profit

Cheapest 817.80
Second Cheapest 784.00
Random Third 679.79
Two-Bound 1449.21
Fix Price 585.60
Machine Learning 1826.05

The data-driven strategy dominates the rule-based strategies

in a one-on-one setup as well as in an oligopoly setup. The

best rule-based strategy was the two-bound strategy which

is reasonable aggressive but not destructive. However, the

two-bound strategy lost against the data-driven merchant in

both of our simulations. To get more comprehensive results,

further tests have to be run with other data-driven strategies to

investigate how they perform when playing against each other.

The respective consumer behavior also has a large impact.

Our results demonstrate the usefulness and applicability

of the platform. We are able to measure the performances

of strategies of competing merchants in different setups.

Our examples show the importance of sophisticated pricing

strategies as they can have a vast impact on profits. Moreover,

we showed that data-driven strategies are able to outperform

simple rule-based strategies.

Our framework allows to further study the unforeseeable

interplay of various repricing strategies. It enables the user to

run quick and complex simulations of real-world setups with

an almost arbitrarily high variety of merchants and strategies.

At the same time, it offers comprehensive evaluation metrics.

The user sees immediate feedback on the performance of each

merchant, fulfilling our design goals (Section III).

VIII. CONCLUSION

We presented a distributed and scalable platform to simulate

dynamic pricing competition allowing both practitioners and

researchers to study the effects of automated repricing mecha-

nisms competing with each other using market scenarios that

mimic real-world marketplaces. For practitioners, the platform

further provides a possibility to evaluate their pricing strategies

appropriately before releasing them in production.

The platform has a scalable microservice-based architecture

and is able to handle dozens of concurrent merchants and

processing thousands of consumer requests per seconds. We

built the platform in a way that one can participate and deploy
own merchants with only a few lines of Python code. The

platform provides an easy access to historical market data for

facilitating data-driven strategies.

Moreover, we compared traditional rule-based strategies

with simple data-driven strategies. Data-driven merchants are

superior to rule-based approaches as soon as a sufficiently large

data set has been gathered.

The platform’s source code and the technical documentation

are publicly available on GitHub1.

REFERENCES

[1] R. Schlosser and M. Boissier, “Optimal price reaction strategies in the
presence of active and passive competitors,” in Proc. ICORES, 2017, pp.
47–56.

[2] A. V. den Boer, “Dynamic pricing and learning: Historical origins, current
research, and new directions,” Surveys in Operations Research and
Management Science, vol. 20, no. 1, pp. 1–18, 2015.

[3] W. C. Wu, M. Yeh, and M. Chen, “Predicting winning price in real time
bidding with censored data,” in Proc. 21th ACM SIGKDD, 2015, pp.
1305–1314.

[4] Y. Tkachenko, M. J. Kochenderfer, and K. Kluza, “Customer simulation
for direct marketing experiments,” in IEEE DSAA, 2016, pp. 478–487.

[5] T. Pinto et al., “Adaptive learning in agents behaviour: A framework for
electricity markets simulation,” Integrated Computer-Aided Engineering,
vol. 21, no. 4, pp. 399–415, 2014.

[6] K. T. Talluri and G. J. Van Ryzin, The theory and practice of revenue
management. Springer Science & Business Media, 2004, vol. 68.

[7] R. L. Phillips, Pricing and revenue optimization. Stanford University
Press, 2005.

[8] I. Yeoman and U. McMahon-Beattie, Revenue management: a practical
pricing perspective. Springer, 2011.

[9] M. Chen and Z.-L. Chen, “Recent developments in dynamic pricing
research: multiple products, competition, and limited demand information,”
Production and Operations Management, vol. 24, no. 5, pp. 704–731,
2015.

[10] D. Popescu, “Repricing algorithms in e-commerce,” INSEAD Working
Paper Series, 2015.

[11] P. Kannan and P. K. Kopalle, “Dynamic pricing on the internet:
Importance and implications for consumer behavior,” International
Journal of Electronic Commerce, vol. 5, no. 3, pp. 63–83, 2001.

[12] J. Morris, “A simulation-based approach to dynamic pricing,” Master’s
thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,
2001.

[13] J. M. DiMicco, P. Maes, and A. Greenwald, “Learning curve: A
simulation-based approach to dynamic pricing,” Electronic Commerce
Research, vol. 3, no. 3-4, pp. 245–276, 2003.

[14] P. Helland, “Data on the outside versus data on the inside,” in CIDR
2005, Online Proceedings, 2005, pp. 144–153.

[15] J. R. Hamilton, “On designing and deploying internet-scale services,” in
Proc. LISA, 2007, pp. 231–242.

[16] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, 2011, pp. 1–7.

[17] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache FlinkTM: Stream and batch processing in a single
engine,” IEEE Data Eng. Bull., vol. 38, no. 4, pp. 28–38, 2015.

[18] R. Schlosser et al., “How to survive dynamic pricing competition in
e-commerce,” in Proc. Poster Track of the 10th ACM RecSys, 2016.

[19] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic
regression. John Wiley & Sons, 2013, vol. 398.

[20] M. D. Noel, “Edgeworth price cycles, cost-based pricing, and sticky
pricing in retail gasoline markets,” The Review of Economics and
Statistics, vol. 89, no. 2, pp. 324–334, 2017/04/25 2007.

[21] M. Boissier et al., “Data-driven repricing strategies in competitive
markets: An interactive simulation platform,” in Proceedings of RecSys

’17, Como, Italy, August 27-31, 2017, 2017.

1Platform repository: https://github.com/hpi-epic/masterproject-pricewars

66

