
I N D I V I D UA L W O R K S H E E T S W I T H I N T E R A C T I V E
P R O G R A M M I N G E X E R C I S E S W I T H I N T H E H P I S C H U L - C L O U D

Individuelle Arbeitsblätter mit Interaktiven Programmieraufgaben
im Rahmen der HPI Schul-Cloud

sebastian serth

Sebastian.Serth@student.hpi.de

A Master’s Thesis for attainment of the academic degree

Master of Science in IT-Systems Engineering

supervisors:
Prof. Dr. h.c. Hasso Plattner

Dr. Matthias Uflacker
Ralf Teusner, M.Sc.

Dipl.-Inf. (FH) Jan Renz

chair:
Enterprise Platform and Integration Concepts

Hasso Plattner Institute
University of Potsdam

Potsdam, 6
th May 2019

mailto:Sebastian.Serth@student.hpi.de

Sebastian Serth:
Individual Worksheets with Interactive Programming Exercises
within the HPI Schul-Cloud

Individuelle Arbeitsblätter mit Interaktiven Programmieraufgaben
im Rahmen der HPI Schul-Cloud

supervisors:
Prof. Dr. h.c. Hasso Plattner
Dr. Matthias Uflacker
Ralf Teusner, M.Sc.
Dipl.-Inf. (FH) Jan Renz

chair:
Enterprise Platform and Integration Concepts
Hasso Plattner Institute
University of Potsdam

submitted on:
6

th May 2019

A B S T R A C T

Modern computer science education in high-schools requires students
to learn the basics of programming. In terms of content, teachers
often incorporate existing videos, quizzes, and practical programming
exercises from Massive Open Online Courses (MOOCs). However,
teachers’ options to adapt the content to their specific needs or to
add their own material are currently limited. Based on a qualitative
survey with thirteen teachers, we developed tools to extend these
options. Our software prototype allows teachers to create their own
interactive worksheets consisting of texts, videos, quizzes, and prac-
tical programming exercises. Additionally, teachers can embed and
further customize existing exercises from MOOCs. Further, we enable
teachers to gain deeper insights into the learning progress of their
students by providing results from automated submission analysis.
These data allow uncovering potential knowledge gaps and foster
content-driven in-class discussions. In this thesis, we present findings
from an evaluation with different school classes using our software.
The concept was well received by students and teachers alike: Teachers
noticed the possibility of a shift in their role from a lecturing instruc-
tor to an individual tutor, as students are enabled to learn at their
own pace and receive specific, direct feedback based on automated
unit tests. For the preparation of upcoming lessons, teachers valued
the ability to analyze common mistakes of their students to uncover
and discuss previously hidden problems. Interactive worksheets, as
an integrated part of digital education, thus foster informed teacher
interventions as part of an individualized student learning process.

III

Z U S A M M E N FA S S U N G

Moderner Informatikunterricht an Gymnasien umfasst das Erlernen
von Programmierungsgrundlagen. Je nach Unterrichtsinhalt verwen-
den Lehrer dabei häufig bereits vorhandene Videos, Quizfragen und
praktische Programmieraufgaben aus Massive Open Online Courses
(MOOCs). Dabei sind die Möglichkeiten der Lehrer, die Inhalte an
ihre spezifischen Bedürfnisse anzupassen oder eigenes Material hin-
zuzufügen, momentan jedoch begrenzt. Um diese Möglichkeiten zu
erweitern, haben wir einen Prototypen entwickelt, der die von 13

Lehrern in einer qualitativen Umfrage geäußerten Anforderungen
erfüllt. Unsere Software ermöglicht es Lehrern ihre eigenen interak-
tiven Arbeitsblätter, bestehend aus Texten, Videos, Quizfragen und
praktischen Programmieraufgaben, zu erstellen. Zusätzlich können
sie vorhandene Übungen aus MOOCs einfügen und an ihre Bedürf-
nisse anpassen. Darüber hinaus erlangen Lehrer mithilfe von auto-
matisierten Analysen der abgegebenen Programmieraufgaben ihrer
Schüler einen erweiterten Einblick in deren Lernfortschritt. Diese In-
formationen erleichtern es, potentielle Wissenslücken bei Schülern
aufzudecken und inhaltsorientierte Diskussionen innerhalb der Klasse
anzustoßen. In dieser Arbeit stellen wir die Ergebnisse des Einsatzes
unserer Software in unterschiedlichen Schulklassen dar. Das Konzept
wurde von Schülern und Lehrern gleichermaßen gut angenommen:
Die Lehrer erkannten die Chance, ihre Rolle vom ausschließlichen
Dozenten zum individuellen Tutor zu wandeln, während Schüler in
ihrem eigenen Tempo lernen können und direkte Rückmeldungen zu
ihrem Fortschritt durch automatisierte Auswertungen erhalten. Für
die Vorbereitung zukünftiger Unterrichtsstunden schätzten Lehrer
die Möglichkeit, häufige Fehler ihrer Schüler auszuwerten, um so
zuvor unerkannte Probleme aufzudecken und besprechen zu kön-
nen. Interaktive Arbeitsblätter fördern individualisierte Lernprozesse,
unterstützen Lehrer in der Unterrichtsgestaltung und sind somit ein
wichtiger Bestandteil digitaler Bildung an Schulen.

V

A C K N O W L E D G M E N T S

I would like to express my sincere gratitude to everyone who sup-
ported me throughout my studies and especially while working on
this thesis.

First of all, I want to thank Ralf for his excellent support, the
detailed feedback and for all clever solutions he suggested for any
unpredictable challenge I faced. Thanks for all the good advice you
gave me — I will definitely keep them in mind!

Thanks a lot also to Jan, who regularly provided me with new
ideas to extend my concept and offered me unique opportunities to
gather feedback and test my prototype. Moreover, I want to thank the
members of the openHPI and Schul-Cloud teams for their constant
help. And, of course, Paul for his extraordinary assistance with edtr.io.

My special thanks go to all teachers and students involved as well
as the members of the EPIC research group; be it interviewing, brain-
storming, discussing, testing or evaluating the concept. A big thank
to Kai, Marius, and Whitney for the last minute proofreading and the
support in fine-tuning this thesis.

Last but not least, I want to thank my friends for a great time, and
especially my family for their full support.

Thank you!

VII

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Research Questions . 4

1.3 Structure . 4

2 background 7

2.1 Massive Open Online Courses 7

2.2 MOOCs Offered by the HPI with openHPI 8

2.3 Integration of Programming Exercises: CodeOcean . . 8

2.4 The HPI Schul-Cloud 11

3 related work 13

3.1 Interactivity in Computer Science Lessons 13

3.2 Interactive Worksheets 14

3.3 Programming Exercises in K-12 14

3.4 Integrating MOOCs in Classes 15

3.5 Learning Analytics . 15

3.6 Online Programming Resources 16

3.6.1 Programming Education for Individuals and
Classrooms . 16

3.6.2 Collaborative Code Editing Using Pair Pro-
gramming . 17

3.6.3 Browser-Based Code Execution Platforms . . 17

3.6.4 Technical Implementation of Web-Based Code
Execution Platforms 18

4 current situation in schools 21

4.1 Computer Science Education in K-12 21

4.2 Technical Equipment of Schools and Practical Implica-
tions . 22

4.3 Content Distribution and Submission Handling in
Computer Science Classes 24

4.4 Worksheets in Computer Science Classes 25

4.5 Educational IDEs Tailored for Beginners 28

4.6 Implications for Computer Science Teachers 30

5 concept 31

5.1 General Design of Interactive Worksheets 32

5.1.1 Different Views for Students and Teachers . . 34

5.1.2 Accessibility of Content for Students 36

IX

X contents

5.2 Editing Programming Exercises in CodeOcean 37

5.2.1 Automated Feedback through Unit Tests for
Exercises . 38

5.2.2 Referencing Exercises from Worksheets 39

5.3 Deep Integration with the HPI Schul-Cloud 39

5.3.1 Pseudonymization 40

5.3.2 Customization of the CodeOcean Integration 40

5.3.3 Worksheet Sharing and Content from MOOCs 42

5.4 Implicit Submission Handling 42

5.4.1 Pre-Evaluation of Submissions 43

5.4.2 Time Traveling to Understand the Learner’s
Approach . 43

5.5 Learning Analytics . 43

5.5.1 Integration with External Systems 45

5.5.2 Summary for Teachers During Lessons 46

5.5.3 Comparison of Learners from a School Class
to MOOC Participants 46

6 implementation 49

6.1 Architecture of Worksheets with Practical Program-
ming Exercises . 49

6.2 Worksheet Editor: edtr.io 52

6.2.1 First-Party Multiple-Choice Quiz Plugin . . . 54

6.2.2 Embedding Videos from openHPI 55

6.2.3 Integrating Programming Exercises through
an iFrame with LTI 57

6.3 Introduction of the Teacher Role and Study Groups in
CodeOcean . 58

6.3.1 Features Available for Teachers 59

6.3.2 Automated Creation of Study Groups 60

6.4 Launching Programming Exercises with Different Con-
figurations . 61

6.4.1 Deep Linking with the LTI Standard 63

6.4.2 Introducing Feature Restrictions through LTI 64

6.5 Transmitting Results from CodeOcean Back to the HPI
Schul-Cloud . 64

6.5.1 Differences between Final Submissions and
Intermediate Submissions 66

6.5.2 Using the Worksheet Editor to Forward Ana-
lytical Data . 67

6.6 Per Exercise Dashboard for Teachers 67

6.6.1 Enabling Live Updates through WebSockets . 68

6.6.2 Aggregating the Working Times of Students . 70

6.6.3 Request for Comments within Study Groups . 71

6.7 Learnings from the Implementation 72

6.7.1 Saving Session Information in a Cookie 73

6.7.2 Worksheets with Cross-Origin Frames 73

contents XI

7 evaluation 75

7.1 Exploration of Requirements 75

7.1.1 Methodology 76

7.1.2 Results . 76

7.1.3 Discussion and Interpretation of the Results . 77

7.2 Students: Testing the Prototype 77

7.2.1 Methodology 78

7.2.2 Results . 80

7.2.3 Discussion and Interpretation of the Results . 82

7.3 Teachers: Experiences from Testing the Prototype . . 83

7.4 Teachers: Usability of the Prototype 84

7.4.1 Methodology 85

7.4.2 Results . 85

7.4.3 Discussion and Interpretation of the Results . 85

7.5 Overall Impression . 87

8 outlook and future work 89

9 conclusion 91

a appendix : concept 93

a.1 Conceptual Wireframes 93

a.2 Related Concepts . 101

b appendix : implementation 105

b.1 Exemplary Worksheet 105

b.2 Architecture . 107

b.3 Implementation Details: edtr.io 109

b.4 Implementation Details: CodeOcean 113

c appendix : evaluation 117

c.1 Exploration: Results of the Initial Survey 117

c.2 Students: Results of the meCUE 120

c.3 Students: Results of the Survey 122

c.4 Teachers: Results of the UEQ 127

bibliography 129

declaration 137

L I S T O F F I G U R E S

Figure 2.1 Implementation View in CodeOcean 9

Figure 2.2 The HPI Schul-Cloud Listing Topics 12

Figure 2.3 The Current Editing View for Teachers within
the HPI Schul-Cloud 12

Figure 3.1 The Web-Based IDE Codeboard 18

Figure 4.1 A Traditional Worksheet for a Computer Sci-
ence Lesson . 26

Figure 4.2 Gerhard Röhner’s Java-Editor 29

Figure 5.1 Modular Worksheet Editor 33

Figure 5.2 Wireframe of an Interactive Worksheet 35

Figure 5.3 The FROG Editor 37

Figure 5.4 Automated Hint Provided by CodeOcean . . . 41

Figure 5.5 Wireframe of Key Metrics Below Each Part of a
Worksheet . 44

Figure 5.6 Wireframe of Learning Analytics within a Work-
sheet . 44

Figure 5.7 Pseudonymization Concept Designed for the
HPI Schul-Cloud 45

Figure 5.8 Wireframes of the Analytical Dashboard 47

Figure 6.1 Exemplary Worksheet in edtr.io 50

Figure 6.2 System Architecture of Interactive Worksheets 51

Figure 6.3 System Architecture of edtr.io 52

Figure 6.4 Multiple-Choice Plugin Written for edtr.io . . . 55

Figure 6.5 UML Diagram of the StudyGroup and Related
Classes . 61

Figure 6.6 Live Dashboard Available to Teachers During a
Lesson . 68

Figure 7.1 meCUE: Class of the First Teacher 81

Figure 7.2 meCUE: Class of the Second Teacher 81

Figure 7.3 Book vs. Video: Class of the Second Teacher . 82

Figure 7.4 UEQ: Benchmark 86

Figure 7.5 UEQ: Pragmatic and Hedonic Quality 87

Figure A.1 Sketch: Creating Programming Exercises . . . 93

Figure A.2 Sketch: Creating Worksheets with Program-
ming Exercises 94

Figure A.3 Sketch: Solving Exercises within Worksheets . 95

Figure A.4 Sketch: Reviewing Student Submissions 96

Figure A.5 Sketch: Dashboard per Exercise 97

Figure A.6 Sketch: Dashboard per CodeOcean Tag 98

Figure A.7 Sketch: Dashboard per Worksheet 99

Figure A.8 Sketch: Unit Test Generator 100

XII

Figure A.9 Modular Worksheet Editor Offered by tutory . 101

Figure A.10 The Digital Classroom within the HPI Schul-
Cloud . 101

Figure A.11 HPI Schul-Cloud Cockpit 102

Figure A.12 regex101 Listing Matches for a Given RegEx . . 102

Figure A.13 The Web-Based repl.it 103

Figure B.1 Exemplary Worksheet on Java (Enlarged) —
Part I . 105

Figure B.2 Exemplary Worksheet on Java (Enlarged) —
Part II . 106

Figure B.3 System Architecture of Interactive Worksheets
(Enlarged) . 107

Figure B.4 System Architecture of edtr.io (Enlarged) . . . 108

Figure C.1 Survey: Results of our Initial Survey — Part I . 117

Figure C.2 Survey: Results of our Initial Survey — Part II 118

Figure C.3 Survey: Results of our Initial Survey — Part III 119

Figure C.4 meCUE: Benchmark with all Students 120

Figure C.5 Survey: Detailed Results of the First Class —
Part I . 122

Figure C.6 Survey: Detailed Results of the First Class —
Part II . 123

Figure C.7 Survey: Detailed Results of the First Class —
Part III . 124

Figure C.8 Survey: Detailed Results of the Second Class —
Part I . 125

Figure C.9 Survey: Detailed Results of the Second Class —
Part II . 126

Figure C.10 UEQ: Detailed Results as Table 127

Figure C.11 UEQ: Detailed Results Shown in Bars 128

L I S T O F TA B L E S

Table 6.1 All New Application-Specific Parameters Sup-
ported by CodeOcean 65

Table 7.1 Overview About Worksheets Tested in Lessons 78

Table 7.2 Overview of the NPS Achieved 80

Table B.1 Result of the Working Time Query 115

Table C.1 meCUE: Detailed Results of all Students 120

Table C.2 meCUE: Detailed Results of the First Class . . 121

Table C.3 meCUE: Detailed Results of the Second Class 121

XIII

L I S T O F L I S T I N G S

Listing 6.1 Extract from the Slate Document Schema . . . 56

Listing 6.2 Concrete Pundit Policies Regarding Exercises . 60

Listing 6.3 Pundit Policies in CodeOcean Concerning Study
Groups . 62

Listing 6.4 HTTP Request Launching CodeOcean via LTI 63

Listing 6.5 Slim Template Rendering the Request for Com-
ments Table Body 72

Listing 6.6 Method Call within the ActionCableHelper . . 72

Listing B.1 Extract of the Internal Document State in Slate 111

Listing B.2 Partial Data Model of edtr.io 112

Listing B.3 SQL Query to Aggregate Working Times . . . 115

P U B L I C AT I O N

Partial results of this thesis were submitted in advance for review as
part of the following conference paper:

Sebastian Serth, Ralf Teusner, Jan Renz, and Matthias Uflacker.
“Evaluating Digital Worksheets with Interactive Programming Exer-
cises for K-12 Education”. In: 2019 IEEE Frontiers in Education Con-
ference (FIE). Manuscript Submitted for Publication. Cincinnati, OH,
USA: IEEE, 2019 [58]

P R I VA C Y N O T E

All personal data used as examples in this thesis, such as graphs on
user activity or user names, are fictitious and are only shown for the
demonstration of our concept.

XIV

A C R O N Y M S

API Application Programming Interface

AWS Amazon Web Services

BDSG Bundesdatenschutzgesetz, the German Federal Data
Protection Act [18]

BYOD Bring Your Own Device

CSRF Cross-Site-Request-Forgery

EU European Union

GDPR General Data Protection Regulation within the EU [14]

HPI Hasso Plattner Institute1

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ICT Information and Communications Technology

ID Identifier

IDE Integrated Development Environment

IT Information Technology

I/O Input/Output

JSON JavaScript Object Notation

K-12 primary and secondary education from kindergarten to
12th grade

LMS Learning Management System

LRS Learning Record Store

LTI Learning Tools Interoperability

1 https://hpi.de

XV

https://hpi.de

XVI acronyms

meCUE modular evaluation of key Components of User
Experience [43]

MINT Mathematics, Informatics, Natural sciences and
Technology, a common abbreviation for STEM fields in
Germany

MINT-EC Verein mathematisch-naturwissenschaftlicher
Excellence-Center an Schulen e. V., literally “Association of
mathematical-scientific Excellence Centers at Schools”2 —
also see MINT

MOOC Massive Open Online Course

MVC Model-View-Controller

NPS Net Promoter Score [50]

OER Open Education Resource

PC Personal Computer

PDF Portable Document Format

RegEx Regular Expression

REPL Read-Eval-Print-Loop

REST Representational State Transfer

SPA Single-Page Application

SQL Structured Query Language

STEM Science, Technology, Engineering and Mathematics

UEQ User Experience Questionnaire [34]

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

USB Universal Serial Bus

WYSIWYG What You See Is What You Get, an acronym that mainly
describes editors providing the result view while editing
content

xAPI Experience API [70]

2 https://www.mint-ec.de

https://www.mint-ec.de

1
I N T R O D U C T I O N

In recent years, the term Digital Transformation became popular to
describe ongoing changes in society and organizations by redefining
workflows and habits with the help of Information and Communi-
cations Technology (ICT) [37, 66]. While private households and
businesses are able to adopt changing requirements rapidly, govern-
ment agencies are often not as agile and require a longer time to
adjust their processes and existing structures. In Germany, education
is one of the public services financed by the government and is under
supervision of government agencies, which is also defined in Article 7

of the German constitution Basic Law [4]. In practice, the German
federal states define a syllabus and allocate funds for public schools
resulting in a dependency of schools and teachers on the guidelines
specified by the corresponding ministry. Technology-wise, public
schools are chronically under-financed which led to the DigitalPakt
Schule (literally “DigitalPact School”), a series of laws to support the
Digital Transformation in schools1. Its main purpose is to set up a mod-
ern, internet-connected infrastructure in schools to support learning
with digital media. Consequently, many teachers are encouraged to
include online content and the use of computers or tablets into their
lessons. As part of digital education, more and more federal states
in Germany also include mandatory computer science education into
their syllabus, which is backed by the improved, technical infrastruc-
ture. This thesis concentrates on learning programming skills as part
of the computer science education and illustrates how to leverage the
new possibilities offered by digital media for teachers and students.

1.1 motivation

In primary and secondary education from kindergarten to 12th grade
(K-12), teachers generally either present new topics to their students
or practice and repeat previous subjects. For this, they have the choice
between using an existing schoolbook or workbook with given content
or creating their own worksheets. In the following, we concentrate on
the worksheet scenario in German schools. When creating worksheets,
teachers usually reuse existing content from schoolbooks or from
other resources. Regardless of their sources, they are able to adapt
the content to their needs when composing a new worksheet. This

1 https://www.bmbf.de/de/wissenswertes-zum-digitalpakt-schule-6496.html

1

https://www.bmbf.de/de/wissenswertes-zum-digitalpakt-schule-6496.html

2 introduction

adaption is one of the biggest advantages teachers have: The freedom
and possibility to tailor each part of the worksheet to fit their current
situation in class to best support their students. Traditionally, these
worksheets are distributed as paper copies by the teachers whenever
needed. For teachers, this distribution form has some advantages as
they know prior to the lesson that their material is copied and thus
ready and that they do not need to rely on anything else (such as
further technologies) to conduct their lesson.

Traditional, paper-based worksheets also have some general draw-
backs when being compared to digital resources. Regardless of the
environmental or financial costs, printed worksheets lack support for
any form of interactivity or for the adaption of additional content to
specific students. Many teachers strive for interactivity to foster active
participation of their students. Thus, given the choice, today’s teachers
prefer using digital resources for their lessons if available. By doing so,
they circumvent the missing interactivity and also get the benefit of
links to other rich content (independent of the location, for example, a
web resource).

For computer science classes, especially those teaching program-
ming skills, additional drawbacks arise. Similar to other classes,
teachers prepare content to focus their students’ attention on the most
important parts. While a figure, e. g., a schematic representation of
a heart in biology classes, can be easily annotated by students on a
sheet of paper, it’s difficult to work with programming source code
on traditional worksheets, particularly if students must execute the
code to observe the program behavior. If the code is distributed in
paper form, students are required to manually typewrite the given
code which is time-consuming and error-prone. Depending on the
possible mistakes students make, it might even be difficult for teachers
to find the bug in a chaotic “rewrite” of their own template. A second
issue occurs when the teacher decides to discuss results or when col-
lecting students’ work. As every individual learner developed own
solutions and probably saved it locally on the Personal Computer (PC)
in front of them, the teacher has no direct access to the source code
files. However, the teacher needs access for collecting the submissions
and thus must rely on the assistance of the students to copy all files
required to compile and run the program to a provided location. This
increases the complexity for all parties involved and the time effort
for the teacher when compared to collecting paper-based submissions.
However, the work created by students is only available in a digital
format and thus students cannot submit their work on a sheet of paper
to the teacher. Based on the collection of these files, the teacher might
also ask students to present their work in front of the class using a pro-
jector. When having no access to the source files, some teachers might
have the possibility to share a student’s desktop on their machine and
thus circumvent the need for copying the files manually. However, this

1.1 motivation 3

requires further software to be installed on the computers, compatible
network architecture and is no viable solution for schools with a Bring
Your Own Device (BYOD) policy.

A possible solution is bringing the cloud concept to schools. One
approach is the HPI Schul-Cloud2 (literally “School-Cloud”) being de-
veloped to fit the German education system with its strict legal re-
quirements. It provides a web-based interface and native mobile
applications to manage dates in a calendar, provide file storage or to
form classes with different topics including a homework submission
system. So far, it is used by more than 600 teachers and 2,000 students
all over Germany. For non-computer science classes, the platform ad-
dresses some of issues raised, such as missing interactive content for
example by integrating a GeoGebra plugin3 or the interactive white-
board solution neXboard4. Currently, the HPI Schul-Cloud however
lacks specific support for computer science classes.

Inspired by Massive Open Online Courses (MOOCs) [62], teach-
ers wish to access tools used in e-learning environments for several
reasons: First of all, teachers like the didactical approach and the
methodology used in the courses. The course videos often use a
different approach to explain abstract concepts than the one used
in the schoolbook. In addition, online courses include interactive
content, such as simple multiple-choice quizzes for self-assessment
or interactive programming exercises. For the latter, the platforms
usually provide a simplified web interface that is tailored for novices
and offers additional support capabilities. For example, teachers ap-
preciate that the code execution platforms used in MOOCs give direct
feedback to students while working on the code. This direct feedback
frees teachers from providing the same simple feedback over and over
again and allows them to concentrate on students strongly struggling
with the given task. In addition, these web-based code execution plat-
forms are maintained by the respective platform provider eliminating
administrative overhead for schools. If not using online tools, the
PCs used in computer science classes need to have the corresponding
language tools (such as a compiler or interpreter) to be installed in
conjunction with correctly configured developer tools. In comparison,
everything that is required to participate in MOOCs is a computer
with a modern web browser and a stable internet connection.

2 https://schul-cloud.org

3 GeoGebra is an interactive geometry software used to visualize graphical elements —
https://geogebra.org

4 https://nexenio.com/nexboard

https://schul-cloud.org
https://geogebra.org
https://nexenio.com/nexboard

4 introduction

1.2 research questions

Given the content available through MOOCs and the provided tools,
some teachers currently embed resources from these e-learning tools
in their classes. However, MOOC platforms are not tailored for this
use case as they were built with a different design goal in mind. This
results in two substantial drawbacks: (1) Teachers are unable to adapt
the course material hosted online to their needs and the knowledge
level of their students -— the content is not editable and feels static.
In addition, (2) the MOOC platforms prevent teachers from getting
insights into the learning progress of their students, making teachers
dependent on the feedback of their students.

To tackle these drawbacks and improve teachers’ current situation
in educating students the basics of programming, we address the
following research questions:

RQ1. How can we enable teachers to reuse and adapt exercises (e. g.,
from MOOCs) and create their own interactive worksheets?

RQ2. Which tooling support do teachers need to help students strug-
gling with given programming exercises?

RQ3. How can we leverage learning data to enhance teaching effec-
tiveness and help the teacher to achieve lesson goals?

RQ4. Which support do students need to get individual help, either
from their fellow students or from their teacher?

RQ5. Which of the results gathered from the questions above can be
transferred to the general MOOC context?

1.3 structure

In this thesis, we focus on interactive worksheets with programming
exercises in the context of the HPI Schul-Cloud as described in Sec-
tion 1.1. Before diving deeper into our concept, we give some back-
ground information in Chapter 2 on the HPI Schul-Cloud, MOOCs
and programming exercises in general with their respective use cases.
Chapter 3 introduces related work in six categories, mostly focusing
on MOOCs, learning analytics and programming education. More-
over, the chapter introduces existing tools in this field and shortly
highlights their advantages and disadvantages.

For developing our concept of interactive worksheets, we inter-
viewed several high-school teachers about their usage and expectations
of worksheets and digital resources. The insights we gathered are sum-
marized in Chapter 4 and form the foundation of requirements for our
concept. Especially those teachers already using digital resources reg-

1.3 structure 5

ularly in their lessons, reported from advantages and disadvantages of
their current solutions. Chapter 5 elaborates in detail on our concept
of inlining interactive content, especially programming exercises, in a
worksheet with detailed analytics for teachers. As part of the concept,
we explain our research journey based on various iterations of our
prototype. The following Chapter 6 presents implementation-specific
details of our worksheet editor with embedded programming exer-
cises. It outlines the general architecture used to create a seamless user
experience with special respect to the worksheet itself and learning
analytics.

We used our prototype to get feedback from students and teachers
by giving them access to our tool. The results of our evaluation
based on the usage of our prototype within four regular lessons are
described in Chapter 7. Throughout the chapter, we also discuss
how students and teachers evaluate our concept and the prototype.
Based on the evaluation, we It also includes additional feedback from
teachers evaluating our concept without using it with their students.
The thesis closes by showing directions of future work (Chapter 8),
separated in short- and long-term suggestions. Finally, Chapter 9

summarizes the most important findings and also revisits the research
questions by providing a short answer for each.

2
B A C K G R O U N D

This thesis integrates interactive worksheets into the HPI Schul-Cloud
and focuses on programming education. It is inspired by requirements
teachers expressed when using MOOCs in their lesson. Section 2.1
summarizes the concept of MOOCs shortly. As our university is one
of the MOOC providers in Germany offering entry-level program-
ming courses, we are regularly contacted by teachers expressing their
interest in using our content (including our practical exercises) in
their classes. Within this chapter, we provide an overview about the
existing offers and details about the MOOC platform (Section 2.2) and
the web-based code-execution platform used in programming courses
(Section 2.3). Further, Section 2.4 introduces the HPI Schul-Cloud
with its current design goals and the existing architecture intended to
provide a unified cloud solution for all schools in Germany.

2.1 massive open online courses

In 2011, an innovation with global impact debuted in the US: Sebastian
Thrun, professor at Stanford University, published one of his lectures
on the Internet free of charge and thereby reached an audience of
almost 160,000 people [13]. He was the first to reach such a large
audience with his teaching activities. Nowadays, the mass distribution
of learning content via online services has been established and gained
popularity. The concept of making learning content accessible to a
broad audience via the Internet is called Massive Open Online Course
(MOOC). Usually, these courses contain small learning sequences on
a given topic and run in a fixed period of time. During this period,
users have the opportunity to watch learning videos, participate in
self-assessment quizzes or gain points through weekly homework
assignments. Further, MOOCs provide a forum to allow learners to ask
questions and discuss the learning content. The activity of a learner
including progress information and scores is commonly referred to
as learning data. Upon successful completion of the course, each
participant receives a certificate stating the course and the respective
score. MOOCs are offered by universities and private institutions
on many topics and designed for various audiences. While some are
designed for novices, others target experts or are offered in cooperation
with universities to be part of an academic degree.

7

8 background

2.2 moocs offered by the hpi with openhpi

As one of the first universities in Germany, the Hasso Plattner Insti-
tute (HPI) launched its MOOC platform called openHPI1 in September
2012 [41]. openHPI offers Information Technology (IT)-related courses
for different age groups and covers a broad range of topics. One of the
tracks is dedicated on programming and involves the programming
languages Python, Java and Ruby in different courses. Especially the
Python and Java courses are designed for beginners and are targeted
at high-school students. The courses require no prior knowledge
and guide learners through the first steps in the corresponding pro-
gramming language. Besides video and quizzes, these courses also
include practical programming exercises. Therefore, learners are en-
couraged to write small programs and observe their behavior. The
exercises are presented in a web-based programming environment
called CodeOcean2, which is described in more detail in the following
Section 2.3. These courses teaching Java and Python did not only
attract students directly but also caught attention from high-school
teachers. They expressed their interest in using the courses with their
students. To comply with the time requirements teachers have, the
existing courses were repeated in a school edition with an extended
time schedule. Instead of unlocking new content on a weekly basis,
these repetitions implemented a three week time horizon for each
module (previously called a week). However, as this thesis elaborates,
this adaption is not sufficient for many teachers and thus prevents a
broad usage of MOOCs in classes. In 2019, the programming courses
debuted on mooc.house3, the white-label platform4 of openHPI, as
school editions with extended module lengths.

2.3 integration of programming exercises : codeocean

The programming courses offered on openHPI include practical pro-
gramming exercises that are provided on a web-based code execution
platform called CodeOcean [60]. Figure 2.1 provides an example of
an exercise being edited and graded in CodeOcean. The platform has
many advantages for learners and teachers alike:

(1) CodeOcean offers a predefined view on the exercises with scaf-
folded source code including syntax highlighting and allows edit-
ing these files directly within the browser.

1 https://open.hpi.de

2 https://codeocean.openhpi.de

3 https://mooc.house

4 A white-label platform is a hosted service targeting businesses that are interested in
offering the same services under their brand to their customers.

https://open.hpi.de
https://codeocean.openhpi.de
https://mooc.house

2.3 integration of programming exercises : codeocean 9

Figure 2.1: Implementation view of an exercise in CodeOcean. The exercise
consists of a description (top), multiple files (left), the editable
source code (center) and test results (right).

(2) The platform allows executing the code on the server and streams
the output back to the learner’s web browser. Together with
the customized view, learners are supported to get up with the
programming in no time instead of taking care of the development
environment. Learners do not need to download and install any
compiler or runtime. Thus, MOOC instructors minimize technical
help requests about correct machine setup and can focus forum
posts on the content provided in the course.

(3) CodeOcean includes unit tests to provide feedback for learners and
score their code. A unit test is defined as a program that either runs
the learner’s code in a pre-defined way and compares the provided
result with an expectation or the unit test parses the student’s
source code and matches it against an exercise-defined string.
While the code of the unit tests are hidden, learners can run the
unit tests at any time and get instant feedback whether they passed
or failed. If the unit tests fail the result is shown together with
an error message defined by the MOOC instructors. On the one
hand, this feedback helps people to help themselves and provides
learners with a hint of their mistake. On the other hand, the
automated scoring using unit tests is required to indicate progress
for the learners. In the context of a MOOC with thousands of
active learners, a manual review by the instructors is not feasible

10 background

and peer-review of source code has not been implemented in
CodeOcean so far [60].

(4) When MOOC instructors with admin privileges use CodeOcean
in their programming MOOCs, they get basic insights about the
student performance of the given tasks. For example, CodeOcean
tracks the working time of students per exercise (together with
the achieved scores) and already offers some statistics, such as the
average working time and score enabling an anomaly detection
for items being difficult for learners (i. e., based on the time spent
to achieve a full score).

(5) In CodeOcean, learners can ask questions about their program di-
rectly within the platform and in context of their current program.
Usually, MOOC platforms provide a forum to discuss questions.
While this concept also works great for source code in general
outside of a MOOC (cf. StackOverflow5), it is an additional barrier
for novices to summarize their problem externally. To understand
the problem, contextual information is generally of help for others
to provide the current solution. When using a dedicated forum,
learners are required to provide as much information as necessary
to reproduce the issue which beginners might find difficult to
identify. As a result, they might copy too few or too much infor-
mation. In addition, early iterations of the Java courses showed
that learners did not format their source code appropriate in fo-
rum posts (but as plain text)6, making it difficult to read. With
Request for Comments, CodeOcean provides a built-in feature to ask
a question in the context of an exercise, thus lowering the barriers
to get help [64]. CodeOcean presents the learner’s source code
and error message together with the question to fellow students
and allows them to add a comment specifically to one line of code.
Hence, the previously described issue is solved with a dedicated
forum.

CodeOcean is mainly used in the context of MOOCs (such as those
offered on openHPI and mooc.house) and has been used by more
than 42,000 users as of May 2019. CodeOcean is a stand-alone tool
implementing the Learning Tools Interoperability (LTI) standard7 to
be used in various learning scenarios. By offering an LTI interface, it
is accessible from MOOC providers as well as other providers, such
as the HPI Schul-Cloud (see Section 2.4). CodeOcean itself cannot be
used directly by learners or other users than the MOOCs instructors
or administrators.

5 https://stackoverflow.com

6 https://open.hpi.de/courses/javaeinstieg2015/pinboard

7 http://www.imsglobal.org/activity/learning-tools-interoperability

https://stackoverflow.com
https://open.hpi.de/courses/javaeinstieg2015/pinboard
http://www.imsglobal.org/activity/learning-tools-interoperability

2.4 the hpi schul-cloud 11

2.4 the hpi schul-cloud

As described in Chapter 1, the Digital Transformation is an ongoing
process in many organizations and the society in general. However,
many German schools are unable to profit from the Digital Transfor-
mation so far as most of them do not have a suitable IT-supported
learning environment. The HPI Schul-Cloud aims to close this gap
and develops a cloud infrastructure specifically meeting the legal and
organizational requirements within German schools [39]. It is built
upon a scalable micro-service architecture by the HPI in cooperation
with the Verein mathematisch-naturwissenschaftlicher Excellence-Center
an Schulen e. V., literally “Association of mathematical-scientific Excel-
lence Centers at Schools” (MINT-EC). Within the HPI Schul-Cloud,
students can access content provided by their teachers within topics
as shown in Figure 2.2, submit (homework) assignments and organize
themselves with a personal calendar. Teachers might post news or
upload files for their upcoming lessons or browse through existing
content in an existing Lern-Store (literally “Learn-Store”). Moreover,
the HPI Schul-Cloud allows editing documents collaboratively and
supports external tools, such as bettermarks8, a math learning tool.

Content-wise, the HPI Schul-Cloud allows teachers to prepare topic
pages and publish these for later use during lessons. Figure 2.3
visualizes the current editing experiences for teachers. In addition
to static documents, the HPI Schul-Cloud integrates interactive tools,
such as a GeoGebra9 or neXboard10. So far, these plugins are user-
agnostic and either do not preserve changes or sychronize their current
state for all connected users. The submission system available in the
HPI Schul-Cloud allows students to submit text or upload files to be
graded by their teacher.

8 https://de.bettermarks.com

9 GeoGebra is an interactive geometry software used to visualize graphical elements —
https://geogebra.org

10 neXboard is an interactive whiteboard solution — https://nexenio.com/nexboard

https://de.bettermarks.com
https://geogebra.org
https://nexenio.com/nexboard

12 background

Figure 2.2: The HPI Schul-Cloud listing different topics within a computer
science course. Teachers use topics to group learning materials
and structure their courses.

Figure 2.3: The current editing view for teachers within the HPI Schul-Cloud.
The content is separated in different blocks which are either text-
based or include interactive elements.

3
R E L AT E D W O R K

This work is based on existing research in the context of interactive
elements using ICT equipment in different school lessons and prior
research on how to embed content from MOOCs in hybrid classes.
Furthermore, we highlight different didactical approaches on how to
use programming exercises in K-12 education. The following para-
graphs give a short overview of the work this thesis builds on in two
main categories: Ongoing research (Section 3.1 to 3.5) and existing
solutions (Section 3.6).

The related work in the research category begins with work in the
context of interactive elements in computer science lessons (Section 3.1
and continues in Section 3.2 with interactive worksheets. As a key
component of computer science education is programming, Section 3.3
summarizes insights about programming exercises in K-12. Section 3.4
details the integration of MOOCs in classes and Section 3.5 completes
the research category with details on learning analytics.

Prior to analyzing the current situation in schools (see Chapter 4),
Section 3.6 introduces some of the tools available for programming
education and provides background information on the existing ap-
proaches.

3.1 interactivity in computer science lessons

In 2013, Othman et al. stated that computer science classes “contain
numerous abstract concepts that cannot be easily explained using
traditional educational methods” [47]. The authors compare different
forms of online interactive content that can be used in addition to
traditional learning methods, such as simulations, tutorials or quizzes.
This is in line with the findings from Merchant et al. who describe that
the use of games, simulations and virtual worlds improve the learn-
ing outcome gains in K-12 [42]. Existing MOOCs, especially those
designed for a younger audience, make use of this strategy and tell a
story that requires the help of the learner to solve a given problem [21].
Whenever it comes to interactive elements, Merchant et al. also high-
light the importance of the individual experience. Compared to group
interactivity, situations which actively require the involvement of ev-
ery single learner enhance the student performance. Beauchamp and
Kennewell further describe the advantages of using ICT as it supports

13

14 related work

the learner influence on content and methodology [5]. However, they
also state that the usage of those resources needs to be well embedded
in the lesson to push the use of technology in the background while
focusing on the desired content.

3.2 interactive worksheets

While little research is available specifically for the use of interactive
worksheets in computer science classes, the concept has been tested in
other areas. In 2000, Leslie-Pelecky showed that interactive worksheets
in an introductory physics course increased the student/teacher inter-
action [35]. The main cause is the way how worksheets and embedded
tasks are structured: They follow a common goal and, if designed
appropriately, build on each other, starting with easier tasks. Usu-
ally, students work in the same order as the exercises appear on the
worksheets. As soon as students start struggling, the teacher gets an
impression which exercise is causing the students’ problems and thus
can intervene orally. Another advantage of interactive worksheets is
described by Blayney and Freeman: Students are put in the position
to learn at their own speed and pace [8]. This supports the indi-
vidualization of the learning process, especially with an interactive
worksheet that gives direct feedback to the learner. The researchers
describe this as a possible mechanism to support students where they
need the most help. With respect to the level of interactivity and
feedback, Blayney and Freeman also concluded in a previous paper
that better exercises than multiple-choice quizzes are needed and that
it is important to provide frequent feedback to learners [7]. While
multiple-choice quizzes are technically easy to verify, they ask only
for a subset of the content learned and do not allow the students to
demonstrate their understanding of more complex content, such as
approaches or methodologies.

3.3 programming exercises in k-12

For computer science classes with a focus on programming education,
an important part of the learning process is to apply the knowledge
learned by writing source code (amongst other competences, such as
modeling). Besides simple Read-Eval-Print-Loop (REPL) (such as the
one offered on repl.it1, depicted in Section A.2 as Figure A.13), teachers
wish that their students learn to code small programs. A good way
to do so is described by Isomöttönen et al., who propose to provide
students with scaffolded source code [26]. Besides that, scaffolding
also helps students to make progress in a shorter period of time and

1 https://repl.it/languages

https://repl.it/languages

3.4 integrating moocs in classes 15

abstracts more advanced concepts for novices. Other approaches are
discussed by Hubwieser et al., as they raised many questions regarding
the content and methodology of programming education [25]. In this
thesis, we tackle some of these questions, especially those with respect
to the tools and the environment required to support teachers in their
teaching practice by reusing and customizing content, e. g., available
from MOOCs.

3.4 integrating moocs in classes

The majority of teachers who embedded MOOCs in their classes were
satisfied with the results. This is due to the excellent content available
and the use of other teaching approaches, according to research by
Griffiths et al. in 2014 [20]. However, Israel showed that fitting existing
courses that are not tailored for in-class usage is a huge challenge,
for example regarding the engagement of students and the learning
effectiveness [27]. A potential downside is described by Griffiths et
al.: When comparing traditional face-to-face only lessons and hybrid
lessons using MOOCs, student satisfaction is lower in hybrid lessons,
while overall learning results remain on an equal level [20]. Counter
measurements to prevent a decrease of satisfaction need to be taken by
the teacher, for example by providing time within lessons to discuss the
online content and to answer upcoming questions. Caulfield et al. have
shown that students prefer this direct communication for questions
initiated by them over asking for help in an online community as
typically available in a MOOC [10]. Teachers also benefit from the
in-class discussions as they allow them to get an understanding of the
current progress and possible problems of their students. Generally,
teachers have no direct way to access student activity in MOOCs [27]
as MOOC platforms offer only two roles: MOOC instructors and
participants. The role of a teacher or teaching assistant is currently not
represented. Also, additional requirements imposed by school usage,
such as stretched course runtimes and awareness of school holidays
are not represented in most MOOCs.

3.5 learning analytics

Getting insights about the learning data is achieved with so-called
learning analytics and is not only valuable for teachers to perform
grading-related tasks, but primarily of interest for them to improve
their lessons and support students who need extra help [38, 45]. Teach-
ers can use the information provided through the platform to prepare
upcoming lessons, for example by including a repetition to tackle exist-
ing gaps in understanding of a topic. Learning Analytics, such as the

16 related work

individual learning path, the time spent, or points achieved also allow
for predicting students’ performance, as described by Williamson in
2016 [68]. Concerning programming exercises, Blikstein describes that
the frequency of code runs and source code changes allows inferring
the coding behavior, opening an additional window into students’
cognition and approach [9]. Berland et al. describe that these results
can either be used by a teacher (as described above) or to enable
automated feedback to the learners [6]. Besides the increase in self-
awareness of possible problems, Long and Siemens found out that
showing personalized progress information is motivating for learners
when compared to learning goals or peers [36]. Current research, for
example as conducted by Rohloff et al., evaluates how to integrate
learning objectives and corresponding feedback into MOOCs [56].

3.6 online programming resources

Besides MOOCs, other online resources are available to learners in-
terested in a programming language (see Section 3.6.1). These might
either target individual learners or are designed to support learning
in a group, either within a company or in schools. Some specifically
support collaborative code editing (cf. Section 3.6.2) often present in
schools due to missing school computers. Other offers have specific
use cases in mind not directly connected to help learning the basics of
a programming language. Instead, they focus on coding challenges or
recruiting processes (Section 3.6.3). When executing user-generated
code from within a browser, several technical solutions exist, which
are briefly characterized in Section 3.6.4.

3.6.1 Programming Education for Individuals and Classrooms

Individual Learners might use open books, such as predecessors of
current compendiums of a specific language (for example Java ist
auch eine Insel [65], literally “Java is also an island”), available free of
charge on the web2. While teaching the basics of a language, these
(open) books usually miss a dedicated forum or web-based code exe-
cution platform. Some platforms, such as codecademy3, CodingBat4

or SoloLearn5 combine textual explanations with a guided code editor,
multiple-choice quizzes and a forum. In addition, platforms, such
as Treehouse6 (fee required) also feature video explanations and op-
tionally one-on-one support. These offers differ from MOOCs by the

2 e. g., on Java: http://openbook.rheinwerk-verlag.de/javainsel/
3 https://www.codecademy.com

4 https://codingbat.com/

5 https://www.sololearn.com

6 https://teamtreehouse.com

http://openbook.rheinwerk-verlag.de/javainsel/
https://www.codecademy.com
https://codingbat.com/
https://www.sololearn.com
https://teamtreehouse.com

3.6 online programming resources 17

flexible time schedule and allow unlocking new content after solving
previous content sections. With respect to team education, Treehouse
offers a team plan on request featuring individual progress reports
and adaptable learning goals.

3.6.2 Collaborative Code Editing Using Pair Programming

If a school is unable to provide one PC for each student during
computer science lessons, two students are required to share a single
computer. For programming assignments, the approach to work
collaborative in pairs of two might even be advantageous and is also
used intentionally within the software industry where it is known
as Pair Programming. It defines a process, where one person actively
types code as the driver and the other, called the navigator, watches
out for mistakes and acts as a brainstorming partner [46]. As shown
by Nagappan et al. in 2003, pair programming helps students in an
introductory computer science class to perform better (compared to
solo learners) within a less frustrating class experience [46]. The
educational platform Qualified7 supports students to work in Pair
Programming and constantly captures snapshots of the code edited by
students to help a teacher in understanding the development process
retroperspectively.

3.6.3 Browser-Based Code Execution Platforms

With Codeboard8, a web-based IDE is available that supports teachers
in creating scaffolded exercises and collecting student submissions.
Moreover, as shown in Figure 3.1, Codeboard enables students to
edit and run code directly in the browser. Other platforms that allow
writing and in most cases running code in a web browser are either
coding games, recruiting tools or offer further learning material for a
deep dive on a specific topic. CodinGame9 is one of the sites offering
puzzles and mini-games for experienced developers to improve their
coding skills through writing a few lines of source code. This might
come handy for developers seeking a new job. In most cases, hiring
candidates have to pass one or mode online coding challenges (or tra-
ditionally interviews) to show off their capabilities. HackerRank10 and
Codility11 are two examples of platforms that support the recruiting
process by providing tasks together with a runtime in the browser.
Similar to the student/teacher relationship, companies have similar

7 https://www.qualified.io/for-education

8 https://codeboard.io

9 https://www.codingame.com

10 https://www.hackerrank.com

11 https://www.codility.com

https://www.qualified.io/for-education
https://codeboard.io
https://www.codingame.com
https://www.hackerrank.com
https://www.codility.com

18 related work

Figure 3.1: The web-based IDE Codeboard allows learners to create and run
programs without installing local software [15]. Codeboard can
be used as a stand-alone tool or as part of a MOOC. Similar
to a traditional Integrated Development Environment (IDE), it
structures code into projects and allows learners to save them
online.

requirements, e. g., regarding the submission handling and automated
correctness checks via unit tests. Qualified also supports screening
candidates and offers experienced learners the opportunity to further
strengthen their skills with Codewars12. The boundary between pure
learning material (more and more often with interesting challenges)
and educational coding games is increasingly blurred.

3.6.4 Technical Implementation of Web-Based Code Execution Platforms

In traditional development scenarios, developers execute source code
(after compilation / interpretation) locally on their machine or a remote
system they have access to. Most IDEs support local and remote run
targets and are thus allowed to start new processes. Using web
browser, however, starting system processes is not desired (due to the
impact on security) and therefore restricted with the sandboxing all
major browsers implement. As a result, code execution, as done by
traditional software development, is unavailable. Instead the code

12 https://www.codewars.com

https://www.codewars.com

3.6 online programming resources 19

execution platforms mentioned in the previous sections have to use
one of the following two approaches:

(1) Code execution in the web browser: Modern browsers include a
JavaScript engine that allows them to run JavaScript code or We-
bAssembly13 as part of rendering a website. Some platforms, such
as PlayCode14 use the integrated JavaScript engine to execute user-
generated code. As a result, the code stays and runs locally on the
user’s machine, similar to traditional development processes. The
platform provider does not need to care about an infrastructure for
code execution, security implications or scaling factors. However,
this approach is limited to JavaScript and does not allow the native
execution of code written in other languages. To circumvent that
restriction, other platforms, such as TryRuby15 use a transpiler
to generate JavaScript code from another language, in this case
Ruby. However, transpilers are not available for any combination
of two programming languages and might miss advanced features
of the source language. Moreover, JavaScript in the browser still
has limitations, e. g., regarding File Input/Output (I/O) due to
the browsers sandboxing.

(2) Remote code execution on a server: Instead of executing code in
the user’s browser, another approach is to send the user-generated
code together with the scaffolded code to an execution server and
to stream the I/O operations back to the user’s browser. This
approach is more flexible than the browser-based code execution
and, generally speaking, available for all programming languages.
This is advantageous for users as it is independent of the perfor-
mance of their own devices and provides the full capabilities of the
respective language. For platform providers, this approach raises
questions on the security aspects and sandboxing of user-generated
code. Therefore, providers typically either use a serverless func-
tion where the source code is executed on a third-party server,
such as Amazon Web Services (AWS) Lambda16. Or, they execute
code on their servers using a Docker17 container, which provides
an isolation of (user) applications using a sandboxed environment.
In both cases, users are technically enabled to perform arbitrary
I/O operations, if not limited otherwise by the platform provider.

13 WebAssembly is low-level byte code designed for the use in web browsers — https:

//webassembly.org

14 https://playcode.io/online-javascript-editor

15 https://ruby.github.io/TryRuby/

16 https://aws.amazon.com/lambda/

17 https://www.docker.com

https://webassembly.org
https://webassembly.org
https://playcode.io/online-javascript-editor
https://ruby.github.io/TryRuby/
https://aws.amazon.com/lambda/
https://www.docker.com

4
C U R R E N T S I T UAT I O N I N S C H O O L S

To assess the current situation in schools, we conducted interviews
with thirteen computer science teachers in K-12 education, two princi-
pals and five students. In these interviews, we gathered insights on the
approaches teachers use in typical lessons, the resources they use and
the equipment that is available for them during (computer science)
lessons. The following sections summarize the findings: Section 4.1
gives an overview about computer science education in K-12, espe-
cially in Germany, and Section 4.2 outlines the technical equipment
available in schools today. Based on the resources available to teachers,
Section 4.3 focuses on distribution forms for teachers and also consid-
ers education platforms designed for schools. In addition to online
resources, many computer science teachers use own worksheets with
learning materials and exercises, even though they face issues with
integrating source code (see Section 4.4). Regarding the didactical
approaches within computer science education, Section 4.5 highlights
common tools and IDEs used in K-12 programming lessons. Finally,
Section 4.6 formulates key requirements students and teachers have
on technology support in computer science classes.

4.1 computer science education in k-12

In Germany, the sixteen federal states are responsible for the financial
and content-related orientation of education in their state (as shortly
described in Chapter 1). Consequently, the ministries of education
define in their syllabus whether schools should teach computer science
at all, which types of schools offer computer science education and
what students learn at which age. As of 2019, computer science
education is still not mandatory for students in all federal states,
which stands in contrast to the ongoing Digital Transformation and
resulting claims of the society and politicians [33]. Due to the low
prevalence, many computer science teachers are unsure about the
materials and didactical approaches to use. They find the materials
available to them, such as schoolbooks or recommendations from
the ministries, incomplete or see major potential for improvement.
In addition, many schools do not have schoolbooks for students in
computer science classes or describe those as outdated. These are
some of the reasons why teachers tend to use other resources than
books and invest much time to prepare content themselves. Known

21

22 current situation in schools

from other lessons, teachers create worksheets with the content they
wish to teach in the upcoming lessons.

As schoolbooks might not be available (or heavily outdated), teach-
ers search the web for suitable resources. In the German area, many
teachers reported to (re-)use content from Open Education Resources
(OERs) as-is or in a slightly modified way. As one of those, the open
schoolbook inf-schule1 is common and is capable of replacing tradi-
tional schoolbooks. Similar to a printed version, it does not feature
interactive elements but includes exercises and offers sample solutions
for teachers. Furthermore, computer science teachers exchange (parts
of) their content or make it available for the interested public. For ex-
ample, the content published by Tino Hempel on his personal website2

is known by many teachers and students. Additionally, some teach-
ers use MOOCs and combine their lessons with e-learning resources
(known as blended learning). Section 2.1 and Section 3.4 give back-
ground information on MOOCs and discuss some of the advantages
and disadvantages teachers have with blended learning.

4.2 technical equipment of schools and practical im-
plications

More than any other field, computer science education depends on
the technical equipment of the schools. Without internet-enabled
PCs provided by the schools with the appropriate development tools
installed, computer science education is almost unfeasible. In everyday
life at school, many issues arise:

(1) The equipment in schools is, generally speaking, mostly inade-
quate. Both of the principals we interviewed reported to have too
few PC pools available for the demand of teachers, especially with
respect to the class sizes. They further indicated that their internet
connection is not designed for the number of concurrent users
they have, resulting in a poor speed or an unreliable connection.

(2) The technical infrastructure at schools requires constant adminis-
tration; otherwise it will likely get outdated. Due to the usage of
many different students and teachers, unpredictable problems typi-
cally arise over time. School principals and computer science teach-
ers describe difficulties in finding a responsible IT-administrator
taking care of the systems. While only few schools have a dedi-
cated administrator, most other schools are mainly managed by
one of the computer science teachers. Due to the personnel bottle-
necks, changing requirements on the software installed on PCs are
difficult to implement. Moreover, technical stability is a key factor:

1 https://inf-schule.de

2 https://tinohempel.de

https://inf-schule.de
https://tinohempel.de

4.2 technical equipment of schools and implications 23

With some lessons only lasting about 45 minutes, no time should
be wasted by unresponsive computers or other technical issues.

(3) Teachers (and students) usually have insufficient user rights to
install software on school computers. Even if they have the re-
quired permissions, most PCs are configured to reset themselves
to a predefined state with each reboot.

(4) Similar to other fields, students get homework in their computer
science classes and might need to finish a commenced exercise. Of
course, they want to continue working on their last progress. This
implies two requirements: First, they need access to a comparable
development environment on their own PC at home and second,
they need access to their previously edited files. The software
installation on students’ computer might fail with an unexpected
error. Copying the required files at the end of a lesson seems
trivial, but teachers reported missing Universal Serial Bus (USB)
drives or forgotten passwords when trying to send the files via
email.

(5) BYOD policies are difficult to implement due to the financial im-
pact implied for parents and the organizational support required
by school administrators if students should use local applications
on their PCs. Teachers are not in favor of a BYOD policy as they
fear a control loss: On school computers, only educational soft-
ware is installed (minimizing the possible distraction) and teachers
usually have the possibility to lock or inspect the status of a PC,
e. g., by using veyon3. Using local applications on an own device
within computer science lessons might be attractive for students,
but imposes technical requirements on the software to feature a
local development environment.

For these reasons, teachers prefer solutions making a viable trade-off
between the school-provided IT and external resources. Additionally,
teachers consider whether and how students are enabled to continue
their work at home. As a result, most teachers decide between one
of the following three options: First, they could rely on portable
software students bring with their own USB drives as this enables
students to save their progress on the USB drive and continue working
with the same tools on a home PC. A pre-defined set of tools to
work from a USB drive is offered by Tino Hempel with his collection
Informatik on Stick (literally “Informatics on Stick”)4. Second, teachers
could use server solutions with web-based development environments
(as described in Section 3.6). Third, they could work with traditional
software installations and only handle submissions and templates via
a USB drive, a network share or another solution (as outlined in the
following Section 4.3).

3 https://veyon.io

4 https://tinohempel.de/info/info/IoStick/index.html

https://veyon.io
https://tinohempel.de/info/info/IoStick/index.html

24 current situation in schools

4.3 content distribution and submission handling in

computer science classes

Similar to the distribution of traditional hard copies in lessons, teachers
require an adequate way to share digital content with their students.
Especially computer science teachers express the need to distribute
information to and collect results from their students without relying
on printouts. Therefore, an increasing number of schools provide
platforms for their students and teachers to support learning with
digital resources. Following the definition from Kerres, the integra-
tion of digital media (such as those platforms) to distribute learning
content is the first step towards e-Learning [30]. Most platforms used
in German schools today can be characterized as so-called Learning
Management Systems (LMS). According to Paulsen, LMS usually
feature organizational services (to manage students, form groups or
handle communication) and content services (to distribute learning
materials or [homework] submission handling) [49]. Common learn-
ing platforms used in Germany include the open-source LMS Moodle5

and ILIAS6, usually hosted by the schools themselves. Both systems
are designed for broad use cases and are also deployed at universities.
Other systems focus on schools with their specific requirements, such
as the cloud-based product itslearning7 or the on-premise solution
IServ8. Recently, Microsoft and Google joined with own offers, such as
Microsoft Teams9 and Google Classroom10. However, these are not widely
used in German schools due to privacy concerns expressed by State
Commissioners for Data Protection and Access to Information, i. e.,
from Rhineland-Palatinate (Rheinland-Pfalz) [11]. As a consequence,
other LMS, such as Moodle, itslearning and IServ are predominant. Fur-
thermore, the HPI Schul-Cloud is one of the newest LMS and aims to
become a centralized hub for external services with the deep integra-
tion of existing learning content through a Lern-Store (as mentioned
in Section 2.4).

Regarding the content services, all platforms allow teachers to up-
load learning materials and to create exercises for which students can
upload own solutions. Due to the general design that covers common
requirements from all school fields, no solution offers special support
for programming submissions. Students mainly have two choices for
transmitting their source code: They could either paste the code in
a text box (regardless of the presentation for the teacher) or upload
the files manually. In addition, teachers could avoid the platforms

5 https://moodle.org

6 https://www.ilias.de/en/

7 https://itslearning.com/

8 https://iserv.eu

9 https://www.microsoft.com/education/products/teams/default.aspx

10 https://edu.google.com/products/classroom/

https://moodle.org
https://www.ilias.de/en/
https://itslearning.com/
https://iserv.eu
https://www.microsoft.com/education/products/teams/default.aspx
https://edu.google.com/products/classroom/

4.4 worksheets in computer science classes 25

for submission handling and use a traditional network share or USB
drive. All three solutions have several shortcomings:

(1) Textual submission: Teachers need to copy and paste the solutions
of their students manually and save the resulting files locally on
their computer. In the second step, they can compile and run the
code to observe the programmed behavior. Even though some
steps might be automated by an IDE, the teachers we interviewed
find these steps annoying and error-prone.

(2) File upload: When handling each submission individually, down-
loading and running the students’ source code is still a hassle.
The downloaded files might either have unique names making it
more difficult to handle with automation tools or have the same
names, which might lead to name clashes in the teacher’s down-
load folder. For some languages, such as Java, the file name of a
class is important and unintended changes should be avoided.

(3) Network file share / USB drive: Some teachers prefer to use a
network file share or a USB drive to collect submissions as students
help in organizing their own solutions. However these approaches
have the potential disadvantage that students might mutually copy
or alter their submissions. Preventing that through explicit file
permissions requires additional preparation of teachers.

Furthermore, some programs might consist of two or more source
files where at least parts of the sample code should not to be edited by
the students. In such a case, teachers might want to ensure that their
(unaltered) version of the respective source code file is used, making
manual file handling even more complex. As executing student-
generated source code is time-consuming, teachers mostly refuse to do
so. They either only provide feedback from reading the code or do not
collect submissions at all. In the latter case, they can only encourage
students to point out problems themselves. However, our interviewees
reported that usually the more reserved students will not seek help
themselves. GitHub Classroom11 uses the version-control system Git12

to handle submissions but requires knowledge about the functioning
of a version-control system which most high-school teachers do not
introduce to their students.

4.4 worksheets in computer science classes

Independent of the possibilities teachers have to distribute content
through a LMS, many computer science teachers prefer preparing
worksheets as known from other fields. Figure 4.1 depicts one of those
traditional worksheet with a programming assignment designed by a

11 https://github.com/education/classroom

12 https://git-scm.com

https://github.com/education/classroom
https://git-scm.com

26 current situation in schools

Info 12.1LK Soose Zusatz-Übung S. 1

1. Eine selbst definierte Klasse
Es soll eine Variante des Knobelspiels "Stein, Schere, Papier" programmiert werden. Der Spieler
erhält zu Spielbeginn einen Bonus von 10 Punkten. Zunächst entscheidet man sich für einen Spielzug:
Stein, Schere oder Papier. Wird die Schaltfläche OK betätigt, nimmt der Computer ebenfalls einen
Spielzug vor. Dieser Spielzug wird ausgegeben, beide Spielzüge werden verglichen1 und der
Punktestand wird neu berechnet und ebenfalls ausgegeben. Verliert der Spieler diese Runde, wird die
Punktzahl um einen Punkt vermindert, sonst um einen Punkt heraufgesetzt. Sind 20 Punkte erreicht,
wird eine Meldung ausgegeben, dass das Spiel gewonnen wurde, bei 0 Punkten erfolgt ein Hinweis
auf das Verlieren des Spiels.
Die Auswertung des eingegebenen Zuges soll in der selbst definierten Klasse TSpiel erfolgen.

a) Erstellen Sie die fehlende Unit USpiel, die die Klassendefinitionen enthält.

Die notwendigen Dateien finden Sie im Ordner Knobeln auf AlleUser\Soose, wo sich auch ein
Testprogramm (EXE) befindet. Alle weiteren Informationen bzw. Vorgaben entnehmen Sie den
folgenden Texten und Schaubildern. Der private- und der public-Bereich bleiben in USpiel leer!
Beachten Sie bitte, dass der Computerzug als String vom Spielobjekt geliefert wird. Bei der
Methode handelt es sich also um eine Funktion!

b) Die Eigenschaften Punktestand, Computerzug und Spielerzug (alle vom Typ Byte) werden
innerhalb der Klasse TSpiel als privat markiert. Dadurch kann auf diese von außen nicht
zugegriffen werden. Wie muss die Klassendefinition geändert werden, wenn die Unit UKnobeln
nicht verändert werden soll? Schreiben Sie dazu eine Unit USpiel2 und begründen Sie die
Änderungen!

unit uKnobeln;
interface

uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, ExtCtrls, Menus, USpiel;

type
 TFAnwendung = class(TForm)
 LPunkte: TLabel;
 EPunkte: TEdit;
 RGAuswahl: TRadioGroup;
 BOkay: TButton;
 LComputerzug: TLabel;
 EComputerzug: TEdit;
 Button1: TButton;
 procedure FormCreate(Sender: TObject);
 procedure BOkayClick(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 private
 Spiel : TSpiel;
 end;

var
 FAnwendung : TFAnwendung;

implementation
{$R *.DFM}

procedure TFAnwendung.FormCreate(Sender: TObject);
begin
 Spiel:=TSpiel.create;
 Spiel.init(10);
 RGAuswahl.ItemIndex:=-1;
 EPunkte.Text:=IntToStr(Spiel.Punktestand);
end;

procedure TFAnwendung.BOkayClick(Sender: TObject);
begin
 if RGAuswahl.ItemIndex = -1 then
 showmessage('Kein Spielzug angegeben! ')
 else
 begin

1 Schere schlägt Papier, Papier schlägt Stein, Stein schlägt Schere

Klasse TSpiel

Eigenschaften

• Punktestand (Byte)
• Computerzug ∈ [0,1,2] (Byte)
• Spielerzug ∈[0,1,2] (Byte)

Methoden

• Spielbeginn (der Spieler erhält z.B. 10 Punkte)
• Computerzug bekannt machen (als String)
• Spielzüge auswerten

Figure 4.1: A traditional worksheet for a computer science lesson [59]. It is
intended for high-school students in their second-last year and
focuses on creating a custom class for the rock–paper–scissors
game. The worksheet includes an assignment to create the custom
class based on a simplified UML diagram of that class. Moreover,
the remaining program is scaffolded and printed on the page
together with a screenshot of the running program.

high-school teacher. For the creation of worksheets, our interviewees
highlighted the possibilities to (re-)use fitting content from websites
and other resources. Besides identifying the aspects they like and
dislike about their current situation, we also asked them to share some

4.4 worksheets in computer science classes 27

of their current worksheets with us. Finally, we distilled three main
issues of traditional worksheets regardless of the distribution form:

(1) Lack of interactivity: Some use videos or small online games,
such as Pac-Man, to motivate students to work on a given task
related to what they’ve experienced in the interactive content (e. g.,
a path-finding algorithm for ghosts in the context of Pac-Man).
To allow students to work on the most challenging part, teachers
then provide a framework with a few source code files. In this
scenario, they distribute the source code via a file server together
with a Portable Document Format (PDF) of the worksheet with
embedded links to an instance of the online game or a video
hosted online (e. g., on YouTube).

(2) Lack of adaptability: Others use content from MOOCs, e. g., the
programming courses on Java and Python available on openHPI
with programming exercises in CodeOcean. While teachers like
the approach used in these online courses, they wish to have the
opportunity to customize exercises or to add additional references
to the schoolbook available to the class. When it comes to chang-
ing the exercises, teachers want to adapt the exercise description
and the scaffolded code, as well as the automated feedback the
platform provides to learners. In their experience, students focus
on achieving a maximum score while sometimes losing focus of
the actual learning goals. Consequently, teachers might either
accept exercises as they are or manually copy them and loose key
features of the platforms, such as automated feedback.

(3) Lack of usability: Some other teachers remarked on the disadvan-
tages of traditional submission systems based on uploading and
downloading files by hand. They require too many manual steps
to be practical for use in lessons.

Analyzing the shared worksheets, we further derived other needs
not directly mentioned by the interviewees. For example, some teach-
ers distributed their worksheets as editable text documents instead
of PDFs as they included open questions that should be answered by
the students in-line on the worksheets. These teachers need support
to provide each student with an individual, editable copy of the dig-
ital worksheet. Others choose to put the content in LMS, such as a
Moodle instance, that also allows content creation and submission han-
dling. With an LMS, open text questions might be asked together with
simple multiple-choice quizzes allowing the automated generation
of feedback for students. According to the teachers we interviewed,
Moodle is seen as powerful, but also has a reputation for being too
complicated for all parties involved. Concerning computer science
classes, they still do not fit all the requirements teachers have, hence
dedicated assistance is needed. By looking at the exercises included in

28 current situation in schools

the worksheets, we also learned that teachers sometimes wish to pro-
vide a full working source code example allowing students to observe
the execution flow or a programming pattern used. Presenting the
code on PDFs or printed worksheets without the possibility to execute
it, gives the teacher control over the level of detail and granularity
but requires some level of imagination from students to understand
what the given code snippet does. Providing the full source code
as downloadable files enables students to execute it but reduces the
influence a teacher has on the presentation of the relevant code in
question as, for example, no code could be hidden.

All current solutions used by teachers in-class to distribute content
and assignments have some drawbacks. Most of them are caused by
the decoupled source code and other learning materials, resulting in
the need for a context switch when working on a given topic. If some
of those drawbacks are addressed, for example by using MOOCs
and their integrated programming environments, teachers have to
accept their decreased capabilities in editing the provided content
and the lack of access to their students’ submissions and progress.
Consequently, there is currently no option that fully meets the needs
of teachers.

4.5 educational ides tailored for beginners

Besides organizational difficulties, computer science teachers face chal-
lenges in terms of content and didactics (as outlined in Section 4.1).
A major decision they make is about the IDE used in class. In many
cases, teachers prefer educational IDEs (as described in the follow-
ing) over traditional, feature-rich IDEs due to a simpler feature set
targeting novices. Examples for educational IDEs include BlueJ13,
which the authors describe as “a powerful graphical shell / REPL for
Java”. It also includes a graphical representation of classes and objects.
Greenfoot14 builds on top of BlueJ and provides a graphics / simulation
Application Programming Interface (API). It therefore helps students
to visually understand the behavior they programmed. The teachers
we interviewed appreciated the simplification offered by both but also
noted a missing link to “real-world” software development due to the
abstractions included. Other tools support specific tasks: Processing15

for example features simple 2D and 3D visualizations in the context
of a “flexible software sketchbook” according to the website. In this
regard, it is similar to Jupyter Notebooks16, an interactive, web-based

13 https://bluej.org

14 https://greenfoot.org

15 https://processing.org

16 https://jupyter.org

https://bluej.org
https://greenfoot.org
https://processing.org
https://jupyter.org

4.5 educational ides tailored for beginners 29

REPL with support for visualizations. Thonny17 is an open-source
Python programming environment inspired by traditional IDEs that
is designed for beginners and features an integrated debugger. The
most comprehensive educational IDE used by teachers is the Java-
Editor18 by Gerhard Röhner that also integrated an Unified Modeling
Language (UML) editor. On the one hand, teachers like the many
features but on the other hand, they also find them confusing for
novices. Additionally, the Java-Editor also visualizes code blocks and
an integrated debugger, as shown in Figure 4.2. Most educational
IDEs are stand-alone applications and cannot be used through a web
browser even though many teachers would prefer a cloud solution due
to decreased maintenance efforts and access from any internet-enabled
device.

Figure 4.2: Gerhard Röhner’s Java-Editor debugging an object-oriented Java
program [57]. The editor shows the source code on the left (with
additional visualization of code levels), the corresponding UML
diagram on the right and debugging information at the bottom.

17 https://thonny.org

18 http://javaeditor.org

https://thonny.org
http://javaeditor.org

30 current situation in schools

4.6 implications for computer science teachers

The previous sections describe learnings from the interviews we had
with thirteen computer science teachers, two principals and five stu-
dents. While the requirements teachers described are similar, the
approaches they choose to fulfill these differ. We extracted the follow-
ing requirements for tools used in computer science classes:

(1) Teachers wish to mix existing content (e. g., from open books and
from MOOCs) and use the most fitting learning materials for their
students.

(2) Teachers want to adapt the learning materials to their needs and
add own content.

(3) When providing practical exercises, the task should be linked to
the source code.

(4) The programming environment should be simplified to be suited
for beginners but must not limit language features.

(5) Submission handling is crucial for students and teachers in com-
puter science lessons and should be supported by the program-
ming environment.

(6) Access to the programming environment should be simple and
independent of the device used.

(7) Any tool used for teaching in school needs to be technically stable
and in compliance with legal regulations (i. e., data protection
laws).

In this thesis, we develop a concept (see Chapter 5) that is based
on these requirements. Some tools, for example open book websites,
provide some of the advantages (such as serving content), but teach-
ers cannot link to those from development environments or edit the
content directly. IDEs on the other hand provide the development
tools but without linking to the content and, in most cases, without
submission support. Traditionally, teachers create worksheets with
assignments (as known from other fields) and accept some of the short-
comings due to missing tools and time. Therefore, our approach is to
build a novel kind of digital worksheets with embedded programming
exercises to tackle these issues and provide a seamless experience for
students and teachers.

5
C O N C E P T

Our university is one of the MOOC providers in Germany offering free
entry-level programming courses online and is regularly contacted
by teachers expressing their interest in using the content (including
practical exercises) in their classes. From these contacts and from
our initial interviews, we know that teachers often wish to further
provide own content and adapt exercises to their specific needs. There-
fore, we developed a concept that allows teachers to reuse and adapt
content from MOOCs regardless of its type (e. g., introductory texts,
videos, quizzes or programming exercises) and enrich it with their
own exercises or other references.

In the following sections, the concept of interactive worksheets with
programming exercises is introduced:

(1) The general design of interactive worksheets, which is described in
Section 5.1, is based on a modular editor with support for different
content types on a single webpage. The proposed worksheet
editor follows a What You See Is What You Get (WYSIWYG)
editing approach with customized views for teachers and students.
Interactive worksheets support multiple content types including
rich text, embedded images and videos as well as multiple choice
quizzes and interactive programming exercises.

(2) In order to find or create programming exercises for use with their
class in an upcoming lesson, teachers need access to CodeOcean.
Inspired by MOOCs and web-based code execution platforms (see
Section 3.6.3), teachers appreciate automated feedback that is given
to students as it helps learners to identify mistakes. Hence, teach-
ers want to include automated feedback for their own exercises as
well. Section 5.2 introduces the implications these requirements
have to CodeOcean and outlines how CodeOcean exercises could
be integrated into worksheets.

(3) Similar to other materials teachers use during their lessons, stu-
dents access worksheets (and thus programming exercises) through
the HPI Schul-Cloud. As outlined in Section 5.3, CodeOcean ex-
ercises are linked from the HPI Schul-Cloud, which is required
to recognize returning learners and allow proceeding previous
work. Additionally, CodeOcean depends on information about
students and their membership in classes to provide teachers
with meaningful learning analytics of their students. Transmitting
user information from the HPI Schul-Cloud to the CodeOcean

31

32 concept

server must follow a privacy-by-design approach and is limited to
pseudonymized user information.

(4) Further, we tackle the problem of explicit submission handling
in our concept. As previously described in Section 4.3, teachers
find collecting source code from students time-consuming and
the following correction cumbersome and annoying. To address
these drawbacks,Section 5.4 describes an integrated submission
handling process that minimizes the overhead for students and
teachers. Programming submissions are saved automatically to
prevent unintended data loss and serve as a foundation for learn-
ing analytics.

(5) While teachers find it beneficial to access submissions manually
for grading-related tasks, it is no viable approach for them to
get a quick overview, especially during lessons. Hence, access to
automated learning analytics is required, which is introduced in
Section 5.5. Teachers wished to get insights about the working
time in correlation with the progress achieved by their students.
Based on the requirements expressed by teachers, the learning
analytics allow a simple comparison to MOOC participants and
feature a summary for teachers to be used during lessons.

5.1 general design of interactive worksheets

Our vision is that teachers are enabled to mix existing editable content
in worksheets with their own additions. Traditionally, teachers create
those to provide students with tailored learning material adapted to
the current situation of the class. In paper-based worksheets, com-
mon components are text, images and graphics. Special editing tools
support teachers in creating those paper-based worksheets. tutory1,
for example, is a web platform dedicated to edit worksheets intended
to be distributed as printouts to students. tutory focuses on editing
worksheets and includes (design) templates for definitions, images,
references and tables as well as tasks with examples for multiple
choice quizzes, clozes and crossword puzzles. The resulting docu-
ments can be shared with other teachers and downloaded as static
PDF for printing. Thus, students work with hard copies and the
worksheets do not contain any interactive elements. For computer
science lessons, the worksheet editor tutory lacks specific support, so
that source code cannot be highlighted and needs to be inserted as
plain text (an example is given in Section A.2 with Figure A.9.

Similar to tutory, our concept also includes a WYSIWYG editor
with different types of components which can be freely re-ordered
to match the teacher’s needs. Figure 5.1 provides an example of the

1 https://tutory.de

https://tutory.de

5.1 general design of interactive worksheets 33

editor we include in our concept without interactivity yet. Especially
for computer science classes with students having access to PCs, an
interactive worksheets is beneficial as reasoned in Section 4.4. Besides
static text and images, a digital version allows teachers to include
videos and interactive multiple choice quizzes as known from MOOCs
and LMS, such as Moodle. Furthermore, the interactive worksheets
embed a web-based code execution platform featuring the desired
programming exercises. Combining learning materials, e. g., through
textual descriptions or videos, with programming exercises on a single
web page, helps students to revisit explanations while working on the
programming exercises. Moreover, teachers have the opportunity to
share interactive worksheets and programming exercises themselves
with colleagues.

Figure 5.1: Modular worksheet editor as part of our concept without interac-
tive elements. The example introduces recursion in the program-
ming language Delphi [1]. In addition to tutory, the editor allows
highlighting source code.

While it is easy for teachers to adapt a text on a worksheet (worst
case by copying it manually and subsequently changing it), it gets
trickier with other content types, regardless of the editor used. Videos
can be downloaded and embedded on other sites but editing requires
manual labor and some familiarity with video editing tools. In fact,

34 concept

none of the teachers we interviewed was interested in editing a video.
Either, they embed the full video as it is, or they do not use it. Even
specifying a range of the video and thus embedding only a short, con-
tinuous part is rarely used. Some thought about recording their own
videos but did not find enough time to prepare those. Therefore, we
concluded the need to support embedding videos from MOOCs and
also videos from common video hosting platforms, such as YouTube2

or Vimeo3. For quizzes, two major use cases were distinguished: Either
(1) self-tests for the learner or (2) graded or ungraded assignments
with results being checked by the teacher.

Major challenges for teachers are the embedding and customization
of programming exercises from MOOCs. For that, we decided to
show exercises on the same page as other elements to reduce context
switches and to fit our worksheet analogy. As a foundation of our
concept, we built on top of the existing work that was done in the
context of the HPI Schul-Cloud. This brings us several advantages, as
it provides a home for the content creation and helps teachers currently
working with the HPI Schul-Cloud to try our prototype in their lessons.
Further, the research described in this thesis is coordinated with
the future development of the HPI Schul-Cloud and their roadmap.
Offering a free combination of learning materials, it is possible to
replace other forms of worksheets whether analog, PDF- or text-based.
For each content type, a plugin is provided. The default set of plugins
offered by our worksheet editor includes those required to display
images, embed videos or create multiple-choice quizzes. Figure 5.2
visualizes a document created with our concept of an interactive
worksheet editor. It uses the default set of plugins and further embeds
a practical programming exercise to consolidate concepts learned.

5.1.1 Different Views for Students and Teachers

Teachers and students use the same tool to access the worksheets.
While teachers have access to the edit mode, students are limited to
the view mode that prevents changes to the structure of the document
but allows usage of interactive elements within the worksheet. The
edit mode for teachers follows the WYSIWYG approach and thus
provides teachers with the look and feel of the final document. Due to
the concept of providing sample solutions for interactive worksheets
(allowing students to get automated feedback), teachers can also
preview the document from the students’ perspective. This change in
perspective helps teachers to distinguish which information is visible
to students. Besides hiding solutions, no major difference between the

2 https://youtube.com

3 https://vimeo.com

https://youtube.com
https://vimeo.com

5.1 general design of interactive worksheets 35

Figure 5.2: Wireframe of an interactive worksheet. It contains a textual intro-
duction to a topic, a visualization (in form of an UML diagram)
and a video. Additionally, it features a multiple-choice quiz and
a programming exercise. At the bottom, the overall progress (in
terms of the score achieved) is shown. The drawing illustrates the
teacher role so that a switch to the preview mode and analytic
results is possible (top right corner).

editing and viewing context exists. The control elements within the
editor are of secondary importance and are hidden unless needed.

During lessons, teachers and students access the worksheet simul-
taneously. Each student gets an individual instance of the document
so that resuming work is possible. Within the worksheet, teachers
have access to submissions of their students (Section 5.4) and learning
analytics insights (Section 5.5). The access to submissions can either be
used for grading tasks or to discuss solutions and emerging problems
during a lesson. As shown by Janke, a dedicated presentation view
supports teachers in using a projector to show student results in front
of the class [28].

36 concept

5.1.2 Accessibility of Content for Students

If designed appropriately, the worksheets contain all information re-
quired for students to proceed in learning the topic and solving the
embedded assignments. The worksheets are self-contained and sepa-
rate topics from each other. Together with additional resources (e. g.,
a programming language reference), students can learn at their indi-
vidual pace. However, teachers might sometimes wish to have fixed
checkpoints to compare results or discuss problems before students
proceed with working on the assignments. Traditionally, teachers
would either split the worksheet into multiple parts or ask students to
ignore sections of it until it is used later during the lesson. With the in-
teractive worksheet however, teachers get control over the visibility of
content blocks on the worksheet. One or more elements in the editor,
such as text, videos or programming exercises, form a content block
that teachers can hide or unhide while students are working with the
worksheet. Thus, teachers have a higher level of control during their
lessons and can adapt changing situations rapidly: Teachers could
prepare a component with additional content and use it only if they
think students will benefit from it. Whenever desired, teachers can
control the visibility of new content and navigate to other sections of
the document. Arndt introduces the concept of a Schul-Cloud Cockpit
to provide teachers with a detailed overview of the student progress
together with the current tasks visible to them (prototype shown in
Section A.2 with Figure A.11) [2].

Besides teacher-unlocked components, some interviewees proposed
auto-unlocking of content based on progress of previous sections.
For example, a worksheet might contain an introduction and two
programming exercises on a given topic. Only if both assignments
were solved by the student, a final multiple-choice quiz could become
visible to recapitulate learnings from the practical programming exer-
cises. To minimize student frustration whenever new content appears
after finishing a task, an overall progress indicator is present on the
worksheet. Combined with the direct control teachers have about the
visibility of content, many different learning scenarios can be created
for use during lessons and at home as part of student homework.
Auto-unlocking new content based on student progress is also part
of the research conducted by Håklev et al. to support collaborative
learning scenarios. Their tool FROG, which is shown in Figure 5.3,
implements Orchestration Graphs that “depict the structure (what
is done when by whom)” of a learning scenario and thus can be
used to enable auto-unlocking of new content [23]. Overall, three
visibility options are available: Always visible, teacher-controlled and
auto-unlocked through previous assignments.

5.2 editing programming exercises in codeocean 37

Figure 5.3: The FROG editor used to create an Orchestration Graph for a
lesson [22]. The lesson planned includes time for Reading, which
students need to finished before they continue with the next
assignment.

5.2 editing programming exercises in codeocean

In addition to a suitable content editor, teachers also need direct access
to a code execution platform, in our case CodeOcean. Up to now,
CodeOcean was designed with MOOCs in mind, resulting in a simple
authentication model of administrators drafting exercises or managing
the platform and students using the system to solve exercises without
any backend access. In CodeOcean, each exercise comprises one or
more files visible or editable by the user, which already contain some
scaffolding, and hidden unit tests to check the correctness of the
student’s submission. The result of a test-run is then used to provide
automated feedback to students and to direct them to the mistakes
they made. For the desired use in class, this is not sufficient as it
completely omits the teacher role. Therefore, our concept implies that
CodeOcean is extended to support a third role, called teacher. It allows
teachers to (1) create new exercises that (technically) do not differ from
existing exercises created by MOOC instructors and (2) browse a list
of public exercises and clone those if desired. A wireframe outlining
the process of editing exercises is shown in Section A.1, Figure A.1.
Given these changes, CodeOcean can become the starting point for
teachers to build a repository of exercises. These might then be
shared using CodeHarbor, a platform designed to find, share and

38 concept

improve exercises which are fully compatible with CodeOcean [61].
For learners belonging to a class the teacher educates, the teacher is
enabled to view learning analytics and access student submissions on
demand.

5.2.1 Automated Feedback through Unit Tests for Exercises

During our initial interviews, we found that providing the same tools
that MOOC instructors use to create exercises including unit tests for
automated learner feedback, is not sufficient and suitable for teachers.
Many teachers we consulted either did not know about unit tests at
all or admitted that they are unable to write their own tests. As a
result, none of our interviewees is willing to invest the time and effort
to create tests for their own exercises. On the other side, teachers
described the feedback given to learners on the basis of the tests as
one of the biggest advantages CodeOcean offers when compared to
other solutions.

Therefore, the usability of the platform with own exercises might be
further improved with CodeOcean offering a (simple) unit test genera-
tor (fully outlined in Figure A.8, Section A.1). By analyzing exercises
used in MOOCs, we found a few general test cases that repeated over
and over again: In Java, typical tests compare (1) the command line
output, (2) the content of a source file or (3) a return value from a
method against a specified Regular Expression (RegEx). Most parts
of a unit test are similar and related to getting the desired string or
executing the code. We are confident that teachers benefit from a
test generator that simply asks them what to compare against which
expected result and auto-generates the code required to perform this
task. Writing a RegEx that is general enough to include all possible so-
lutions but as strict as possible to prevent mistakes being misidentified
as solution is difficult, as MOOC instructors acknowledged. There-
fore, teachers need further assistance in finding the correct RegEx.
Some tools, such as regex1014, allow users to provide a RegEx together
with multiple examples and highlight the matched parts visually (an
example is provided in Section A.2 with Figure A.12) [44]. While
being a help mainly for professionals, users still need to write the
RegEx themselves. Other approaches include generating the RegEx
from examples, an approach explored by Bartoli et al. to generate a
RegEx based on a provided pair of strings and desired matches [3]. In
this thesis, we concentrate on simple RegEx proposed by the unit test
generator with a few options to specify the case-sensitivity or whether
a RegEx should match the string fully or partially.

4 https://regex101.com

https://regex101.com

5.3 deep integration with the hpi schul-cloud 39

5.2.2 Referencing Exercises from Worksheets

Programming exercises for worksheets need to be created on CodeOcean
before being embedded into a document. Therefore, teachers need
access to CodeOcean outside of the worksheet editor to create new
exercises, browse existing ones and try them out for themselves. Once
they are satisfied with an exercise, they can embed it into a worksheet
(cf. Figure A.2 in Section A.1). The embedding is either done by
manually copying the exercise Identifier (ID) to the worksheet editor
or by selecting the corresponding exercise from a list offered by the
integration of CodeOcean in the worksheet. Teachers might either
include a specific exercise or let CodeOcean recommend a fitting ex-
ercise (through a mechanism called Proxy Exercise). When learners
access one of those exercises for the first time, they are served with a
specific exercise that is most suitable for them, e. g., to repeat a concept
they previously struggled with. The exercise recommendation system
was introduced by Teusner et al. for bonus exercises in programming
MOOCs and also helps teachers to support their students best with
targeted and individualized worksheets [64]. Therefore, worksheets
with recommended (bonus) exercises and automated feedback are
a first step towards internal differentiation as further described in
general by Arndt in his Master’s Thesis [2].

5.3 deep integration with the hpi schul-cloud

The interactive worksheets are integrated into the HPI Schul-Cloud
which frames the content available through worksheets. As outlined
in Section 2.4, the HPI Schul-Cloud is structured in courses that have
multiple content topics. Each worksheet is assigned to a specific topic
and is therefore accessible via that topic. Furthermore, the editor uses
the surrounding infrastructure as offered by the HPI Schul-Cloud elim-
inating the need for explicit authentication and authorization. Arndt
describes the general integration concept regarding the persistence of
documents and separation of users in more detail [2]. As a result of
his concept, the worksheets are user-aware and can associate progress
with individual learners. Within the worksheets, programming exer-
cises are provided by CodeOcean. For meaningful learning analytics
within CodeOcean, the course context of a learner is required which
is therefore passed by the HPI Schul-Cloud to CodeOcean. Hence,
CodeOcean can form study groups including the teacher and all stu-
dents of the course automatically with no need of manual work.

40 concept

5.3.1 Pseudonymization

From the very beginning, the HPI Schul-Cloud was designed in ac-
cordance with German privacy protection laws in mind, such as the
Bundesdatenschutzgesetz, the German Federal Data Protection Act (BDSG)
and the European General Data Protection Regulation (GDPR). For
example, Article 5 of the GDPR introduces the data minimisation prin-
ciple to restrict the use of personal data to a minimum required to
provide a service [14], which the German BDSG further restricts [18].
Consequently, the HPI Schul-Cloud minimizes the transmission of
personal data to third parties, including interactive components in
worksheets. If some person-related data is required, for example to
allow proceeding previous work, a pseudonymous ID is used that
differs for each user and service combination. In particular, the HPI
Schul-Cloud does not expose user or email information to any third
party without previous consent.

When students access a programming exercise in CodeOcean em-
bedded into a worksheet, the same mechanism applies: CodeOcean
only obtains a pseudonymous ID to identify returning users. For
learning analytic insights offered to the teacher, the pseudonymization
is problematic. As long as CodeOcean only has access to an ID, the
platform is unable to display real student names to teachers in the
analytics. Therefore, a de-pseudonymization approach is needed and
should ideally revert the pseudonymization within the teacher’s web
browser or through a proxy to prevent names being processed by
the CodeOcean server [51]. In their paper, Renz and Meinel focus
on generalizable de-pseudonymization strategies, which only require
dedicated support for the pseudonymized usage of external tools,
such as CodeOcean but no major architectural changes for the de-
pseudonymization [51].

5.3.2 Customization of the CodeOcean Integration

In our concept, the integration of CodeOcean exercises within the
HPI Schul-Cloud is highly customizable and thus supports teachers
in various different teaching scenarios. Without any further explicit
settings, all features available in CodeOcean are enabled for students
working on a programming exercise. For some teaching scenarios,
however, high-school teachers do not want students to use the full
potential offered by CodeOcean. For example, some teachers wish
to provide students with a non-modifiable version of a program.
Thus, students can execute the code and observe the programmed
behavior without accidentally changing it. By combining a read-only
(but executable) version of exemplary source code together with an

5.3 deep integration with the hpi schul-cloud 41

exercise on the same worksheets, students are encouraged to apply
knowledge they got from the example in their own code.

Furthermore, some of our interviewees wished to disable the ability
of CodeOcean to display test results or scores to prevent that students
loose the actual learning goals (cf. Section 4.4). Each of the main
functionality in CodeOcean, such as posting a Request for Comment or
running the code is individually configurable by teachers. If desired,
teachers can combine multiple of these settings to minimize the tool
support offered by CodeOcean. By disabling many of the features
offered by CodeOcean and combining them with the submission
handling, the way is paved for teachers to use interactive worksheets
as (graded) homework assessments. Based on the interviews we had
with teachers, the main features that need to be disabled are those
to run, download, and score the source code as well as additional
help offered by CodeOcean through automated hints or details about
failed tests. Figure 5.4 depicts the automated hints as an example
of a feature teachers wish to control for their students. A wireframe
outlining the integration is included as Figure A.3 in Section A.1.

Figure 5.4: Automated hint provided by CodeOcean to help learners identi-
fying mistakes in their source code. The hint is displayed above
the console output and rephrases the Java exception. Showing
hints is one of the features teachers wish to disable from time to
time.

42 concept

5.3.3 Worksheet Sharing and Content from MOOCs

According to Keutel, course planning and preparation is a time-
consuming process for teachers [31]. In his Master’s Thesis, Keutel
studied how teachers can be encouraged to share learning material
using the Lern-Store available in the HPI Schul-Cloud (cf. Section 2.4).
While the Lern-Store is, so far, only available for external resources,
Keutel expands the concept to also include teacher-generated content.
The interactive worksheets with videos and programming exercises
fit into that concept and thus can be shared using the approaches
available within the HPI Schul-Cloud with others. Additionally, ex-
isting content from MOOCs can be grouped as a worksheet and can
be included in the Lern-Store to help teachers in reusing content from
online courses.

Sharing a complete worksheet with programming exercises pre-
serves the context of individual components and provides teachers
with a suitable introduction for the practical programming assign-
ments. Extracting single programming exercises could take them out
of context. Thus, the preferred sharing approach for worksheets is the
general-purpose Lern-Store within the HPI Schul-Cloud. A more de-
tailed sharing on exercise level (instead of worksheet level) is available
within CodeOcean. Teachers have the opportunity to browse a list
of exercises and make their own creations public for reuse by other
instructors (see Section 5.2).

5.4 implicit submission handling

Similar to traditional, paper-based worksheets, the interactive work-
sheets do not require a learner to explicitly save the progress. Instead,
the progress is saved automatically, depending on the plugin type in
which the change occurred. Answers given to multiple choice quizzes
are transmitted to the server immediately and changes in editable
source code files are saved after a few seconds of inactivity or when-
ever the user compiles and executes the code. Auto-saving the learners’
progress prevents any data loss which could otherwise be caused by
an unresponsive (school) computer. In addition, there is no need for
students to flag their final version or submit it explicitly. CodeOcean
will always display the latest version for teachers on demand and also
use that for the generating test results (see Section 5.4.1). Additionally,
a snapshot of the source code together with information about failing
unit tests is being generated in case the student uses the Request for
Comment feature on CodeOcean.

5.5 learning analytics 43

5.4.1 Pre-Evaluation of Submissions

Collecting student submissions through an adequate submission sys-
tem is only the first step for teachers to review the collected solutions.
By using the unit tests defined together with each exercise, CodeOcean
is capable of providing teachers with a first impression of the correct-
ness of student submissions. Depending on the quality of unit tests
available, this pre-evaluation might be close to a manually scoring.
The rough estimation generated by the execution of unit tests provide
teachers with a hint where to concentrate on during their review. In
our concept, the pre-evaluation is done based on the last submission a
student did and independent of the visibility of test results to learners.
However, if test scores are shown to students, they reflect the same
score that teachers would see. Future work might include tests whose
results are exclusively visible to teachers.

5.4.2 Time Traveling to Understand the Learner’s Approach

As elaborated in Section 3.5, the history of source code changes pro-
vides an additional window into the student’s cognition and helps
educators to understand the approach students used to solve the given
exercise [9]. Based on scoring runs, CodeOcean allows teachers to re-
view the evolution of their students’ source code on demand and upon
approval. The platform lists all intermediate submissions together
with the corresponding unit test results. Inspired by a time-travel,
teachers can follow the progress of individual students afterwards
with an interactive playback of the changes in the source code files.
Intended to be used occasionally, the time-travel feature is designed to
help teachers in identifying the root cause of problems and to tackle
existing misunderstandings of their students individually.

5.5 learning analytics

Besides providing a tool for creating and delivering content, our con-
cept includes a deep integration of learning analytics. As mentioned
in Section 4.4, this data is usually not available to teachers even though
they are likely to benefit from a view on prepared data. We designed
the architecture of our digital worksheets to support learning analytics
per plugin instance (meaning per exercise for programming exercises)
and a high-level overview of the whole worksheet. The teacher’s
view will show a short excerpt of key metrics below each part of the
worksheet (as sketched in Figure 5.5) to give teachers a quick overview
of the current status of their students. Further, a detailed analysis per
programming exercise should also include an overview of time spent

44 concept

Figure 5.5: Wireframe of key metrics shown below each part of a worksheet.
Teachers get the most important information regarding the status
of an exercise with a glance.

by students to solve an exercise, exceptions, and errors raised during
the work and which questions in form of help requests were posted
in the context of the given assignment. Figure 5.6 shows a wireframe
for a per exercise view of learning analytic data that could be embed-
ded into a worksheet (expanded wireframe with additional examples
added as Figure A.4 A.5, A.6 and A.7 in Section A.1). Additional to
showing the same view students have on a programming exercise,
CodeOcean provides a view for teachers highlighting the analytic
insights and offering access to student submissions (as described in
Section 5.4).

Figure 5.6: Wireframe of learning analytics for a per exercise view designed
for teachers within a worksheet. The concept features key metrics
of student progress, such as a submission count, the average
working time, frequent exceptions of code runs and help requests
of students.

5.5 learning analytics 45

5.5.1 Integration with External Systems

Based on domain knowledge available, the learning analytics in
CodeOcean can include source code specific information, such as com-
mon mistakes made by students or exceptions not handled correctly.
Furthermore, the Request for Comments feature, which supports help
requests in the context of code, are exclusive to programming exercises.
However, interactive worksheets contain more components than pro-
gramming exercises, such as multiple-choice quizzes. For a complete
view on the progress of the class, teachers wish to get summarized
views including all data available. Therefore, CodeOcean transmits
selected learning analytic data from students to the surrounding work-
sheet editor. Thus, the worksheet editor is responsible of processing
that data in the overall context of the HPI Schul-Cloud architecture.
As outlined by Renz and Meinel in their paper “Can Pseudonymized
xAPI-Tracking Solve Data Privacy Issues in German Schools?” and as
shown in Figure 5.7, this approach is in compliance with the GDPR
and works seamlessly with the pseudonymization engine available
within the HPI Schul-Cloud (cf. Section 5.3.1) [51]. Based on the
high-level learning data available from various editor components and
combined with events from other third parties, the HPI Schul-Cloud is
capable of providing a holistic overview for teachers. The aggregated
view enables teachers to identify students struggling with the topics
and to focus their help to the most problematic content.

Schul-Cloud
LRS

Students
Pseudonymisation

Engine

Pseudonym

xAPI Response
(Pseudonym, Data)

User ID,
Application ID

LTI 1.1 or OAuth2
(Pseudonym, xAPI-Endpoint)

Educational
Resources
(Publisher)

. . .

Teacher

xAPI Response
(User_Id, Data)

TeacherCockpit

Mapping

Figure 5.7: The pseudonymization concept designed for transmitting learn-
ing analytics to the HPI Schul-Cloud [52]. When students access
an external tool, such as CodeOcean, only the pseudonymized
ID is transmitted together with an so-called xAPI endpoint for
transmitting learning analytics. In our concept, the worksheet
editor is the xAPI endpoint. Teachers access learning analytic
data, which is stored in a Learning Record Store (LRS) through
views in the HPI Schul-Cloud (called TeacherCockpit).

46 concept

5.5.2 Summary for Teachers During Lessons

Due to the abstraction and aggregation of data made for the gen-
eral learning analytics offered by the HPI Schul-Cloud, the resulting
overview is designed for long-term analytics and across multiple ex-
ercises. During lessons, when teachers provide a small number of
exercises to their students, more specific information including the
exercise and live progress is valuable to teachers. Similar to the HPI
Schul-Cloud Cockpit for worksheets as described in Section 5.1.2), our
concept includes a specific cockpit for CodeOcean exercises depicted
in Figure 5.8a. It includes selected information to provide teachers
with a quick overview of the current situation in class and is tai-
lored for one specific exercise. Besides posted Request for Comments,
it mainly focuses on the time students spent on the assignment and
their current progress based on the result of unit test runs. As most
exercises in CodeOcean contain multiple unit tests, a percentage score
for each interim solution is calculated. By combining the score with
the working time spent by students so far, teachers are enabled to
identify those students who spent much time on the exercises but only
slowly increase their score. With access to that information during
their lessons, teachers can intervene rapidly and help students on an
individual basis.

5.5.3 Comparison of Learners from a School Class to MOOC Participants

With CodeOcean and the code repository CodeHarbor, teachers can
create own programming exercises or reuse an existing assignment
from colleagues or MOOCs. Reusing an unaltered exercise from
someone else does not only save time but also provides additional
learning analytics. Many of the exercises available in CodeOcean so far
were used by up to 9,000 learners through MOOCs. For each exercise,
an average working time across all users is available allowing high-
school teachers to compare the average working time of their students
with those of MOOC participants. Using the result of the comparison,
teachers might conclude one of the following: (1) Many learners from
the comparison group required a long time to solve the exercise (e. g.,
because the exercise is difficult or the topic is complex) and thus the
teacher’s class might also take more time on that specific exercise. (2)
Only students educated by the specific teacher require significantly
longer and thus might struggle with the topic the exercise is about.
In the latter case, teachers might use the insights offered to adapt to
this situation. The teachers we interviewed valued the concept of a
benchmark with other learners. However, they expressed concerns that
the comparison is only valuable to them with background knowledge
of the group they compare their own class to. Therefore, our approach

5.5 learning analytics 47

(a) Each bar of the graph on student progress might
consist of several sub-bars. These indicate how
long a learner worked on the source code to
achieve a score. For example, it took learner
B about two minutes to reach at least 50% of
the overall score. In the additional four minutes
spent so far, the score did not exceeded 75%.

(b) Extended version of the wireframe shown in
Figure 5.8a. An optional indicator visualizes the
average working time of MOOC participants to
reach a full score. Teachers might select the
comparison group they want their students to
be compared with (bottom row) or disable the
comparison.

Figure 5.8: Wireframe of the analytical dashboard for one specific exercise
within CodeOcean. Teachers are provided with an overview of
the scores achieved by their students in correlation with the time
they required. In addition, teachers see the most recent Request
for Comments and have access to submissions of their students.

is to provide a few, predefined user groups as a benchmark and offer
these integrated into the existing dashboard as optional extension (as
shown in Figure 5.8b). The comparison groups might include other
users accessing the exercises through the HPI Schul-Cloud (addressing
the concerns mentioned by teachers) or all users from MOOCs for a
larger comparison group.

6
I M P L E M E N TAT I O N

This chapter describes the implementation of the concept previously
outlined in Chapter 5 and especially highlights steps required for
the evaluation (cf. Chapter 7). Technically, four main components
are involved to provide the functionality of our concept with em-
bedded programming exercises: The HPI Schul-Cloud platform, a
content editor called edtr.io1, the programming execution environment
CodeOcean, and a Learning Record Store (LRS). All components and
their respective communication are shown in Figure 6.2 and described
in more detail in Section 6.1. The worksheet editor (Section 2.3) is the
central component delivering and framing the content for students. It
consists of multiple plugins providing interactive and multimedia re-
sources. One of the content types provided are practical programming
exercises through CodeOcean. Section 6.3 summarizes the changes
we made to CodeOcean to support teachers and enable them to create
exercises for their students themselves. Besides other changes, we
added support for study groups in CodeOcean (to provide teachers
with learning analytics of their class) and provided teachers with
control over the features available within a worksheet. The restrictions
defined by the teacher are applied every time a student launches a
programming exercise (see Section 6.4). The results and scores gained
by students are transmitted to the HPI Schul-Cloud (where they are
processed by a LRS) and stored in CodeOcean for learning analytics
(Section 6.5). Intended for use during lessons, the live dashboard,
which is described in Section 6.6, provides teachers with a per ex-
ercise view of their students’ working times and posted questions.
Finally, Section 6.7 summarizes technical learnings from the proto-
types and limitations introduced by security considerations in modern
web browsers.

6.1 architecture of worksheets with practical program-
ming exercises

The interactive worksheets (see Figure 6.1 for an example) are in-
tegrated into the HPI Schul-Cloud, which is a stand-alone service
designed to replace other LMS targeting schools. In our prototype,
the HPI Schul-Cloud acts as the identity provider, manages classes
consisting of students and teachers and grants access to course con-

1 https://edtr.io

49

https://edtr.io

50 implementation

Figure 6.1: Exemplary worksheet on the Java topic inheritance as used in our
study, consisting of text, an image, a video, a multiple choice quiz,
and a programming exercise. An enlarged version is available as
Figure B.1 and B.2 in Section B.1.

tent, such as digital worksheets. The HPI Schul-Cloud is built upon a
microservice architecture with a dedicated microservice for the work-
sheet editor called edtr.io. In contrast to other services within the HPI
Schul-Cloud, it is directly user-facing and, with minor adjustments,
can be used autonomously. More precisely, the editor prototype we
used during our evaluation mirrors selected user information. By
opening a worksheet, the identity of each user together with the role
(student / teacher) is passed to the worksheet editor instance to cus-
tomize the view being rendered for this user. It is also required to save
a user’s progress to continue working later and to store submissions,
which might be collected and inspected by a teacher.

One of the unique features of the worksheet editor is the abil-
ity to embed practical programming exercises for computer science
education. The web-based programming environment used is the
CodeOcean platform designed for MOOCs offered by the HPI. Tech-
nically, CodeOcean is also a stand-alone application containing all
tools required to run and store editable source code of user-defined

6.1 architecture of worksheets with practical programming exercises 51

programs. However, the platform requires an external login for all
learners through the LTI standard2, which is also used to link to a
specific exercise. In the context of MOOCs, the LTI standard is also
used to transmit the final result achieved by students back to MOOC
providers. While the same mechanism could be used in the HPI
Schul-Cloud, it is limited to returning a single score. Thus, the HPI
Schul-Cloud prefers using the Experience API (xAPI) standard3 to
transmit optional learning analytical data. As described by Klein-
knecht, the HPI Schul-Cloud developers evaluated the integration
of an open-source LRS to store and process the learning data from
multiple sources [32]. The evaluated LRS is the open-source solution
Learning Locker4, a stand-alone tool that also integrates analytical
tools for the data received. The resulting architecture of worksheets
with all components outlined in this section is shown in Figure 6.2
together with associations between the different systems.

HPI Schul -Cloud
(LMS)

Learning Locker
(LRS)

other external resources
(e.g. YouTube, GeoGebra, ...)

openHPI
(MOOC platform)

edtr.io

CodeOcean

? integrates content from

? sends xAPI
events to

 ? launches

? provides LTI
login for

 ? provides learning analytics insights for

?

Figure 6.2: System architecture of interactive worksheets with the integra-
tion of multimedia content and programming exercises from
CodeOcean. An enlarged version is available as Figure B.3 in
Section B.2.

2 http://www.imsglobal.org/activity/learning-tools-interoperability

3 https://xapi.com/

4 https://learninglocker.net

http://www.imsglobal.org/activity/learning-tools-interoperability
https://xapi.com/
https://learninglocker.net

52 implementation

6.2 worksheet editor : edtr .io

In his thesis, Wirtz introduced the concept of a modular worksheet edi-
tor for use in schools [69]. The concept he described was implemented
with React Components5 to extend the editor with own plugins. React6

is a client-side JavaScript framework for the creation of interactive user
interfaces and is mainly backed by Facebook7. In a later version, Wirtz
extended the concept of a React-based editor and rebuilt the modu-
lar concept on top of the Slate8 framework, which is a React-based
framework to support the development of rich text editors. As the
worksheet editor is still under active development, the version we used
during our research slightly differs from the current version built in
cooperation with Serlo9, an OER provider based in Munich, Germany.
Collaboratively, a WYSIWYG editor called edtr.io is developed, which
is based on the React and Slate frameworks. In the implementation
designed for usage in the HPI Schul-Cloud, the editor consists of
a client-component developed in React and a backend server, both
depicted with their respective components in Figure 6.3.

M ySQL
(database)

Node.js
(JavaScript runtime)

edtr.io server

Prisma
(database

abstraction layer)

TypeScript
(static typing support

for JavaScript)

? provides a
framework for

? is transpiled to
JavaScript and runs on

 ? accesses

edtr.io cl ient

TypeScript
(static typing support for JavaScript)

Apol lo Cl ient
(GraphQL abstraction layer)

React
(framework for creating interactive user interfaces)

? uses

? integrates with

GraphQL
(query and mutation language)

bi-directional communication channel

? uses

Slate
(framework for building

rich-text editors)

? is based on

Prisma Cl ient
(GraphQL implementation)

 ? interacts with

Figure 6.3: System architecture of the worksheet editor edtr.io consisting of a
backend server and a React web application. An enlarged version
is available as Figure B.4 in Section B.2.

5 https://reactjs.org/docs/components-and-props.html

6 https://reactjs.org

7 https://opensource.facebook.com

8 https://www.slatejs.org

9 https://serlo.org/

https://reactjs.org/docs/components-and-props.html
https://reactjs.org
https://opensource.facebook.com
https://www.slatejs.org
https://serlo.org/

6.2 worksheet editor : edtr .io 53

edtr.io persists all user progress together with documents in a re-
lational MySQL10 database accessed through a GraphQL11 backend.
GraphQL is a query language created by Facebook dedicated to handle
resources from within a graph with references to other objects. The
relational database is managed by Prisma12, a tool which defines the
database schema and migrates it if required. In addition, it provides
a framework to create a custom GraphQL server. The edtr.io backend
server is written in TypeScript13 and uses the GraphQL server frame-
work. TypeScript extends JavaScript with strict typing and is transpiled
to JavaScript in a build step prior to the deployment. The resulting
JavaScript code is interpreted by a Node.js14 server, an open-source
runtime for server-side JavaScript.

Using Prisma as a backend server provides an additional advantage
for building the client-side JavaScript code that is delivered to the web
browser. The Prisma client provides TypeScript compatible types (such
as classes for the resources defined in the schema) and, in cooperation
with Apollo15, further abstracts access to the backend server. Similar to
the build step required for the server, the React code designed for the
client needs transpilation, which results in a static web page including
all editor components. Arndt elaborates on the design decisions that
heavily influenced the technology stack [2].

A key design goal of edtr.io was to securely restrict information that
is visible to the user and to offer dynamic live updates of worksheets.
We decided to address these requirements with a GraphQL server and
a low-latency bi-directional communication between the worksheet ed-
itor and the server. We implemented live updates using the WebSocket
protocol. It is a standard allowing a browser to keep a communication
channel to a backend server and thus provides “a mechanism for
browser-based applications that need two-way communication with
servers” [17]. The integration of WebSockets is especially useful to
provide teachers with control over the content available to students. It
allows teachers to hide or unhide specific information throughout the
lesson. The change will instantly appear on all connected devices —-
an advantage teachers never had before. In addition, the technology
stack eliminates the need for a user to explicitly save progress, thus
minimizing the danger of accidental data loss.

Another design goal of edtr.io was to provide an open plugin ar-
chitecture for the integration of additional content components [69].

10 MySQL is an open-source database maintained by Oracle et al. — https://www.mysql.

com

11 https://graphql.org

12 https://www.prisma.io

13 https://www.typescriptlang.org/

14 https://nodejs.org/

15 The Apollo Client eases access from React to a GraphQL server — https://www.

apollographql.com

https://www.mysql.com
https://www.mysql.com
https://graphql.org
https://www.prisma.io
https://www.typescriptlang.org/
https://nodejs.org/
https://www.apollographql.com
https://www.apollographql.com

54 implementation

Each of those should focus on one specific content or interaction type.
In the prototypical implementation, a set of pre-defined plugins is
included, allowing teachers to embed a wide range of different content.
The worksheet editor features a rich text editor component, an upload
for images and supports the integration of videos from YouTube and
Vimeo.

One of the features missing in the worksheet editor was an interac-
tive multiple-choice quiz. However, quizzes are one of the most used
components in MOOCs and are also present in openHPI courses. The
following sections describe the implementation of the multiple-choice
plugin together with the integration of learning videos from openHPI
and CodeOcean programming exercises. Some plugins, such as the
video player, are user-agnostic and only differ in their appearance
based on the role of a user, for example, to allow editing textual con-
tent. Others, such as a multiple-choice plugin, require knowledge
about the current user to associate answers with the corresponding
user. In our concept, it is the responsibility of each plugin to display
the content or to process integrated learning analytics, as domain
knowledge is helpful to create customized views providing a mean-
ingful abstraction of the data.

6.2.1 First-Party Multiple-Choice Quiz Plugin

We decided to add the multiple-choice component natively as an
edtr.io plugin. As shown in Figure 6.4, the plugin enables teachers
to create multiple-choice questions with pre-defined answers. The
multiple-choice plugin we created for edtr.io seamlessly integrates
into the architecture of the underlying Slate framework.

The editor framework Slate structures documents with nested nodes,
so that each document is represented through a tree of nodes. As Slate
has a modular design in mind, the framework keeps a list of available
plugins together with the type of nodes they can handle. Thus, each
node in a document is processed by the corresponding plugin, which
is responsible for rendering the content and for managing nested
nodes. The multiple-choice plugin introduces three new node types
for documents created with edtr.io, namely the "multiple-choice",
"multiple-choice-question" and "multiple-choice-answer" node
types. These three node types are rendered by the corresponding Re-
act components: MultipleChoiceNode, MultipleChoiceQuestionNode
and MultipleChoiceAnswerNode.

The "multiple-choice" node is the root node for each multiple-
choice plugin. It contains one nested "multiple-choice-question"

node containing the question as the first element and at least one
"multiple-choice-answer" node with pre-defined answers that stu-

6.2 worksheet editor : edtr .io 55

Figure 6.4: The multiple-choice plugin written for edtr.io allows teachers
to create own multiple-choice questions together with answers.
Each answer is either checked as correct or incorrect to allow an
automated scoring of the answers given by students. The internal
document representation is listed in Section B.3, Listing B.1.

dents choose from. As shown in Listing 6.1, the document schema
formalizes these requirements and further defines how to normalize
a document in case it is not in compliance with the defined schema:
If the type and order of the nodes is invalid, the missing node is
(re-)created. The same mechanism applies if no answer node is present.
If, however, the question node is deleted, we decided to remove the
whole "multiple-choice" node with all respective child nodes.

As the multiple-choice plugin is natively integrated into edtr.io, it
uses the GraphQL backend directly to store the state. While questions
of the multiple-choice plugin are saved together with the document
they are part of, the answer options are persisted separately with own
IDs. As a result, each submission of a student refers to an answer
option and indicates whether it has been checked by the student or not.
Based on this data model (cf. Listing B.2 in Section B.3), an automated
scoring and feedback mechanism for student submissions can be built.

6.2.2 Embedding Videos from openHPI

The worksheet editor features an integration of YouTube and Vimeo
videos and automatically embeds the respective content with a video
player, if an Uniform Resource Locator (URL) of one of those platforms
is pasted into a document. In order to match the use cases described by
the teachers we interviewed, an additional integration of videos from
MOOC platforms was desired. As the videos integrated on openHPI

56 implementation

edtrio-client/src/SlateSchema.ts
1 "multiple-choice": {
2 nodes: [
3 {match: [{type: "multiple-choice-question"}], min: 1, max: 1},
4 {match: [{type: "multiple-choice-answer"}], min: 1},
5],
6 normalize: (editor: Editor, {code, node, child, index}: any)=>{
7 switch (code) {
8 case "child_type_invalid": {
9 const type =

10 index === 0
11 ? "multiple-choice-question"
12 : "multiple-choice-answer";
13 return editor.setNodeByKey(child.key, type);
14 }
15 case "child_min_invalid": {
16 if (index === 0) {
17 return editor.removeNodeByKey(node.key);
18 } else {
19 const block = Block.create("multiple-choice-answer");
20 return editor.insertNodeByKey(node.key, index, block);
21 }
22 }
23 }
24 return;
25 },
26 },

Listing 6.1: Extract from the Slate schema defining the document with the
nodes introduced by the multiple-choice plugin. The schema
defines the minimum and maximum number for each element
and specifies countermeasures if a document got invalid.

are not publicly available on one of those video hosting platforms,
a custom integration is required. Furthermore, the integrated video
player within the worksheet editor only supports one video stream.
Videos on openHPI, however, use two video streams, one containing a
recording of the speakers and the other showing slides. Thus, openHPI
integrates the tele-TASK video player which is designed to synchronize
two video streams [40]. The integration of the tele-TASK video player
as a plugin into edtr.io was previously scheduled16, but postponed
several times. Due to the technical complexity and the fact that our
main focus was the integration of programming exercises, we decided
for a feasible solution.

As a result, we created a simple web page embedding the video-
player17 component and hosted the two video streams ourselves. The
latter was necessary as openHPI uses private video hosting on Vimeo
which prevents the unauthorized embedding of video content. Within

16 Ticket: https://ticketsystem.schul-cloud.org/browse/EDTR-16
17 https://github.com/openHPI/video-player

https://ticketsystem.schul-cloud.org/browse/EDTR-16
https://github.com/openHPI/video-player

6.2 worksheet editor : edtr .io 57

the openHPI platform, access to the videos is authorized through
a dynamic GET parameter that is appended to the video URL on
every page load. As the dynamic creation of the video URL was
unavailable for our static web page, we served a copy of the videos
after consultation with the openHPI team. The web page containing
the video-player is integrated into edtr.io through the embed plugin — a
simple component that adds an iFrame18 to the worksheet editor with
a customizable location.

6.2.3 Integrating Programming Exercises through an iFrame with LTI

Besides integrating a multiple-choice plugin and videos from the
openHPI MOOC platform, we aimed to embed practical programming
exercises through an integration with the stand-alone web application
CodeOcean. The multiple-choice plugin is an example of a plugin
completely integrated into edtr.io using the same GraphQL backend to
store content and user data. For external tools or more complicated
use cases, building edtr.io plugins is not feasible. Many third-party
web apps designed for educational use cases offer an integration via
the LTI standard. LTI allows a learning tool to be linked from an
embedding site with some parameters, for example, to specify an
exercise and hand over selected user information. The HPI Schul-
Cloud implements the LTI standard as a so-called tool consumer to
allow starting learning apps. Furthermore, CodeOcean provides an
LTI interface as a tool provider to offer direct access to programming
exercises. Based on the LTI implementation in the HPI Schul-Cloud,
we extended edtr.io to provide basic functionality as a tool consumer.
LTI uses standard web technologies so that tools can be accessed
through a link or directly embedded via an iFrame.

For usage in edtr.io, we decided to embed programming exercises
via an iFrame allowing us to reuse code within CodeOcean. The
required LTI handshake is configurable and either done through the
worksheet editor itself or through the HPI Schul-Cloud. In case the
existing mechanism within the HPI Schul-Cloud is used, the iFrame
embedded in a worksheet requests a dedicated web page in the HPI
Schul-Cloud. The page loaded contains an Hypertext Markup Lan-
guage (HTML) form with hidden input fields and a JavaScript snippet
to submit the form automatically. The form contains the required LTI
parameters and is submitted as a POST request to the LTI endpoint of
CodeOcean. The tool consumer processes the parameters and redirects
the user to the corresponding exercise within the iFrame. Section 6.4
describes the LTI handshake in more detail.

18 An iFrame allows a web page to embed another web page in the same view.

58 implementation

The existing mechanism offered by the HPI Schul-Cloud to start a
CodeOcean exercise is initiated by accessing a pre-configured URL
through a GET request. Therefore, this URL can be used in conjunc-
tion with the embed plugin available within edtr.io. Furthermore, we
designed the LTI handshake in edtr.io to be compatible with the exist-
ing embed plugin and discarded managing a customized CodeOcean
plugin for the worksheet editor. A dedicated plugin would allow
teachers to select an exercise without manually copying the exercise
ID (as described in Section 5.2.2). In a spike, we were able to send
information (e. g., about a selected exercise) from an iFrame showing
CodeOcean to the parent editor framework with a custom CodeOcean
plugin. However, we decided not to use our custom solution in favor
of the upcoming version 1.3 of the LTI standard. It extends the LTI
standard to provide an interface for the automated configuration of
LTI parameters including the selection of learning material that should
be accessed (in our case programming exercises). LTI v1.3 is currently
in the “Candidate Final status”19 with a last update on January 14

th,
2019. Therefore, it is not yet implemented in CodeOcean, the HPI
Schul-Cloud or edtr.io but its implementation is intended in the near
future.

6.3 introduction of the teacher role and study groups

in codeocean

CodeOcean20 is a monolithic web application written in Ruby21 us-
ing the common Model-View-Controller (MVC) framework Ruby on
Rails22 together with many third-party Ruby packages, so-called gems.
CodeOcean connects to a PostgreSQL23 database to persist information
and uses Docker containers to execute source code. While edtr.io is
a Single-Page Application (SPA) and uses GraphQL, CodeOcean is a
more traditional multi-page web application based on Representation-
al State Transfer (REST).

As described in Section 5.2, CodeOcean was built for programming
MOOCs offering different access levels for MOOC instructors and
learners. Therefore, we extended CodeOcean to support teachers
and thus included features targeting the use of CodeOcean with
classes (Section 6.3.1). As a pre-requirement for other functionality,
the code execution platform needs to be aware of organizational
structures, such as students and their membership in classes (see
Section 6.3.2), and thus introduces so-called study groups. Providing

19 http://www.imsglobal.org/activity/learning-tools-interoperability

20 https://github.com/openHPI/codeocean

21 https://www.ruby-lang.org

22 https://rubyonrails.org

23 An open-source relational database — https://www.postgresql.org

http://www.imsglobal.org/activity/learning-tools-interoperability
https://github.com/openHPI/codeocean
https://www.ruby-lang.org
https://rubyonrails.org
https://www.postgresql.org

6.3 introduction of the teacher role and study groups 59

teachers with additional privileges in comparison to students and
reproducing organizational structures with study groups is done
automatically in the background through the LTI handshake and the
integration with the HPI Schul-Cloud.

6.3.1 Features Available for Teachers

Previously, two user roles were used in CodeOcean: The role of an
administrator having access to all features and the role of a learner
using the platform to write and execute source code. In order to
manage user roles and access rights, CodeOcean uses the Ruby gem
Pundit24. The gem follows an object-oriented design and introduces
so-called policies to validate access to a given object or, if a concrete
object is unavailable, to a class. Thus, we were able to reuse the
integration of Pundit and extend it with a role designed for high-school
teachers. For security reasons, the default policies in CodeOcean limit
access to administrators if not stated otherwise (explicit opt-in for
non-administrative users). We reviewed every single action as well
as the visibility of information in CodeOcean and selected a subset
of features for teachers. All features require user login and are made
exclusively available for teachers besides platform administrators. In
particular, we allowed teachers to browse public exercises and view
more details, such as editor settings applied for students or internal
tags used to describe the exercise. Furthermore, we outlined support
for teachers to access the test cases usually hidden for learners and to
clone publicly available exercises so that teachers might adapt them to
their needs. As a result of our work, teachers can now create, edit and
delete their own practical programming exercises.

Every exercise available in CodeOcean is linked to a so-called execu-
tion environment which specifies settings and requirements to execute
source code. While only CodeOcean administrators should be capable
of defining these environments, we allowed teachers to inspect basic
details of execution environments, such as the memory limit for each
container or whether internet access is available during code execu-
tion. Besides other features, e. g., access to the list of posted Request for
Comments, teachers get access to a list of study groups and can manage
memberships of those they are a member of (cf. Section 6.3.2). Many
of the existing Pundit policies in CodeOcean were updated to reflect
our new permissions. An example for a concrete policy is shown in
Listing 6.2, which defines different permissions for exercise details
and the study group dashboard introduced in Section 6.6.

The User Interface (UI) in CodeOcean including all navigation items
has been touched to consider the permissions of the currently logged-

24 https://github.com/varvet/pundit

https://github.com/varvet/pundit

60 implementation

app/policies/exercise_policy.rb
1 def show?
2 admin? || teacher?
3 end
4

5 def study_group_dashboard?
6 admin? || teacher_in_study_group?
7 end

Listing 6.2: Two concrete Pundit policies regarding exercises. They allow
teachers and administrators to show details of an exercises and
restrict the visibility of the study group dashboard to teachers
of the same study group (using the code shown in Listing 6.3)
besides platform administrators.

in user: All links to resources the user is not allowed to access are
hidden. We integrated policy checks during the server-side rendering
process of web pages. During page loads, the specific user object with
the associated permissions is utilized to pre-validate whether access
to a linked page would be granted. Only if that is the case, a link to
the target is placed. In a few occurrences, e. g., whenever a file type
is referenced in an exercise, we show the text (i. e., the file type) but
refrain from linking to the detail page if that is unavailable to the user.
Without manually editing the URL, it is thus unlikely for users to get
an error message about insufficient access rights.

6.3.2 Automated Creation of Study Groups

By granting teachers extended access to CodeOcean (as described
in the previous Section 6.3.1), some of the requirements expressed
by teachers are met: They are now enabled to use the same tools as
MOOC instructors to create practical programming exercises using
CodeOcean. However, teachers also want access to the submissions
of their students (cf. Section 5.4) on demand. Thus, CodeOcean
needs to reflect organizational structures. Therefore, we implemented
study groups that are automatically created and extended through
information received by the tool launch via LTI (see Section 6.4). Class
structures and other groups are represented through a StudyGroup

object in CodeOcean. As shown in Figure 6.5, the classes User and
StudyGroup are connected through a many-to-many relationship25.

Teachers are restricted to view details about student submissions
done in the context of their study group. Therefore, each submission
of a student is tagged with the study group as a context (cf. Figure 6.5).
We implemented the explicit tagging of submissions for two reasons:

25 Each user might be a member of many different study groups and each study group
might contain several users.

6.3 launching programming exercises 61

 ? extends

0..*

1

? belongs to

0..*

0..*

 ? is a member of

0..*

1
 ? creates

1

0..*

? belongs to

0..1

0..*

? is created in the context of

1

0..*
 ? belongs to Consumer

name: string
oauth_key: string
oauth_secret: string

Submission

cause: string
score: double

<<abstract>>
User

name: string
email: string

<<enumeration>>
Role

learner
teacher
admin

 ? has

ExternalUser

external_id: string

InternalUser

crypted_password: string
[other login related fields omitted]

Exercise

title: string
description: string
instruction: string
token: string
public: boolean
hide_file_tree: boolean
allow_file_creation: boolean
allow_auto_completion: boolean
expected_difficulty: integer
execution_environment:
 ExecutionEnvironment

StudyGroup

name: string
external_id: string

RequestForComment

question: string
solved: boolean
thank_you_note: string
full_score_reached: boolean
times_features: integer
file: File

Testrun

passed: boolean
output: string
cause: string
file: File

0..1

1
 ? belongs to

0..*

1

? creates

0..1

1

 ? belongs to

Figure 6.5: UML diagram of the StudyGroup and related classes with changes
highlighted in blue. The diagram includes those classes which are
relevant in the context of a StudyGroup. We further extended the
existing role model to allow an ExternalUser to be assigned with
a role (such as the teacher role required for access to learning
analytics of a StudyGroup).

(1) Teachers can reuse exercises from MOOCs so that a submission
to a particular exercise might either be created by a student of the
teacher’s class or by any other learner accessing the exercise through a
MOOC. (2) Students could access an exercise as part of a programming
lesson in school or in their free time. In both cases, teachers should
not see other students’ solution and submissions of their students
created in another context without explicit consent. A Pundit policy
(as listed in Listing 6.3) validates whether a teacher is authorized
to access a specific submission based on the study group associated
with the solution submitted by a student. By persisting the context
of a submission through a reference to the study group and by using
our custom Pundit, we efficiently prevent unauthorized access in
compliance with the GDPR. Furthermore, we use study groups to
offer teachers learning analytics of their students, e. g., through a live
dashboard for use during lessons (see Section 6.6).

6.4 launching programming exercises with different

configurations

As introduced in Section 6.2.3, CodeOcean exercises are integrated
through the Learning Tools Interoperability (LTI) standard. The spec-
ification harmonizes links between educational platforms and their
resources. LTI is built upon multiple optional so-called services that

62 implementation

app/policies/application_policy.rb
1 def everyone_in_study_group
2 study_group = @record.study_group
3 return false if study_group.blank?
4

5 users_in_same_study_group = study_group.users
6 return false if users_in_same_study_group.blank?
7

8 users_in_same_study_group.include? @user
9 end

10 private :everyone_in_study_group
11

12 def teacher_in_study_group?
13 teacher? && everyone_in_study_group
14 end
15 private :teacher_in_study_group?

Listing 6.3: Pundit policies that either allow access for every member of a
study group or limit access to a teacher in the given study group.
These policies are used throughout CodeOcean to restrict the
visibility of information.

extend the Basic Launch feature. One of those services, the Basic Out-
comes service, allows a score achieved by the learner to be transmitted
back to the LMS which initiated the LTI handshake. Besides the of-
ficial services defined in the LTI standard, additional attributes are
allowed if appropriately prefixed with custom_ to support own use
cases. For these, only the tool provider and tool consumer need to agree
on a mutual understanding of these application-dependent attributes.
CodeOcean uses custom parameters to realize feature restrictions and
enforce restrictions applied by the teacher. In total, we added support
for eleven different restrictions allowing teachers to customize the
integration of CodeOcean exercises (see Table 6.1 and Section 6.4.2).

In the context of school education in Germany, privacy and legal
considerations have to be a major part of the overall product design.
Therefore, all external plugins within a digital worksheet only get
limited access to user data if at all. CodeOcean needs to identify
returning learners to enable continuing previous work. For this reason,
the HPI Schul-Cloud is configured to create a pseudonymous ID for
each user and service, which is the only person-related information
CodeOcean requires. Additionally, to represent the student-teacher
relationship on the programming platform, each tool launch via LTI
also includes a context ID and the role of each user (student/teacher)26.
The context ID, specified as resource_link_id, must be a unique
identifier of a school class and grants teachers access to analytics
about their students exclusively. Based on the unique course ID,

26 With LTI, the student’s role is named Learner and the teacher’s role is called
Instructor.

6.4 launching programming exercises 63

CodeOcean builds the study groups introduced in Section 6.3.2 with
all learners of the given class being members.

6.4.1 Deep Linking with the LTI Standard

Without additional LTI services (such as the Basic Outcomes service
to return results from the tool provider to the tool consumer) an LTI
Basic Launch is a single uni-directional message. In fact, it is a plain
Hypertext Transfer Protocol (HTTP) POST request prepared by the
tool consumer and sent from the users’ web browser to the tool provider.
As shown in Listing 6.4, the request is signed and verified through the
OAuth 1.0 standard27 to prevent any tampering of the data.

1 POST /lti/launch HTTP/1.1
2 Host: codeocean.openhpi.de
3 Content-Length: 561
4 Origin: https://schul-cloud.org
5 Content-Type: application/x-www-form-urlencoded
6 oauth_consumer_key: 19c047f73e313fe1140706ea5f24494d
7 oauth_signature_method: HMAC-SHA1
8 oauth_timestamp: 1556113871
9 oauth_nonce: bWLcGxCuy5yPgYuKJ9Qi7gl1Igyka0OqwLLO988y2Nw

10 oauth_version: 1.0
11 oauth_signature: uwzDVnvYaIIqzli6TOGsrxJ3eeY=
12 lti_version: LTI-1p0
13 lti_message_type: basic-lti-launch-request
14 resource_link_id: 5bc48a31db4df00011083c83 ; Course context
15 user_id: 4a98735b-e3e3-44fd-9c0a-4d10b4946253 ; Pseudonymous ID
16 lis_person_name_full: '' ; No name passed
17 lis_person_contact_email_primary: '' ; No email passed
18 roles: Learner ; Student role
19 custom_token: 4d324ad6 ; exercise ID
20 custom_locale: de ; language
21 custom_embed_options_read_only: true ; prevents edits

Listing 6.4: Exemplary HTTP request initiated by the HPI Schul-Cloud
launching a CodeOcean exercise via LTI. The course context
is transmitted together with a pseudonymous ID and the user’s
role (student/teacher). The exercise is identified through the
custom_token. In this example, CodeOcean will be displayed in
German and disallow students to edit the source code. For the
sake of readability, the listing refrains from showing the URL-
encoded parameters and some optional HTTP headers, such as
the browser’s user agent.

27 LTI v1.3 is the first version using OAuth 2.0 [55] instead of OAuth 1.0 [53]

64 implementation

In CodeOcean, an application-defined parameter is used to iden-
tify a concrete exercise through LTI. The so-called custom_token

is thus required for every LTI launch targeting CodeOcean. Using
the token, CodeOcean enables deep linking to a dedicated practical
programming assignment. Otherwise, as the URL for LTI is always
https://codeocean.openhpi.de/lti/launch, CodeOcean could not
be aware of a concrete exercise at all and would display an error
indicating the missing custom_token.

6.4.2 Introducing Feature Restrictions through LTI

In order to realize our concept of adaptive restrictions (cf. Section 5.3.2),
we extended CodeOcean to support additional custom parameters.
Table 6.1 lists all application-defined parameters introduced by us and
their corresponding impact on CodeOcean. Each restriction enabled
through LTI is stored in the encrypted session cookie of a user. As
the cookie is encrypted by the Rails backend server, it cannot be read
or modified by an end user. As long as a learner is signed in (which
is required for CodeOcean to function properly), the limitations are
in place. Each possible restriction influences the UI of CodeOcean by
hiding specific information or disabling some actions. Furthermore,
we extended the Pundit policies to consider information about applied
restrictions as stored in the encrypted session cookie, which is sent
along with every request.

6.5 transmitting results from codeocean back to the

hpi schul-cloud

For each exercise with unit tests, CodeOcean is capable to calculate a
score for student submissions. This score is shown to learners (if not
disabled through restrictions) and, on demand, accessible by teachers
within CodeOcean. However, the views in CodeOcean only include
results achieved by programming exercises. To provide students with
overall progress details including all interactive element types within
a course, the HPI Schul-Cloud needs to be aware of all available scores.
CodeOcean as an external system does not provide an API for the HPI
Schul-Cloud to query learning progress. Instead, the HPI Schul-Cloud
requires tools (such as native plugins within the worksheet editor and
external systems as CodeOcean) to submit progress information on
occurrence to a dedicated LRS.

Similar to CodeOcean, the edtr.io backend stores the current user
progress and submissions of some native plugins, such as answers
given for multiple-choice questions in a dedicated database (cf. Sec-
tion 6.2.1). In addition, selected learning data is sent to Learning

https://codeocean.openhpi.de/lti/launch

6.5 transmitting results to the hpi schul-cloud 65

custom parameter resulting impact on codeocean

hide_navbar The navigation bar displayed at the top of CodeOcean
is hidden. Usually, it shows the application name
CodeOcean together with an option to select the UI
language and provides access to Request for Comments
posted by the user.

hide_exercise_description The exercise description when working on a pro-
gramming exercise is hidden. The teacher might use
edtr.io or the HPI Schul-Cloud to introduce to code.

disable_run Users are disallowed to compile and execute their
source code.

disable_score Independent of the option to execute the source code,
this option disables running the test cases. Thus, no
score is available for display.

disable_rfc CodeOcean prevents the user from creating new Re-
quest for Comments to seek for help.

disable_interventions Usually, users get an intervention while working on
an exercise in CodeOcean. The upcoming dialogue
suggests to ask for help using Request for Comments
or to take a short break. By setting this option, no
intervention of learners occurs.

hide_sidebar The left sidebar within CodeOcean providing a file
tree to an exercise is hidden. As a result, learners are
unable to switch, download or add files.

read_only All source code files available in this exercise are
read-only and cannot be altered.

hide_test_results Detailed test results from score runs are hidden but
the score itself is calculated and shown to the learner.

disable_hints Automated hints are not provided to learners. These
hints usually rephrase an error message that occurred
during program execution and are intended to help
learners to find their mistakes more quickly.

disable_download Users are not allowed to download an archive with
their current progress of all visible source code files.

Table 6.1: All new application-specific parameters supported by CodeOcean
to disable some of the available features. Each option name is
prefixed with “custom_embed_options_” when used via LTI.

Locker, an open-source LRS deployed in the HPI Schul-Cloud, which
accepts and processes learning activity data defined using the xAPI
standard. Each activity is described with a statement consisting of up
to four elements. Statements follow a simple “actor —- verb — activity”
structure and may contain additional attributes. For example, a valid
statement is: John (actor) passed (verb) test A (activity) with 65% (ad-
ditional attributes). Based on xAPI data, the LRS creates custom views

66 implementation

and graphs for a suitable visualization. Thus, it is the responsibility
of the HPI Schul-Cloud (instead of the plugins or external tools) to
manage access to data stored in the LRS. Ideally, each edtr.io plugin
is enabled to publish learning analytic data that is either directly han-
dled by edtr.io and also processed directly (e. g., to provide instant
feedback) or stored for future reference in the Learning Locker.

In addition to first-party edtr.io plugins, the HPI Schul-Cloud en-
courages external systems to publish their learning data to the LRS.
In case of CodeOcean, two approaches are available: Either (1) the
same xAPI standard as used by first-party edtr.io plugins or (2) the
LTI Basic Outcomes service as proven by the MOOCs. As neither the
HPI Schul-Cloud nor edtr.io implement the LTI Basic Outcomes service,
only the xAPI standard is available so far. However, both solutions
are slightly different in their concept of submission handling.

6.5.1 Differences between Final Submissions and Intermediate Submissions

The LTI Basic Outcome service limits the result being sent from a tool
provider to a tool consumer to “a decimal numeric grade in the range
from 0.0 – 1.0” [63]. When launching an external tool with support
for the LTI Basic Outcome service, a few additional parameters are
passed, including a pre-generated ID called lis_result_sourcedid

which the tool provider should use to associate a score with a particular
user and exercise. The result is directly sent from the tool provider to
the tool consumer using the URL passed as lis_outcome_service_url

parameter during the tool launch. Moreover, the LTI Basic Outcome
service specification states that grades should be treated “though there
is only a single grade for each lis_result_sourcedid” [63]. While a
grade history can be maintained by the tool consumer, the specification
does not elaborate how previous grades should be interpreted.

In contrast to LTI, the xAPI standard describes finished actions
and thus uses verbs in the past tense (e. g., “John passed test A with
65%”). The specification clarifies that “statements are immutable
(they cannot be changed)” [70]. In general, the xAPI specification
is more flexible than the LTI Basic Outcomes service. In conjunction
with the LRS used, xAPI allows arbitrary verbs and activities to be
defined28. As described by Glandorf, xAPI statements can either
be sent directly from the learner’s web browser (with an adequate
authorization) or proxied through the HPI Schul-Cloud [19]. Glandorf
further elaborated that a proxy-mechanism is required in the context
of pseudonymized usage of third-party tools [19].

28 Individual extensions are explicitly allowed; however, it is recommended to use
elements published in a central xAPI Registry, such as https://xapi.com/registry.

https://xapi.com/registry

6.6 per exercise dashboard for teachers 67

6.5.2 Using the Worksheet Editor to Forward Analytical Data

Enabling CodeOcean to send xAPI statements directly to the LRS
requires a working de-pseudonymization proxy within the HPI Schul-
Cloud. Furthermore, CodeOcean needs to know URL of this service,
which could be sent along as an additional custom LTI parameter
(similar to the configuration of the LTI Basic Outcome service). Another
approach is to use edtr.io to handle xAPI statements and forward
these to the LRS. As edtr.io is a first-party tool provided by the
HPI Schul-Cloud, it does not require any pseudonymization. For
the use in worksheets, we decided to integrate programming exer-
cises from CodeOcean with the edtr.io embed plugin and an iFrame
(Section 6.2.3). Thus, CodeOcean within the iFrame can pass mes-
sages via JavaScript to the embedding edtr.io. In a spike, we were
able to transmit arbitrary information using the JavaScript method
targetWindow.postMessage(message,targetOrigin,[transfer]);29

through the user’s web browser. The architecture of CodeOcean is
already prepared to pass scores via JavaScript messages: On score runs
using the unit tests, a WebSocket connection between the learner’s
browser and the CodeOcean server is established. Score results are
transmitted asynchronously and are already processed by JavaScript
code30 to update the score that is shown to learners.

6.6 per exercise dashboard for teachers

Authorized teachers can access the learning analytics through the LRS
offered by the HPI Schul-Cloud. Additionally, they get more detailed
information about their students in CodeOcean via a dashboard sum-
marizing activity per exercise. It shows the time spent by the students
in correlation with the points achieved for a given exercise. In addition,
the dashboard also shows live questions asked by the students while
working on the assignment. The teacher can access the dashboard
either as a stand-alone page within CodeOcean or as an embedded
view within the worksheet. Further, the dashboard will allow a com-
parison with MOOC learners and will show a list of exceptions that
occurred. These data are already available; for example, exceptions
are extracted from the command line output and displayed separately
to help students to identify the mistakes they made.

29 https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

30 e. g., in method handleScoringResponse: function (results)

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

68 implementation

Figure 6.6: The live dashboard available to teachers during a lesson in
CodeOcean. The graph represents the working time with dif-
ferent colors indicating the current progress of students: orange
(< 50%), yellow (50%–89%), green (> 90%). In addition, recent
Requests for Comments posted by students are shown together with
the number of comments and whether the question is marked as
resolved (green check).

6.6.1 Enabling Live Updates through WebSockets

The analytic dashboard per exercise, which is shown in Figure 6.6, is
designed for teachers to be used during lessons. Thus, an important
aspect is the ability of the view to reflect progress of students in
real time. As elaborated in Section 6.2, the WebSocket protocol was
designed to enable a bi-directional communication allowing a server
to push new information to the client as soon as they are available [17].
Consequently, WebSockets provide a suitable technology to support
our concept of a live dashboard for teachers. Moreover, CodeOcean
was already using WebSocket connections successfully with the Ruby

6.6 per exercise dashboard for teachers 69

gem Tubesock31. The gem is used to stream the standard output of a
code run in real time to the learner’s web browser. In this scenario,
a single user gets continuous updates of a directly initiated code
run. In CodeOcean, learners submit their code using an HTTP POST
request and trigger a code run through a second API call. The second
HTTP request is hijacked by the Tubesock gem, which is responsible for
initiating the switch from HTTP to a WebSocket connection through
the following HTTP response: HTTP/1.1 101 Switching Protocols.
The existing use case streaming output to a single learner is well
supported by Tubesock.

For the live dashboard, however, an additional requirement emerges:
The teacher wants information about code runs initiated by other
users. Thus, the multi-threaded CodeOcean server is required to use a
synchronization mechanism. Tubesock focuses on the WebSocket con-
nection and does not provide so-called broadcasting32 support. Since
Ruby on Rails 5.0, the web framework used in CodeOcean has been
extended with ActionCable33, a core component adding native sup-
port for WebSockets and broadcasting. In order to use ActionCable
in CodeOcean, we implemented a major version upgrade of Ruby
on Rails from version 4.2 to 5.2 and thereby integrated support for
ActionCable. Besides handling WebSocket connections, ActionCable
supports broadcasting and also includes a client-side JavaScript frame-
work for a seamless integration. ActionCable uses so-called Channels
to differentiate various contexts from each other. For our use case
in CodeOcean, a unique channel is created for every combination
of a study group and an exercise mapping to an individual per exer-
cise dashboard. The broadcasting support in ActionCable is enabled
through a publish-subscribe pattern featured by a Redis34 or PostgreSQL
server. We decided to use the PostgreSQL integration, even though it
is limited to messages with a maximum size of 8 kB, as a PostgreSQL
server is already deployed and in use for the main database. Switch-
ing from PostgreSQL to Redis is possible at any point in time without
modification of the source code.

We enabled the authentication of users through the cookie sent
along with the initial request to open a WebSocket connection. As
CodeOcean is a monolithic app, ActionCable has access to the same
cookie encryption mechanism used throughout other parts of the
system. Furthermore, we integrated Pundit policies for the autho-
rization and restricted access to a study group channel for teachers
of the study group and administrators. Other authenticated users,

31 https://github.com/ngauthier/tubesock

32 The established term broadcasting is used to describe the forwarding of a specific
message to all connected users of a given context. In our case, the broadcasting is
limited to connected teachers of a study group, which mostly will be a single teacher.

33 https://guides.rubyonrails.org/action_cable_overview.html

34 Redis is an open-source, in-memory key-value store — https://redis.io

https://github.com/ngauthier/tubesock
https://guides.rubyonrails.org/action_cable_overview.html
https://redis.io

70 implementation

especially students, might still establish a WebSocket connection, but
are unauthorized to subscribe to arbitrary channels, which renders
the connection useless for them. So far, we only use ActionCable
for live updates within the per exercise dashboard. Historical data
generated before a user visited the dashboard are not transmitted
through the WebSocket connection but are queried on page load from
the database and directly included by the server-side rendering engine
into the generated HTML. In order to notify connected users of up-
dates, we added custom callbacks to the ActiveRecord35 models. After
data is saved in either the Submission, RequestForComment or Comment
model, the preparation of data for ActionCable is triggered. We added
the ActionCableHelper to process changes asynchronously in a new
thread and sent the updates to subscribed users of the specific channel.

6.6.2 Aggregating the Working Times of Students

One of the features available on the dashboard is a graph visualizing
the working time and the score achieved by students. The working
time is automatically calculated from the submissions made by stu-
dents. Each submission is persisted in the database with a timestamp
(value of created_at). Using the first and last submission to calculate
the working time is insufficient, as it would ignore breaks possible
made by the learner. Thus, we decided to handle each time difference
between two submissions that is longer than five minutes as a break
and exclude that time span from the working time calculation. For
a fast calculation, we moved the main logic as close as possible to
the data and hence created a custom query (as shown in Listing B.3,
Section B.4) for our database using Structured Query Language (SQL).

Our query is customizable via Rails and filters for a given exercise
and study group. Additionally, we only need the working time of
the learner with the newest submission for each live update using
ActionCable, as all other working times will be unaffected by that
change. Thus, an additional filter criteria is specified unless a full page
load is processed. Regardless of the filters used, we do not only want
to show the total working time spent by a student, but also which
time a learner required to achieve a given score. However, CodeOcean
differentiates between submission types and only includes a score
of test runs. Therefore, we implicitly extended all other submission
types with the score of the last test run performed by the learner.
Using multiple window functions36, the time a learner required to
achieve a change in the score is calculated together with the total time

35 https://guides.rubyonrails.org/active_record_basics.html

36 “Window functions provide the ability to perform calculations across sets of rows
that are related to the current query row.” — https://www.postgresql.org/docs/11/

functions-window.html

https://guides.rubyonrails.org/active_record_basics.html
https://www.postgresql.org/docs/11/functions-window.html
https://www.postgresql.org/docs/11/functions-window.html

6.6 per exercise dashboard for teachers 71

spent on the exercise. In a next step, learners are sorted based on the
their working time from the shortest total time spent to the highest
and indexed with a temporary ID per learner. Finally, the result is
returned to Rails together with the name of each user (as exemplary
shown in Table B.1). The result, regardless of whether it is used for
a full page load or a live update, is converted to JavaScript Object
Notation (JSON).

The JSON is passed to the teacher’s web browser and used to draw
a graph with the JavaScript visualization library D3.js37. Initially,
the JSON is transmitted as a data attribute38 of an HTML element
included in the page. The full JSON contains data for all users of a
specific study group and is used to initialize the graph and the axes.
For each learner and score, a sub-bar is created indicating the time
spent by the student on an exercise through the height. Additionally,
the percentage of the possible score achieved by the learner is mapped
through a color to the sub-bar, ranging from 0% (red) to 100% (green).
We decided to stack the sub-bars on top of each other for each learner,
so that a multi-colored bar is shown per learner. Updates to the bar
are directly handled by JavaScript code and modify the existing graph
in place. If data for a new student is added or the teacher wishes to
re-sort the graph based on the total working times, a full page refresh
is triggered.

6.6.3 Request for Comments within Study Groups

In addition to the working time graph, the study group dashboard
also features a list of Request for Comments that students asked while
working on the given exercise. On the initial page load, the list
of Request for Comments is rendered on the CodeOcean server and
transmitted as final HTML to the web browser. Thus, it does not
involve specific JavaScript code for the initial rendering as it is the
case with the working time graph. Listing 6.5 shows how the table
body is initially rendered using the Slim39 template engine. The
variable @request_for_comments includes a collection of all Request
for Comments. The render method automatically invokes a template,
called partial, for each entry in the collection and concatenates the
resulting HTML.

Whenever a change to a Request for Comment occurs (e. g., because
a new one is created or an existing one got a new comment), the
ActionCableHelper is triggered through an :after_save hook within
the corresponding model. The method called invokes the server-side

37 https://d3js.org

38 https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_

attributes

39 http://slim-lang.com

https://d3js.org
https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes
https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes
http://slim-lang.com

72 implementation

app/views/exercises/study_group_dashboard.html.slim
1 tbody#posted_rfcs
2 = render(partial: 'request_for_comments/list_entry',

collection: @request_for_comments,
as: :request_for_comment)

↪→

↪→

Listing 6.5: Extract of the Slim template used to render the body of the table
listing Request for Comments. The actual template code for each
table row is separated in another partial template and called once
per Request for Comment.

rendering of a table row (as shown in Listing 6.5) and broadcasts the
resulting HTML to the client using WebSockets. In this case, the same
template previously used by the full page load is reused with a single
instance of a RequestForComment (cf. Listing 6.6). Based on the new
data received, the web browser checks whether the row represents a
new Request for Comment or is meant to update an existing row in the
table. Therefore, each table row within the HTML stores the Request
for Comment ID as a data attribute. In case of an update, the HTML
code of the existing row is replaced with the new HTML received
through the WebSocket channel. Thus, it keeps the position within
the table. New entries are added to the top, so that the table is always
ordered by the creation timestamp of Request for Comments.

app/helpers/action_cable_helper.rb
1 ApplicationController.render(

partial: 'request_for_comments/list_entry',
locals: {request_for_comment: self})

↪→

↪→

Listing 6.6: Method call within the ActionCableHelper responsible for send-
ing updates to the live dashboard using ActionCable. The code is
run in the context of the RequestForComment model, so that self
refers to the Request for Comment that was created or updated.
Rendering the single table row is done by reusing the existing
Slim template that is also used in Listing 6.5.

6.7 learnings from the implementation

Our prototype described in the previous sections was used through-
out the implementation phase of our concept and the evaluation by
different teachers and their students in real lessons. This section
summarizes some learnings and their impact due to different web
browsers, network configurations and limits we identified. If possible,

6.7 learnings from the implementation 73

only standardized HTTP ports (such as 80 and 443) should be used
for an educational tool as some schools block many uncommon ports.

6.7.1 Saving Session Information in a Cookie

While CodeOcean is a stand-alone web application, it can only be
used by authenticated users. Thus, teachers and students must access
the tool through a tool launch done via LTI. As a result of the LTI
handshake (as described in Section 6.4), a cookie is sent to the client
and used for every subsequent request. According to the specification,
HTTP cookies are used to let “the servers maintain a stateful session
over the mostly stateless HTTP protocol” [54]. Session handling via
cookies only works properly, if the web browser accepts the cookie and
uses it according to the specification. As the cookie is uploaded as part
of every request sent to the server, a smaller cookie reduces the overall
time required to complete an HTTP request. In accordance with the
specification, Rails limits the size of a cookie to 4 kB [54]. As a result
of the size limitation and due to other values stored in the cookie, we
encountered limitations for storing restrictions applied by the teacher.
In our implementation, these are stored in the session cookie. Due to
size limitations, the restrictions are not assigned to a specific exercise.
Therefore, a single worksheet currently does not support two exercises
with a different set of restrictions. A possible solution would be to
switch to another Session store as offered and supported by the Ruby
on Rails framework40. By using another session store, the cookie
would only include an ID as a reference to a server-provided store
circumventing the size limitation.

6.7.2 Worksheets with Cross-Origin Frames

Other issues with cookies arise, if CodeOcean is embedded into an-
other website, i. e., through an iFrame. Modern web browsers introduce
restrictions for embedded elements that are served from another do-
main than the main document. These so-called cross-origin elements
might be subject to restrictions applied by the web browser due to secu-
rity and privacy concerns of users. Some browsers, such as Apple Sa-
fari41 do not accept cookies from cross-origin sites by default 42. Thus,
if the worksheet editor is hosted at schul-cloud.org and CodeOcean
is served as part of an iFrame through codeocean.openhpi.de, the
cookie required by CodeOcean is not accepted and consequently the
login fails. A possible solution we implemented is to provide a proxy

40 https://guides.rubyonrails.org/action_controller_overview.html

41 https://www.apple.com/safari/

42 https://webkit.org/blog/8613/intelligent-tracking-prevention-2-1/

schul-cloud.org
codeocean.openhpi.de
https://guides.rubyonrails.org/action_controller_overview.html
https://www.apple.com/safari/
https://webkit.org/blog/8613/intelligent-tracking-prevention-2-1/

74 implementation

for CodeOcean and serve it through a domain of the HPI Schul-Cloud
edtr.io. In general, this solution requires correct configuration of a
proxy and needs to be reconsidered for use in production environ-
ments with respect to cookie security.

Independent of the problem introduced by the cross-origin usage
of CodeOcean, multiple practical programming exercises in a single
worksheet require further investigation. Per default, Ruby on Rails pro-
vides countermeasures for Cross-Site-Request-Forgery (CSRF), a web
attack that initiates an HTTP request on a third-party site without the
user’s consent. As a countermeasure, Rails provides a so-called CSRF
token to the client and expects it in return together with most HTTP
request types, such as POST requests. For legitimate requests, the
correct CSRF is automatically included to the request by the browser.
The Rails backend server validates the CSRF token with the aid of the
encrypted session cookie also included in the request. For every page
load, Rails generates a new CSRF token; it is included in the generated
HTML and put globally in the encrypted cookie. As long as the user
interacts with only one CodeOcean view at a time, this mechanism
works seamlessly, as all requests are sequential. However, a worksheet
might include two or more instances of CodeOcean that are potentially
loaded simultaneously. Therefore, we disabled the CSRF protection
temporarily for our evaluation with students. Otherwise, the newest
cookie received would overwrite older versions of the same cookie
including the matching counterpart for the CSRF token validation.
Thus, the browser might send a request using a CSRF token from the
CodeOcean instance loaded first together with the cookie of the last
loaded page view. As a result of that request, the server would reject
the request due to the mismatch of the CSRF token and cookie. Hav-
ing outlined the issue and conceptualized a corresponding solution,
we postpone the implementation to future work, as a clean and tested
implementation would exceed the scope of this thesis.

7
E VA L UAT I O N

To ensure that our concept and the prototype fit the needs of students
and teachers, we regularly asked for feedback within 27 interviews in
total. We did not only use those contacts for the initial need finding
but also to clarify questions that arose during further development.
The teachers we interviewed use different tools and approaches in
their day-to-day lessons and have various backgrounds. While some
use the HPI Schul-Cloud or an LMS regularly, others do not want to
work with these tools or are unable to use them due to organizational
barriers. Some have used MOOCs with their classes before, while
others have not done so yet. We also presented numerous versions of
our prototype to teachers and students to incorporate their feedback
as early as possible.

This chapter is structured as follow: First, Section 7.1 provides
background information on our initial need finding we conducted.
Based on the exploration of requirements, we created a software
prototype and evaluated it with students of two different classes.
As part of the evaluation, students voluntarily participated in our
study (see Section 7.2). After using our prototype in their lessons,
the teachers involved in our study described a shift from instructor-
oriented to individual learning (cf. Section 7.3) and thus a change
in their role. Other teachers not involved in the in-class usage got
the opportunity to try our concept on a trade fair and many of them
expressed their interest in using it for their own lessons. In fact, five of
seven teachers would recommend edtr.io to colleagues (see Section 7.4).
Finally, Section 7.5 summarizes the findings of our evaluation.

7.1 exploration of requirements

The initial motivation of this thesis (as described in Section 1.1) is
based on direct feedback from teachers and the needs they expressed.
We got in touch with teachers on the HPI Schul-Cloud Forum 2018

1,
a yearly meeting of teachers using or being interested in the HPI
Schul-Cloud. Additional teachers for our initial exploration were
found through a global announcement in the HPI Schul-Cloud email
newsletter. Our goal was to get an understanding of the current
situation of teachers and to identify their most important needs.

1 https://hpi.de/veranstaltungen/hpi-veranstaltungen/2018/

schul-cloud-forum-2018.html

75

https://hpi.de/veranstaltungen/hpi-veranstaltungen/2018/schul-cloud-forum-2018.html
https://hpi.de/veranstaltungen/hpi-veranstaltungen/2018/schul-cloud-forum-2018.html

76 evaluation

7.1.1 Methodology

Our work in the context of programming education has two main stake
holders in the school context: teachers and students. Throughout our
initial need finding, we concentrated on teachers for two reasons: (1)
Teachers define the methodology of lessons, their design and decide
which tools and resources to use on their own. (2) Only if teachers
notice a benefit, they will introduce a new tool to their students
and use it regularly. Thus, we decided to address the requirements
of teachers in a first step and consider these as top priorities for
building our prototype. Otherwise, our concept could be great for
students in terms of development support but could miss the needs
of teachers (such as submission handling) preventing the regular use
in schools. Nevertheless, we were eager to get direct feedback from
students using our software prototype in a second step and therefore
conducted surveys across students and teachers.

At the HPI Schul-Cloud Forum, we offered a 90-minute workshop
for teachers on interactive exercises to foster a discussion about ap-
proaches for practical programming exercises. During the workshop,
we introduced teachers to the possibilities of CodeOcean and require-
ments to enable automated feedback through unit tests. At the end of
our session, we provided a custom survey to the participants asking
about the tools and approaches they use for computer science lessons.
For the telephone interviews, we specifically focused on the current
usage of worksheets, templates for source code, and the experiences
teachers made with submission systems. Depending on the time our
interviewees had, we outlined our concept at the end of the phone call
and asked for feedback about it.

7.1.2 Results

The initial survey at the HPI Schul-Cloud Forum was answered by
ten teachers, including six computer science teachers. Out of all ten
teachers, two already used MOOCs in the past and four consider
using them with their students. Four out of five computer science
teachers indicated to be interested in online programming tools (cf.
Section 3.6). Only one of six teachers used automated grading tools
in the past for submissions, the others refrain from using such tools,
mostly because of missing time or because the usage is too compli-
cated. According to our survey and the telephone interviews, most
teachers provide their students with scaffolded source code for prac-
tical programming exercises in order to focus their attention. The
possibility to enable students to comment their submissions mutually
was rated as helpful (4 replies) or very helpful (one reply). Other
results from our initial survey are located in the Section C.1. From the

7.2 students : testing the prototype 77

additional eight teachers we interviewed via phone, no one used unit
tests for automated grading. One teacher with access to a Moodle LMS
used digital multiple-choice quizzes sporadically for grading.

7.1.3 Discussion and Interpretation of the Results

The telephone interviews and the results from the initial survey were
comparable and provided the starting point for our analysis of the
current situation in schools (see Chapter 4). Our concept, if discussed,
was seen as valuable and a number of teachers were interested in
following up with the further progress. Two computer science teachers
agreed on testing our prototype with their classes as part of the regular
lessons. Both teachers were attracted by the openHPI course on Java
and intended to use the course with their students directly (confirming
our survey). They described the ability of CodeOcean to provide
automated feedback to the learners as one of the biggest advantages.
One teacher, who already used an earlier iteration of the openHPI
course on Java, criticized the missing ability to adapt scores of his
students, in case he was satisfied with the solution but the student did
not achieve a full score on CodeOcean. Hence, he was looking forward
to our prototype allowing teachers to adapt exercises and feedback to
their needs. The feedback gathered through the interviews and the
survey encouraged us to continue evaluating interactive worksheets
with programming exercises.

7.2 students : testing the prototype

Measuring effects of our concept, it is important to consider how stu-
dents and teachers evaluate our approach and to understand how dig-
ital worksheets with interactive programming exercises might change
the in-class situation. Therefore, the main goal of our evaluation was
to get early feedback from typical lessons using our prototype. As
shown in Table 7.1, we tested a total of four different worksheets
in five lessons with two classes (consisting of 21 and 16 students,
respectively).

To minimize the side effects of using a web-based programming
environment and online videos, we conducted our evaluation with
two classes that were learning Java with a free MOOC on openHPI
or a repetition of the same course on mooc.house. In these courses,
videos are followed by multiple choice questions and practical pro-
gramming exercises in CodeOcean. For a first test run, we prepared
two worksheets on the Java topics methods and inheritance in tight
consultation with the teachers and inspired by the openHPI MOOC.
Both worksheets were used in the same 90-minute lesson, starting

78 evaluation

group tested worksheets filled surveys

m
e

t
h

o
d

s

i
n

h
e

r
i
t
a

n
c

e
a

b
s
t

r
a

c
t

c
l

a
s
s
e

s

g
r

a
d

e
d

a
s
s
i
g

n
m

e
n

t
f
r

e
e

t
e

x
t

q
u

e
s
t

i
o

n
s
,

n
p

s
, u

e
q

v
i
d

e
o

v
s
.

b
o

o
k

class of the first
teacher (21 students)

1. 2. 4. 3. 5.

class of the second
teacher (16 students)

2. 1. 3. 4.

Table 7.1: Overview about the worksheets tested in different lessons by two
teachers and their students. The numbers represent the order in
which the worksheets or surveys were given to the students.

with the worksheet on methods. From teachers and previous iterations
of our online courses, we know that the inheritance topic is one of
the more difficult concepts in programming education. By starting
with an easier repetition on methods, we were able to reduce possible
distraction introduced through the digital worksheets for the second,
more complex subject. Each worksheet consisted of a mix of text ele-
ments, images, videos, multiple-choice quizzes and several practical
programming exercises in-lined.

7.2.1 Methodology

The designed worksheets were used during a regular lesson by a
combined class of 21 students in their last two years of high-school.
We decided not to join the class in person to prevent any disturbance
due to our attendance. Therefore, it was the teacher’s responsibility
to introduce the topic as he normally does and to guide the students
through the material. After the lesson, the students were asked to
provide anonymous feedback through our survey. Furthermore, we
consulted the teacher directly to learn more about the in-class situation
and his impressions. In the survey given to students, we asked what
they liked or disliked about the concept in general. Additionally, we
asked which advantages or disadvantages the different mediums, i. e.,
the schoolbook, traditional worksheets, static PDF worksheets, and
our approach offer.

Moreover, we assessed the Net Promoter Score (NPS; how likely it
is that students would recommend the digital worksheet to friends) as
described by Reichheld [50]. Based on their answers given on a scale
from 0 to 10, students can be assigned to one of three groups: The
promoters (rating of 9 or 10, likely to recommend digital worksheets),

7.2 students : testing the prototype 79

the passives (rating of 7 or 8) and the detractors (rating of 0 – 6; these
are unlikely to recommend digital worksheets). The NPS is calculated
as the difference between the promoters and the detractors divided by
the number of participants multiplied by 100. Consequently, the NPS
ranges from +100 (every participant is likely provide a recommenda-
tion) to -100 (no one is likely to give a recommendation).

We further embedded modules from a questionnaire called modular
evaluation of key Components of User Experience (meCUE) [43]. The
meCUE consists of four modules, covering the product perception
(instrumental: module I; non-instrumental: module II), emotions
(module III), consequences (module IV) and an overall score (module
V) [43]. For our survey, we included the first, third, fourth and fifth
module, as we expected them to provide the most suitable insight.

Eight weeks after the first test with two worksheets, we conducted
a second evaluation with a third worksheet on the Java topic abstract
classes. This time, we also included a reference to the schoolbook as
students had to work on their own with the teacher being absent. The
experiment was complemented by a survey with just three questions
comparing the book and the embedded video with regard to the
comprehensibility, the perceived enjoyment and the preferred source
for the repetition of content.

The female teacher of another class with 16 students was using the
course on mooc.house and was interested in a graded assignment.
She previously used the weekly homework assignments from the
MOOC and scores calculated by the course platform. However, she
was surprised by the good results many students achieved. She
attributed some of the good results to the structure of the MOOC
and the availability of the assignment to all users prior to her lesson.
Furthermore, she was unable to review the submissions and had to
trust the score calculated by the MOOC platform. Thus, for our third
evaluation, we created a worksheet with two graded assignments and
disabled the internal scoring feature for students (with the mechanism
described in Section 6.4.2).

A few days later, the same class (with 16 students) used our existing
worksheet on the Java topic inheritance instead of the course content
directly available within the course. We also asked the students to
participate in the same survey we prepared for the other class. We also
asked the students to compare books and videos with regard to the
comprehensibility, the perceived enjoyment and the preferred source
for the repetition of content.

80 evaluation

7.2.2 Results

From the 21 students who accessed the first worksheet, nine students
participated in our voluntary survey. Eight students valued the general
concept and the overall design of our interactive worksheets. The
students further appreciated the provided overview and structure on
the content of a lesson. They also valued the general availability of
online content, as this allowed them to access content independent of
their current location, e. g., while commuting in a bus on their way to
school. The complete results of the survey is attached in Section C.3.
We received an NPS of -38 (Table 7.2; ranging from -100 to +100),
based on eight answers in our survey. In contrast, answers to the
meCUE show an overall score of 2.7 on average (ranging from -5
to +5; N=7). Other scores in the meCUE (Figure 7.1; ranging from
“strongly agree” = 7 to “strongly disagree” = 1, with their respective
average score based on six replies) were usability (6.0), usefulness (4.3),
positive emotions (3.2), negative emotions (2.9), intention to use (3.2)
and product loyalty (3.2).

group promoters passives detractors nps

class of the first teacher
(21 students)

1 3 4 −38

class of the second teacher
(16 students)

0 2 6 −75

all students 1 5 10 −56

all students and teachers 6 7 10 −17

all teachers 5 2 0 +71

Table 7.2: Overview of the NPS achieved across all students and teachers.
The NPS ranges from -100 to +100 and describes, how likely it is
for a product to be recommended. A higher value indicates that a
recommendation to a friend or colleague is more likely.

The second survey comparing the schoolbook with videos from a
MOOC only received three answers from the first class: One student
preferred the video for learning and attributed it was more enjoyable
than the schoolbook, while the other liked both approaches to the same
extent. The two students agreed to use both resources for repeating
the content. A third student preferred the schoolbook in all categories
and expressed a general rejection of learning with digital resources.

From the second class with 16 students, ten students gave feedback
through our voluntary survey after using the interactive worksheet

7.2 students : testing the prototype 81

4.26

6.00

3.17 2.90 3.19 3.24

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Usef
ulness

Usa
bil

ity

Pos
itiv

e e
moti

ons

Neg
ati

ve
 em

oti
ons

Int
en

tio
n t

o u
se

Prod
uct

loy
alt

y

M
ea

n
va

lu
e

w
it

h
st

an
da

rd
 d

ev
ia

ti
on

s

Figure 7.1: Results of meCUE modules I (yellow), III (green) and IV (red)
with the standard deviation for the class of the first teacher (N=7).

on inheritance. All participants found the worksheet clearly structured
and stated to find it easy to learn with different content types (such
as videos and texts) as offered by our worksheet. Nevertheless, more
students prefer learning with the mooc.house course than with the
worksheet (four vs. three answers, three students neither prefer one
or the other). Furthermore, eight out of the ten students indicated
they had technical issues during the lesson. Consequently, the NPS
we received from eight answers in our survey was -75 (as shown
in Table 7.2). However, the overall experience measured with the
meCUE was positive with 1.4 overall (eight replies from the same
students that also answered the NPS). While some other scores of the
meCUE (calculated from four replies and shown in Figure 7.2) were

4.33

5.25

3.88

4.88

3.17
3.42

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Usef
ulness

Usa
bil

ity

Pos
itiv

e e
moti

ons

Neg
ati

ve
 em

oti
ons

Int
en

tio
n t

o u
se

Prod
uct

loy
alt

y

M
ea

n
va

lu
e

w
it

h
st

an
da

rd
 d

ev
ia

ti
on

s

Figure 7.2: Results of meCUE modules I (yellow), III (green) and IV (red)
with the standard deviation for the class of the second teacher
(N=4). The results were affected by technical issues [48].

82 evaluation

significantly different to those of the other class (such as usability (5.3),
positive emotions (3.9), negative emotions (4.8)), others were almost
the same (e. g., usefulness (4.3), intention to use (3.2) and product
loyalty (3.4)). We provide an overview about the scores of the meCUE
for both classes in Figure C.4 and Table C.1, Section C.2.

In our supplementary survey (cf. Figure 7.3), we asked students
of the second class about their preferences on learning with books
or videos. 13 students participated in our survey and provided an
answer per question on a four-element-scale indicating whether they
agree or disagree with the given statement. Eleven students indicated
to understand concepts better with videos than with books while
two preferred a book for the initial learning. All students except
for one enjoy learning with videos more than they do with books.
Even though textual descriptions were not preferred by the majority
of students, books are most likely to be used for repeating content.
Throughout all three questions, the video surpassed the book and was
generally preferred by the students.

Statement Answer Option Students Visualization
Strongly agree 0
Somewhat agree 2
Somewhat disagree 11
Strongly disagree 0

Strongly agree 6
Somewhat agree 6
Somewhat disagree 1
Strongly disagree 0

Strongly agree 3
Somewhat agree 3
Somewhat disagree 5
Strongly disagree 2

I would rather use a book to
repeat learning content.

I generally enjoy learning
with videos more than with
books.

I understand concepts better
with books than with videos.

Figure 7.3: Results of the additional questions asked amongst students of the
second class. The three scales measured were the comprehensi-
bility, the perceived enjoyment and the preferred source for the
repetition of content (class of the second teacher, N=13).

7.2.3 Discussion and Interpretation of the Results

The results gathered with the questionnaires are a first evaluation and
motivation to further research the impact of interactive worksheets.
Students from both classes highlight the same aspects of interactive
worksheets independent of each other. While one class was used to
worksheets within computer science classes, they found worksheets

7.3 teachers : experiences from testing the prototype 83

more important than the other class not using worksheets on a reg-
ular basis for programming education. Hence, the class with more
worksheet experiences recognized more advantages in our interactive
worksheets than students from the other class did. That might be,
besides the technical influence, one of the reasons for the difference
in the NPS and meCUE. Comparing books and videos, the video
outperformed the book in all three categories we measured, based on
a total of 16 replies from both classes. Hence, videos (e. g., as part of
MOOCs) are a valuable addition to traditional teaching methods.

In their paper, Partala and Kallinen stated that “the subjects also
reported [. . .] more technical problems for the most unsatisfying than
the most satisfying experiences” [48]. Further, the authors conclude
“[that] the clear differences in the ratings of technical and usability
problems between the most satisfying and most unsatisfying user
experiences suggest that the central role of these aspects should not
be forgotten, when studying user experience” [48]. Our investigation
with the teacher revealed connection issues within the school network
that occurred while her students used the interactive worksheet on
inheritance. As a result of the work presented by Partala and Kalli-
nen and our analysis, we decided to limit responses of the meCUE
and NPS to those users without known issues. Non-emotional ques-
tions (e. g., those regarding the structure provided by the worksheets)
were not affected. In comparison, the ability to develop source code
within a browser-based code execution environment during a graded
assignment was praised by the students.

7.3 teachers : experiences from testing the prototype

In addition to the direct feedback of students we collected by the sur-
vey, we were especially interested in the experiences the two teachers
made with our interactive worksheets. Therefore, we interviewed
them independent of each other via a telephone call. Our main re-
search interest was to understand the differences between learning
with the MOOC and using our worksheets. Thus, we asked teachers
to observe the behavior of their students during the lessons.

After the very first lesson including our worksheets, the teacher re-
ported that his students got along well. He valued the deep integration
and material mix we provided and repeatedly expressed the inten-
tion to create equivalent worksheets himself. From his observation,
students revisited previous parts of the worksheets more often while
working on the programming exercises than they did in the setting
with the MOOC. The other teacher, who also used the same worksheet
on inheritance, confirmed that observation for students which had no
or only minor technical issues.

84 evaluation

Using our worksheets in class, the teachers delightedly noticed a
shift in their role compared to other lessons without our prototype:
Students were able to execute their programs and get automated
feedback and hints through CodeOcean as previously, but were further
supported by the improved structure to revisit previous learning
content on the same worksheet. Thus, students were able to answer
more questions themselves and proceed at their own pace. Hence,
teachers were able to focus on struggling students and dedicate their
time to support them. Consequently, the role of the teachers changed
from an instructor to an individual tutor.

During lessons, students like the ability to ask upcoming questions
orally and discuss them with their fellow students or the teacher.
Students and teachers prefer the direct communication over using
any technical tool as no formalization of the questions is required.
Answers are given by teachers immediately and can optionally be
supported by a visualization. Thus, the possibility to create Request
for Comments was not used during lessons. However, the teachers we
interviewed were interested in commenting submissions to provide
feedback for graded assignments, similar to Request for Comments in
CodeOcean.

Furthermore, we provided the teacher who used one worksheet
for a graded assessment with the submissions of her students. The
scores of exercises used within the test were neither visible for the
teacher nor for the students (due to settings applied for CodeOcean).
After she finished the grading on her own, we showed her the scores
calculated by CodeOcean based on the unit tests we added for each
exercise in advance. She was surprised how close our test results were
compared to her manual grading. For example, the maximum score of
one exercise was six points and 9/10 results were identical or within a
range of ±0.5 points. For the teacher, the overall dashboard visualizing
the progress made by her students had the biggest impact. She would
have preferred to have access to the graphs throughout the grading.
In her opinion, it would allow her to define an order for her review
process based on the pre-evaluation of the submissions. As she was
satisfied with the in-class experience, she expressed her interest in
using our prototype for additional graded assignments.

7.4 teachers : usability of the prototype

In addition to the feedback we got from the two teachers who were
involved in testing the prototype, we asked other computer science
teachers about their impressions of our tool. As we learned from the
initial need finding that most teachers have individual approaches
to programming education in high-schools, we were eager to show
our tool to as many teachers as possible. Our goal of the evaluation

7.4 teachers : usability of the prototype 85

with teachers was to get an understanding of the applicability of
our concept and the usability of our prototype for computer science
lessons. Specifically, we focused on the (in-class) usage of worksheets,
the adaptability of CodeOcean exercises and the subsequent grading
of submissions.

7.4.1 Methodology

We introduced our prototype with sample documents and learning
analytics to teachers on didacta 2019

2, one of the largest European ed-
ucation trade fairs and on the HPI Schul-Cloud Forum 2019

3. During
these events, we presented our tool in one-on-one sessions or to small
groups of up to four participants. We gathered different ideas from
teachers and asked them for feedback using the standardized User
Experience Questionnaire (UEQ) [34]. The UEQ includes a benchmark
based on 401 studies and more than 18.000 participants to compare re-
sults from own studies. In addition to the UEQ, we also asked teachers
how likely it was that they would recommend interactive worksheets
to their colleagues (in order to determine an NPS for teachers).

7.4.2 Results

Out of seventeen teachers who tried our prototype (student as well
as teacher role), twelve teachers filled the UEQ. The scales tested
turned out to be mostly rated good or even excellent (cf. Figure 7.4).
The stimulation (mean of 1.7) provided through the use of interactive
worksheets was rated the best, together with attractiveness (1.7), de-
pendability (1.5), efficiency (1.5) and novelty (1.1) rated good. The
perspicuity (1.4) was seen above average with the highest improve-
ment potential, compared to the benchmark provided by the UEQ.
All detailed results gathered by the UEQ are located in Section C.4,
Figure C.10 and Figure C.11. Across seven teachers, the NPS of our
interactive worksheet editor with integrated learning analytics was
+71 (see Table 7.2).

7.4.3 Discussion and Interpretation of the Results

To be able to classify our NPS value of +71, we compared it to other
scores publicly available. According to a benchmark offered by De-

2 https://www.didacta-cologne.com/

3 https://hpi.de/en/events/hpi-veranstaltungen/2019/schul-cloud-forum-2019.

html

https://www.didacta-cologne.com/
https://hpi.de/en/events/hpi-veranstaltungen/2019/schul-cloud-forum-2019.html
https://hpi.de/en/events/hpi-veranstaltungen/2019/schul-cloud-forum-2019.html

86 evaluation

1.70
1.42 1.52 1.54 1.66

1.06

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Attr
act

iven
ess

Pers
picu

ity

Effi
cie

ncy

Dep
en

dab
ilit

y

Sti
mulat

ion

Nov
elt

y

Be
nc

hm
ar

ke
d

m
ea

n
va

lu
e

Bad (last 10%) Below Average (below 50%)
Above Average (top 50%) Good (top 25%)
Excellent (top 10%) Mean

Figure 7.4: Measured scales of the UEQ showing mean values in comparison
with the method benchmark (N=12).

lighted4, the NPS within the software industry5 typically ranges from
+28 to +55 with an average of +41. Duolingo6, an education software
to learn languages, got an NPS of +51.5 according to a study con-
ducted by Vesselinov and Grego [67]. The authors conclude that “this
[score] is an excellent result”, which is based on 66 responses [67]. Al-
though future studies should be conducted with additional iterations
of our prototype and a larger audience to draw generalizable results,
our score of +71 (N=7) provides a first impression and indicates the
satisfaction across teachers that participated in our study.

According to Laugwitz et al., “the scales of the UEQ can be grouped
into pragmatic quality (Perspicuity, Efficiency, Dependability) and he-
donic quality (Stimulation, Originality)” instead of an overall score [34].
The pragmatic quality describes the usefulness, while the hedonic
quality defines the pleasure and motivation of users to handle the
product [34]. The scale for both is ranging from -3 (“horribly bad”)
to +3 (“extremly good”) and values between -0.8 and +0.8 are seen
as a “neural [sic] evaluation of the corresponding scale” [34]. For our
prototype, both qualities (as shown in Figure 7.5) were rated good
within the given interpretation with the pragmatic quality (1.49) being
slightly better than the hedonic quality (1.36). As we mainly focused
on the features and usability, the scores affirm our main effort towards
the pragmatic quality.

4 https://delighted.com/nps-benchmarks

5 Companies in the benchmark include Adobe, Apple, Google, Microsoft, Symantec
and others

6 https://duolingo.com

https://delighted.com/nps-benchmarks
https://duolingo.com

7.5 overall impression 87

-3

-2

-1

0

1

2

3

Attr
ac

tiv
en

ess

Pers
picu

ity

Effi
cie

ncy

Dep
en

dab
ilit

y

Sti
mulat

ion

Nove
lty

Overa
ll P

rag
mati

c Q
uali

ty

Overa
ll H

ed
on

ic
Quali

ty

Figure 7.5: Results of the UEQ in the six scales showing the standard devia-
tion and the grouping into pragmatic quality and hedonic quality
(N=12).

7.5 overall impression

The limited responses from students and teachers allow cautious con-
clusions to be drawn. The responses of students show contradictions,
such as the difference in the NPS (-38) and the meCUE overall ex-
perience (2.7). Free text answers also showed minor contradictions,
hinting that students might have misinterpreted parts of our survey.
The negative NPS is likely to be explained by technical issues caused
by connection problems from within the school network as the overall
experience was valued, which was also confirmed by the teachers.

We further draw three main conclusions from the text comments of
the students received in the surveys: (1) When comparing interactive
worksheets with MOOCs, students highlight the improved structure
and the enhanced overview offered through the worksheets. (2) They
value the mix of different content types on a single web page and
see no additional advantage in accessing the MOOC platform instead.
(3) Traditional worksheets are seen as static and inflexible; however,
students are sometimes allowed to use traditional worksheets for
their reference in a written exam. As digital devices are usually not
allowed, we derived the need to work on a print mode in the future.
Overall, students value the integration of online learning content and
the introduction of hybrid classes. In their opinion, MOOCs offer
state-of-the-art knowledge while schoolbooks can be outdated.

The biggest advantages of interactive worksheets are voiced by
teachers. They favor the efficiency offered by edtr.io to create in-
dividual worksheets with customized programming exercises. Our
qualitative survey shows that our concept meets the requirements

88 evaluation

computer science teachers have and the results of the NPS (+71) and
the UEQ support the proposed design. Due to the insights provided
by learning analytics, teachers feel better prepared when planning
upcoming lessons and gain a better understanding of the reasons why
their students struggle with given exercises. During lessons, teachers
observed that students learned individually at their own pace and
rearranged the topic order to their needs. Therefore, teachers reported
that the worksheets helped to change their own role from an instructor
of the class to an individual tutor. The automated feedback freed up
some of their time, which they were now able to spend on helping
individual learners. The positive feedback of teachers using our initial
prototype of digital worksheets in their lessons, combined with the
repeatedly voiced demand to create own worksheets, underlines the
relevance and practical applicability of our concept.

8
O U T L O O K A N D F U T U R E W O R K

Identified shortcomings such as the missing usability of digital work-
sheets during exams should be solved with a feature to print out
individual filled worksheets or the material of a complete lecture se-
ries. While a simple print-out of an interactive worksheet provides
students with a copy of their progress, many of the advantages of
digital worksheets cannot be preserved. Traditionally, the exam is
also paper-based, resulting in the absence of features students used
during learning. Future work should, therefore, concentrate on the
special requirements during exams and introduce an “exam-mode” for
interactive worksheets. In this scenario, teachers need to get increased
control over resources accessed by students and the features enabled
in the programming exercises, such as the set of limitations available
in edtr.io and CodeOcean (see Section 6.4.2), e. g., by introducing a
time limit and an explicit submission handling.

A cockpit view for teachers, showing the students’ progress and
allowing presentation and discussion of individual solutions is valu-
able in lessons as well as exam situations (as outlined in Section 7.3).
The presentation view enabling teachers to do an in-class compari-
son of different solutions should be evaluated against currently used
approaches.

For exam usage of our tool, we plan to further improve the technical
stability. Despite already being stable in MOOC usage, we consider
shifting from our current custom container pooling to Docker Swarm
or Kubernetes to reduce maintenance effort and minimize error scenar-
ios. Additionally, the learnings from Section 6.7 should be considered,
such as implementing the CSRF fix we outlined. Future work will also
concentrate on ways how to provide debug functionality for novices.

As the adoption of interactive worksheets highly depends on the
ease of use for teachers to create own worksheets and the variety of
already existing documents, we will further investigate options to
share worksheets and embed other types of pre-existing OER. Lastly,
we will re-run our experiments (cf. Chapter 7) with larger study
groups to achieve reliable and potentially generalizable outcomes.

89

9
C O N C L U S I O N

Computer science education in high-schools includes practical pro-
gramming exercises which impose technical requirements on school
computers. Therefore, teachers like online programming environments
that can be used without any local setup. Those environments are
available as stand-alone web applications or integrated into MOOCs
including learning content and beginner-friendly programming exer-
cises. Computer science teachers value the online content and partially
reference it in traditional worksheets, which only offer a cumbersome
and static user experience. To enable teachers to adapt learning con-
tent to the respective needs of their class, we developed the concept of
interactive worksheets with embedded programming exercises. On the
basis of our experiments, we are able to answer our research questions:

RQ1. How can we enable teachers to reuse and adapt exercises (e. g.,
from MOOCs) and create their own interactive worksheets?

Teachers not only need access to the same authoring tools avail-
able to MOOC instructors but require further technical help in
creating equivalent exercises. In online courses, automated feed-
back is used to support learners in finding the correct solution,
which teachers regard as helpful. To integrate the same feedback
mechanism for their own programming exercises, custom unit
tests are required. We propose to offer a unit test generator
to help teachers developing such tests. In addition, teachers
should be enabled to access and share exercises with colleagues.
In our concept, all exercises can be embedded in an interactive
worksheet with a customizable integration providing teachers
with fine-granular control on the features available to students.

RQ2. Which tooling support do teachers need to help students strug-
gling with given programming exercises?

Besides access to student submissions on demand, teachers
benefit from the developed dashboard featuring a limited set
of learning analytics of their students. Given a visualization
of the students’ score together with programming errors they
made, teachers gain a better understanding of potential prob-
lems. Hence, they can support struggling students in a targeted
and faster way as well as better prepare upcoming lessons.

RQ3. How can we leverage learning data to enhance teaching effec-
tiveness and help the teacher to achieve lesson goals?

91

92 conclusion

Live processing of learning data, as featured by our tool and
supported by the evaluation, is helpful for teachers to answer
upcoming questions and to detect potential misconceptions.
Independent of single worksheets, existing LRS in schools offer
customizable views for evaluating long-term progress.

RQ4. Which support do students need to get individual help, either
from their fellow students or from their teacher?

During a lesson, teachers and students wish no further technical
support as they value the direct, oral communication for emerg-
ing problems. However, students benefit from tools to help each
other or contact the teacher in case of questions while working
on homework. CodeOcean supports commenting on lines of
source code to provide users with the full context of a question.

RQ5. Which of the results gathered from the questions above can be
transferred to the general MOOC context?

The improved structure of the worksheets was appreciated by
students and our evaluation suggests that it supports learners
in revisiting learning material while solving programming exer-
cises. MOOCs will also benefit from grouping learning material
of the same topic to ease navigating in the content.

Furthermore, our research suggests that the concept of study
groups should be applied to MOOCs, enabling a tutor to guide
learners through the course. In this scenario, tutors could be
given control over the content visibility or deadlines and might
also get access to learning analytics of their study group to
enable informed interventions.

As an additional outcome to the answers we provided for the
research questions, we contributed to CodeOcean and edtr.io: A
multiple-choice plugin was implemented for the worksheet editor
together with support for eleven restrictions teachers may apply when
embedding practical programming exercises. CodeOcean was ex-
tended with a dedicated teacher role, study groups and a live dash-
board for in-class learning analytics.

In this thesis, we introduced and evaluated interactive worksheets
with embedded programming exercises. Our prototype of a worksheet
editor features an extensible plugin architecture for various learning
tools. By combining text, videos and interactive content including
practical programming exercises and multiple-choice quizzes, we
improve the status quo for students as well as teachers: Students
learn individually at their own pace. Teachers switch their role to
tutors and individually support their students based on well-informed
analytical insights. Feedback is positive and shows the vast potential
of introducing digital content in the classroom.

A
A P P E N D I X : C O N C E P T

a.1 conceptual wireframes

Figure A.1: Conceptual sketch of the workflow and features available for
teachers to create and modify exercises within CodeOcean.

93

94 appendix : concept

Figure A.2: Conceptual sketch indicating how teachers include a practical
programming exercise from CodeOcean in their worksheet.

A.1 conceptual wireframes 95

Figure A.3: Conceptual sketch for the integration of CodeOcean into a work-
sheet and the interface provided for students while working on
an exercise.

96 appendix : concept

Figure A.4: Conceptual sketch outlining the submission handling for teach-
ers and the integration of learning analytic insights into the
worksheet editor.

A.1 conceptual wireframes 97

Figure A.5: Conceptual sketch with learning analytic metrics for teachers in
the context of an exercise. The lock indicates whether the graph
could also be shown to students, e. g., using a projector in class.

98 appendix : concept

Figure A.6: Conceptual sketch with learning analytic metrics for teachers in
the context of a tag (category) in CodeOcean. The lock indicates
whether the graph could also be shown to students, e. g., using a
projector in class.

A.1 conceptual wireframes 99

Figure A.7: Conceptual sketch with learning analytic metrics for teachers in
the context of a worksheet. The lock indicates whether the graph
could also be shown to students, e. g., using a projector in class.

100 appendix : concept

Figure A.8: Conceptual sketch of features for a unit test generator, covering
many test cases expressed by teachers.

A.2 related concepts 101

a.2 related concepts

Figure A.9: Modular worksheet editor as offered by tutory allowing a free
combination of pre-defined text and image components. The
exemplary content is the same as shown in Figure 5.1 and intro-
duces recursion in the programming language Delphi [1].

Figure A.10: The Digital Classroom within the HPI Schul-Cloud allows stu-
dents to share their current progress with the teacher [29]. The
screenshot is taken from the teacher’s perspective, so that access
to students’ work is enabled and shows a text editor. In our
concept, the worksheet editor would replace the image and
main text.

102 appendix : concept

Figure A.11: HPI Schul-Cloud cockpit showing teachers the task given to
students (center), their notes (right), the progress of their stu-
dents (left), and the overall structure of the worksheet / lesson
(bottom).

Figure A.12: regex101 listing matches for a given RegEx together with an
explanation [12]. The exemplary RegEx tests for the correct
declaration of an integer array called squares with 25 elements.
Depending on the assignment, all four test strings are valid Java
code, but the second one (not highlighted) is not matched.

A.2 related concepts 103

Figure A.13: The web-based repl.it allows learners to create and run pro-
grams without installing local software [16]. Designed as REPL,
the functionality offered for Java is comparable to Codeboard
(see Figure 3.1) and other web-based IDEs.

B
A P P E N D I X : I M P L E M E N TAT I O N

b.1 exemplary worksheet

Figure B.1: Exemplary worksheet on the Java topic inheritance as used in our
study, consisting of text, an image, a video, a multiple choice
quiz, and a programming exercise. Continued in Figure B.2.

105

106 appendix : implementation

Figure B.2: Exemplary worksheet on the Java topic inheritance as used in our
study, consisting of text, an image, a video, a multiple choice
quiz, and a programming exercise.

B.2 architecture 107

b.2 architecture

H
P

I
S

ch
u

l-
C

lo
u

d
(L

M
S)

L
ea

rn
in

g
L

oc
k

er
(L

R
S)

ot
h

er
 e

xt
er

n
al

 r
es

ou
rc

es
(e

.g
. Y

ou
Tu

be
, G

eo
G

eb
ra

, .
..)

op
en

H
P

I
(M

O
O

C
 p

la
tf

or
m

)

ed
tr

.i
o

C
od

eO
ce

an

?
in

te
gr

at
es

 c
on

te
n

t f
ro

m

?
se

n
d

s
xA

P
I

ev
en

ts
 to

 ?
 la

u
n

ch
es

?
p

ro
vi

d
es

 L
T

I
lo

gi
n

 f
or

 ?
 p

ro
vi

d
es

 le
ar

n
in

g
an

al
yt

ic
s

in
si

gh
ts

 f
or

?

Figure B.3: System architecture of interactive worksheets with the integra-
tion of multimedia content and programming exercises from
CodeOcean.

108 appendix : implementation

M
yS

Q
L

(d
at

ab
as

e)
N

od
e.

js
(J

av
aS

cr
ip

t r
u

n
ti

m
e)

ed
tr

.i
o

se
rv

er

P
ri

sm
a

(d
at

ab
as

e
ab

st
ra

ct
io

n
 la

ye
r)

Ty
p

eS
cr

ip
t

(s
ta

ti
c

ty
p

in
g

su
p

p
or

t
fo

r
Ja

va
Sc

ri
p

t)

?
p

ro
vi

d
es

 a

fr
am

ew
or

k
fo

r

?
is

 tr
an

sp
il

ed
 t

o
Ja

va
Sc

ri
p

t a
n

d
 r

u
n

s
on

 ?
 a

cc
es

se
s

ed
tr

.i
o

cl
ie

n
t

Ty
p

eS
cr

ip
t

(s
ta

ti
c

ty
p

in
g

su
p

p
or

t f
or

 J
av

aS
cr

ip
t)

A
p

ol
lo

 C
li

en
t

(G
ra

p
h

Q
L

ab
st

ra
ct

io
n

 la
ye

r)

R
ea

ct
(f

ra
m

ew
or

k
fo

r
cr

ea
ti

n
g

in
te

ra
ct

iv
e

u
se

r
in

te
rf

ac
es

)

?
u

se
s

?
in

te
gr

at
es

 w
it

h

G
ra

p
h

Q
L

(q
u

er
y

an
d

 m
u

ta
ti

on
 la

n
gu

ag
e)

bi
-d

ir
ec

ti
on

al
 c

om
m

u
n

ic
at

io
n

 c
h

an
n

el

?
u

se
s

S
la

te
(f

ra
m

ew
or

k
fo

r
bu

il
d

in
g

ri
ch

-t
ex

t
ed

it
or

s)

?
is

 b
as

ed
 o

n

P
ri

sm
a

C
li

en
t

(G
ra

p
h

Q
L

im
p

le
m

en
ta

ti
on

)

 ?
 in

te
ra

ct
s

w
it

h

Figure B.4: System architecture of the worksheet editor edtr.io consisting of
a backend server and a React web application.

B.3 implementation details : edtr .io 109

b.3 implementation details : edtr .io

Slate Internal Document State
1 {
2 "object": "block",
3 "type": "multiple-choice",
4 "data": {},
5 "nodes": [
6 {
7 "object": "block",
8 "type": "multiple-choice-question",
9 "data": {},

10 "nodes": [
11 {
12 "object": "text",
13 "leaves": [
14 {
15 "object": "leaf",
16 "text": "Wofür wird Vererbung typischerweise

verwendet?",↪→

17 "marks": []
18 }
19]
20 }
21]
22 },
23 {
24 "object": "block",
25 "type": "multiple-choice-answer",
26 "data": {
27 "id": "cjs66mei01mfq070010khauj2"
28 },
29 "nodes": [
30 {
31 "object": "text",
32 "leaves": [
33 {
34 "object": "leaf",
35 "text": "Zur Erstellung von Beziehungen zwischen

verschiedenen Klassen.",↪→

36 "marks": []
37 }
38]
39 }
40]
41 },
42 {
43 "object": "block",
44 "type": "multiple-choice-answer",
45 "data": {
46 "id": "cjs66mqwn1mgy0700xcsv0u8t"
47 },
48 "nodes": [
49 {
50 "object": "text",

110 appendix : implementation

51 "leaves": [
52 {
53 "object": "leaf",
54 "text": "Zur Verringerung von Dopplungen von

Codezeilen",↪→

55 "marks": []
56 }
57]
58 }
59]
60 },
61 {
62 "object": "block",
63 "type": "multiple-choice-answer",
64 "data": {
65 "id": "cjs66mvfx1mhi0700jhvvaeg7"
66 },
67 "nodes": [
68 {
69 "object": "text",
70 "leaves": [
71 {
72 "object": "leaf",
73 "text": "Zur Aufteilung der Arbeit am Code auf

verschiedene Entwickler.",↪→

74 "marks": []
75 }
76]
77 }
78]
79 },
80 {
81 "object": "block",
82 "type": "multiple-choice-answer",
83 "data": {
84 "id": "cjs66n0gr1mi20700nle5ia8y"
85 },
86 "nodes": [
87 {
88 "object": "text",
89 "leaves": [
90 {
91 "object": "leaf",
92 "text": "Zum Ausdrücken einer \"is-a /

ist-ein\"-Beziehung.",↪→

93 "marks": []
94 }
95]
96 }
97]
98 },
99 {

100 "object": "block",
101 "type": "multiple-choice-answer",
102 "data": {

B.3 implementation details : edtr .io 111

103 "id": "cjs66orn71mkn0700yat4dpsi"
104 },
105 "nodes": [
106 {
107 "object": "text",
108 "leaves": [
109 {
110 "object": "leaf",
111 "text": "Zur Darstellung von verschiedenen

Generationen bei Lebewesen, also einer
Eltern-Kind-Beziehung",

↪→

↪→

112 "marks": []
113 }
114]
115 }
116]
117 },
118 {
119 "object": "block",
120 "type": "multiple-choice-answer",
121 "data": {
122 "id": "cjupqfnnt26rm07003mqru24c"
123 },
124 "nodes": [
125 {
126 "object": "text",
127 "leaves": [
128 {
129 "object": "leaf",
130 "text": "",
131 "marks": []
132 }
133]
134 }
135]
136 }
137]
138 }

Listing B.1: Extract of the internal document state in Slate regarding the
multiple-choice plugin with one question and six answers as
shown in Figure 6.4. The information, whether an answer is
correct or not, is neither stored in the local storage of a web
browser nor send to students accessing the document.

112 appendix : implementation

edtrio-server/src/database/datamodel.prisma
1 type Document {
2 id: ID! @unique
3 value: Json!
4 users: [User!]!
5 createdAt: DateTime!
6 updatedAt: DateTime!
7 answers: [MultipleChoiceAnswer]
8 }
9

10 type MultipleChoiceAnswer {
11 id: ID! @unique
12 isCorrect: Boolean!
13 createdAt: DateTime!
14 updatedAt: DateTime!
15 submissions: [MultipleChoiceSubmission]
16 }
17

18 type MultipleChoiceSubmission {
19 id: ID! @unique
20 createdAt: DateTime!
21 updatedAt: DateTime!
22 author: User!
23 isChecked: Boolean!
24 answer: MultipleChoiceAnswer!
25 }

Listing B.2: Partial data model of edtr.io defining how the document is
stored together with the answer options and submissions of
the multiple-choice plugin. The question is stored as part of
the document, which includes a list of all answer options. Each
answer option might be chosen by multiple students.

B.4 implementation details : codeocean 113

b.4 implementation details : codeocean

Study Group Working Time Query
1 -- Parameters passed from Ruby to identify an Exercise and a study group.

An additional filter is used for live updates to transmit only
information of a single user. Using the setting from
StatisticsHelper::WORKING_TIME_DELTA_IN_SQL_INTERVAL, time deltas
longer than five minutes are ignored when calculating the overall
working time.

↪→

↪→

↪→

↪→

↪→

2

3 =#\set exercise_id 265
4 =#\set study_group_id 4
5 =#\set additional_filter 'AND user_id = 40260 AND user_type =

\'ExternalUser\''↪→

6 =#\set WORKING_TIME_DELTA_IN_SQL_INTERVAL '\'00:05:00\''
7 =#
8

9 WITH working_time_between_submissions AS (
10 SELECT submissions.user_id,
11 submissions.user_type,
12 score,
13 created_at,
14 (created_at - lag(created_at) over
15 (PARTITION BY submissions.user_type, submissions.user_id,

exercise_id ORDER BY created_at)) AS working_time↪→

16 FROM submissions
17 WHERE exercise_id = :exercise_id AND study_group_id = :study_group_id

:additional_filter),↪→

18 working_time_with_deltas_ignored AS (
19 SELECT user_id,
20 user_type,
21 score,
22 sum(CASE WHEN score IS NOT NULL THEN 1 ELSE 0 END) over
23 (ORDER BY user_type, user_id, created_at ASC)

AS change_in_score,↪→

24 created_at,
25 CASE WHEN working_time >= :WORKING_TIME_DELTA_IN_SQL_INTERVAL

THEN '0' ELSE working_time END AS working_time_filtered↪→

26 FROM working_time_between_submissions
27),
28 working_times_with_score_expanded AS (
29 SELECT user_id,
30 user_type,
31 created_at,
32 working_time_filtered,
33 first_value(score) over
34 (PARTITION BY user_type, user_id, change_in_score ORDER BY

created_at ASC) AS corrected_score↪→

35 FROM working_time_with_deltas_ignored
36),
37 working_times_with_duplicated_last_row_per_score AS (
38 SELECT *
39 FROM working_times_with_score_expanded
40 UNION ALL
41 -- Duplicate last row per user and score and make it unique by setting

another created_at timestamp. In addition, the working time is set
to zero in order to prevent getting a wrong time. This duplication
is needed, as we will shift the scores and working times by one
and need to ensure not to loose any information.

↪→

↪→

↪→

↪→

42 SELECT DISTINCT ON (user_type, user_id, corrected_score)

114 appendix : implementation

43 user_id,
44 user_type,
45 created_at + INTERVAL '1us',
46 '00:00:00' as working_time_filtered,
47 corrected_score
48 FROM working_times_with_score_expanded
49),
50 working_times_with_score_not_null_and_shifted AS (
51 SELECT user_id,
52 user_type,
53 coalesce(
54 lag(corrected_score) over
55 (PARTITION BY user_type, user_id ORDER BY created_at ASC),
56 0) AS shifted_score,
57 created_at,
58 working_time_filtered
59 FROM working_times_with_duplicated_last_row_per_score
60),
61 working_times_to_be_sorted AS (
62 SELECT user_id,
63 user_type,
64 shifted_score AS score,
65 MIN(created_at) AS start_time,
66 SUM(working_time_filtered) AS working_time_per_score,
67 SUM(SUM(working_time_filtered)) over
68 (PARTITION BY user_type, user_id) AS total_working_time
69 FROM working_times_with_score_not_null_and_shifted
70 GROUP BY user_id, user_type, score
71),
72 working_times_with_index AS (
73 SELECT (dense_rank() over
74 (ORDER BY total_working_time, user_type, user_id ASC) - 1) AS index,
75 user_id,
76 user_type,
77 score,
78 start_time,
79 working_time_per_score,
80 total_working_time
81 FROM working_times_to_be_sorted)
82 SELECT index,
83 user_id,
84 user_type,
85 name,
86 score,
87 start_time,
88 working_time_per_score,
89 total_working_time
90 FROM working_times_with_index
91 JOIN external_users ON user_type = 'ExternalUser'
92 AND user_id = external_users.id
93 UNION ALL
94 SELECT index,
95 user_id,
96 user_type,
97 name,
98 score,
99 start_time,

100 working_time_per_score,
101 total_working_time
102 FROM working_times_with_index

B.4 implementation details : codeocean 115

103 JOIN internal_users ON user_type = 'InternalUser'
104 AND user_id = internal_users.id
105 ORDER BY index, score ASC;

Listing B.3: PostgreSQL query to aggregate working times for a given ex-
ercise, study group and user. The given listing shows how to
query the information using the psql command line interface and
would usually include parameters provided from Ruby on Rails.
The query is explained in Section 6.6.2.

i
n

d
e

x

u
s
e

r
_i

d

u
s
e

r
_t

y
p

e

n
a

m
e

s
c

o
r

e

s
t
a

r
t

_t
i
m

e

w
o

r
k

i
n

g
_t

i
m

e
_

p
e

r
_s

c
o

r
e

t
o

t
a

l
_

w
o

r
k

i
n

g
_t

i
m

e

0 40260 ExternalUser Sebastian 0 2019-03-12

13:37:19.22547

00:05:02.11990 00:05:02.11990

0 40260 ExternalUser Sebastian 1 2019-03-12

13:42:21.34537

00:00:36.07017 00:05:38.19007

Table B.1: Result of the PostgreSQL query shown in Listing B.3.

C
A P P E N D I X : E VA L UAT I O N

c.1 exploration : results of the initial survey

3

9

9

0 1 2 3 4 5 6 7 8 9 10

Unterstufe

Mittelstufe

Oberstufe

Welche Klassenstufe(n) unterrichten Sie
(hauptsächlich)?

6

6

3

1

1

1

2

1

1

0 1 2 3 4 5 6 7

Informatik

Mathematik

Physik

Chemie

Natur / Wissenschaft / Technik

Erdkunde

Englisch

Spanisch

Sport

Welche Fächer unterrichten Sie?

2

2
1

7
4
4

1

0

0 1 2 3 4 5 6 7 8

Ja

- im Einsatz mit Schülern
- zur eigenen Vorbereitung
Bisher nicht, hätte Interesse
- zum Einsatz mit Schülern
- zur eigenen Vorbereitung

Nein, kenne ich nicht
Nein, kein Interesse

Haben Sie bereits einen
MOOC im Uunterricht verwendet?

6

4

2

10

7

5

1

0 2 4 6 8 10 12

Gamification

- in der Schul-Cloud

- im Unterricht allgemein

Game-Based Learning

- in der Schul-Cloud mit fertigen Aufgaben

- in der Schul-Cloud als Werkzeug

- im Unterricht allgemein

Ich könnte mir vorstellen, die folgenden Ansätze
einzusetzen

0 0

3

1

2

0

1

2

3

4

1 (sehr homogen) 2 3 4 5 (sehr heterogen)

Wie schätzen Sie die Unterschiede im
Wissensstand der Schüler ein?

1

3

2

0 0
0

1

2

3

4

1 (selten) 2 3 4 5 (regelmäßig)

Wie regelmäßig werden Hausaufgaben
bearbeitet?

Figure C.1: Detailed results of our initial survey — Part I. Continued in Fig-
ure C.2.

117

118 appendix : evaluation

0 0

3 3

0
0

1

2

3

4

1 (geringer
Nutzen)

2 3 4 5 (hoher Nutzen)

Wie hilfreich sind Hausaufgaben?

0 1 2 3 4 5

Lazarus

Scratch

Java

PHP

Python

C#

Haskell

Welche Programmiersprache(n) verwenden Sie
im Unterricht?

2

1

2

2

1

0 1 2 3

Ja

Bisher nicht, Interesse vorhanden

Nein

- Zeitmangel

- zu kompliziert

Setzen Sie Pair Programming unter Erklärung der
Methode aktiv im Unterricht ein?

2

1

3

4

0

0 1 2 3 4 5

Ja

Bisher nicht, Interesse vorhanden

Nein

- Zeitmangel

- zu kompliziert

Würden Sie für Ihren Unterricht Aufgaben in
CodeOcean selbst erstellen?

0

2 2 2

0
0

1

2

3

1 (sehr gering) 2 3 4 5 (sehr hoch)

Der Aufwand, praktische Programmieraufgaben
anzubieten, ist für mich

0

1

2 2

1

0

1

2

3

1 (nie) 2 3 4 5 (sehr oft)

Wie oft geben Sie auf einer Skala von 1 bis 5 einen
Programmrahmen vor?

1

5

3

1

0 1 2 3 4 5 6

Ja

Nein

- Zeitmangel

- zu kompliziert

Verwenden Sie automatisierte Verfahren zum
Testen von Abgaben? Wieso (nicht)?

3

2

1

0 0
0

1

2

3

4

1 (sehr wenig) 2 3 4 5 (sehr gut)

Wie gut kennen Sie sich mit Testing Frameworks
(wie z.B. JUnit) aus?

Figure C.2: Detailed results of our initial survey — Part II. Continued in
Figure C.3.

C.1 exploration : results of the initial survey 119

0

1

2 2

1

0

1

2

3

1 (sehr gering) 2 3 4 5 (sehr stark)

Wie stark unterscheiden sich typischerweise die
abgegebenen Lösungen der Schülerinnen und

Schüler untereinander?

0

1

2

3

4

1 (sehr einfach) 2 3 4 5 (sehr schwer)

Wie einfach finden Sie es, Schülern fachkundig
auf alle Ihre Fragen zu antworten?

0

1

0

4

1

0

1

2

3

4

5

1 (wenig
hilfreich)

2 3 4 5 (sehr hilfreich)

Wie hilfreich wäre es, wenn Schüler ihre
Programme gegenseitig kommentieren könnten?

1

1
1

2
1
1
1

1

0 1 2 3

BlueJ

Visual Studio
Scratch
Eclipse

GHCi
IDLE

Java-Editor Röhner
Greenfoot

Welche Programmierumgebung bzw. Tools setzen
Sie im Unterricht ein?

0 1 2 3 4 5

Ja

Noch nicht, Interesse vorhanden

Nein

Nutzen Sie im Unterricht bereits Online-
Programmiertools, wie repl.it oder javarepl.com?

Figure C.3: Detailed results of our initial survey — Part III

120 appendix : evaluation

c.2 students : results of the mecue

4.29

5.72

3.42
3.63

3.18 3.30

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Usef
ulness

Usa
bil

ity

Pos
itiv

e e
moti

ons

Neg
ati

ve
 em

oti
ons

Int
en

tio
n t

o u
se

Prod
uct

loy
alt

y

M
ea

n
va

lu
e

w
it

h
st

an
da

rd
 d

ev
ia

ti
on

s

Figure C.4: Results of meCUE modules I (yellow), III (green) and IV (red)
with the standard deviation for all students (N=11).

module subscale median mean std. dev. min. max .

Module I
Usefulness 5.00 4.29 1.38 2.00 6.00

Usability 6.00 5.72 1.32 2.67 7.00

Module III
Positive Emotions 3.67 3.42 1.32 1.67 6.00

Negative Emotions 4.00 3.63 1.48 1.17 6.00

Module IV
Intention to Use 3.18 4.29 1.84 1.00 6.00

Product Loyality 3.33 3.30 1.58 1.67 6.00

Module V Overall evaluationn 2.00 1.90 2.50 −4.00 5.00

Table C.1: Detailed results of the meCUE for all students (N=11). Table C.2
and Table C.3 provide a more fine-granular view on each class.

C.2 students : results of the mecue 121

module subscale median mean std. dev. min. max .

Module I
Usefulness 5.00 4.26 1.39 2.00 6.00

Usability 6.67 6.00 1.51 2.67 7.00

Module III
Positive Emotions 3.50 3.17 1.10 1.67 4.50

Negative Emotions 2.50 2.90 1.26 1.17 4.67

Module IV
Intention to Use 2.67 3.19 1.65 1.67 5.67

Product Loyality 3.33 3.24 1.54 1.67 6.00

Module V Overall evaluationn 3.00 2.40 3.00 −4.00 5.00

Table C.2: Detailed results of the meCUE for students belonging to the first
class (N=7).

module subscale median mean std. dev. min. max .

Module I
Usefulness 4.33 4.33 1.59 2.67 6.00

Usability 5.50 5.25 0.88 4.00 6.00

Module III
Positive Emotions 3.83 3.88 1.71 1.83 6.00

Negative Emotions 4.75 4.88 0.90 4.00 6.00

Module IV
Intention to Use 2.83 3.17 2.41 1.00 6.00

Product Loyality 2.83 3.42 1.89 2.00 6.00

Module V Overall evaluationn 2.00 1.40 2.10 −3.00 4.00

Table C.3: Detailed results of the meCUE for students belonging to the second
class (N=4).

122 appendix : evaluation

c.3 students : results of the survey

St
ud

en
t

1
2

3
4

5
6

7
8

9
de

n
op

en
H

PI
-K

ur
s

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

di
e

To
ol

s
in

 d
er

 S
ch

ul
-C

lo
ud

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

da
s

di
gi

ta
le

, i
nt

er
ak

tiv
e

A
rb

ei
ts

bl
at

t
N

o
N

o
N

o
Y

es
N

o
N

o
N

o
N

o
Y

es

da
s

st
at

is
ch

e
A

rb
ei

ts
bl

at
t

(e
nt

w
ed

er
 d

ig
ita

l o
de

r
al

s
Pa

pi
er

fo
rm

)
N

o
N

o
N

o
Y

es
N

o
N

o
Y

es
N

o
N

o
da

s
Le

hr
bu

ch
 "

Ja
va

 9
 -

G
ru

nd
la

ge
n

Pr
og

ra
m

m
ie

ru
ng

,
H

er
dt

 V
er

la
g"

N
o

N
o

N
o

Y
es

N
o

N
o

Y
es

Y
es

Y
es

O
th

er
St

ac
ko

ve
rf

lo
w

ei
ge

ne
s

W
is

se
n

au
s

ei
ne

m

Fr
üh

st
ud

iu
m

N
ei

n
Ja

, e
in

 w
en

ig
N

ei
n

Ja
, e

in
 w

en
ig

Ja
, g

ro
ße

 P
ro

bl
em

e
N

ei
n

N
ei

n
N

ei
n

N
ei

n

W
en

n
ja

, w
el

ch
e?

 [C
om

m
en

t]

C
od

eO
ce

an
 fu

nk
tio

ni
er

t a
uf

m

ei
ne

m
 e

ig
en

en
 R

ec
hn

er

(B
et

ri
eb

ss
ys

te
m

 L
in

ux
 M

in
t,

Br
ow

se
r

Fi
re

fo
x)

 n
ic

ht
 r

ic
ht

ig
. I

ch

ka
nn

 z
w

ar
 A

uf
ga

be
n

be
ar

be
ite

n
al

le
rd

in
gs

 w
ed

er
 a

us
fü

hr
en

 n
oc

h
be

w
er

te
n

la
ss

en
.

N
ur

 a
m

 p
er

sö
nl

ic
he

n
La

pt
op

.

M
ei

n
La

pt
op

 k
an

n
es

 ir
ge

nd
w

ie

ni
ch

t l
ad

en
, u

nd
 d

a
w

ar
 d

as

be
ar

be
ite

n
au

ße
rh

al
b

de
s

U
nt

er
ri

ch
te

 b
is

 z
ur

 U
nm

ög
lic

hk
ei

t
er

sc
hw

er
t.

Z
um

 (E
r-

)L
er

ne
n

ne
ue

r
In

ha
lte

Y
es

N
o

N
o

Y
es

Y
es

N
o

N
o

N
o

N
o

Z
ur

 P
rü

fu
ng

sv
or

be
re

itu
ng

Y
es

Y
es

N
o

Y
es

N
o

Y
es

Y
es

N
o

N
o

Z
um

 N
ac

hs
ch

la
ge

n
N

o
N

o
Y

es
Y

es
N

o
N

o
Y

es
N

o
N

o

A
ls

 H
ilf

e
w

äh
re

nd
 d

er
 K

la
us

ur
N

o
N

o
N

o
N

o
N

o
N

o
Y

es
Y

es
N

o

O
th

er

Ic
h

nu
tz

e
si

e
ei

ge
nt

lic
h

ni
ch

t,
vo

r
K

la
us

ur
en

 s
ch

re
ib

e
ic

h
eh

er

ei
ge

ne
 Z

us
am

m
en

fa
ss

un
ge

n
un

d
w

äh
re

nd
 d

es
 U

nt
er

ri
ch

ts
 s

ch
re

ib
e

ic
h

ni
ch

t a
kt

iv
 m

it
so

nd
er

n
be

sc
hä

fti
ge

 m
ic

h
m

it
de

n
A

uf
ga

be
n

zu
m

 N
ot

ie
re

n
w

ic
ht

ig
er

In

fo
rm

at
io

ne
n

U
m

 m
ir

 w
äh

re
nd

 d
es

 U
nt

er
ri

ch
ts

N

ot
iz

en
 z

u
m

ac
he

n,
 d

ie
 ic

h
in

 d
er

K

La
us

ur
 d

an
n

ve
rw

en
de

n
da

rf
.

Was hast du zum Lernen von
Methoden und Vererbung
verwendet?

Hattest du beim Lernen mit
den Materialien zu
Methoden und Vererbung
technische Probleme?

Wofür verwendest du die von deinem
Lehrer verteilten Arbeitsblätter
typischerweise im Fach Informatik?

Figure C.5: Detailed results of the text survey of the first class — Part I. Con-
tinued in Figure C.6.

C.3 students : results of the survey 123

St
ud

en
t

1
2

3
4

5
6

7
8

9

Was hast du zum Lernen von
Methoden und Vererbung
verwendet?

op
en

H
PI

: V
or

te
ile

Ei
ge

nt
lic

h
di

re
kt

er
 K

on
ta

kt
 /

Su

pp
or

t m
it

de
n

Be
tr

eu
er

n
(in

C

od
eO

ce
an

) u
nd

 n
ic

ht

sy
st

em
ge

bu
nd

en
in

di
vi

du
el

le
s

A
rb

ei
te

n
V

on
 ü

be
ra

ll
er

re
ic

hb
ar

, k
la

re

St
ru

kt
ur

ie
ru

ng
M

an
 k

an
n

es
 Z

uh
au

se
 u

nd
 a

m

LG
H

 n
ut

ze
n.

N
aj

a,
 d

ad
ur

ch
 w

ir
d

es
 u

ns

be
ig

eb
ra

ch
t.

ei
nf

ac
he

 B
en

ut
zu

ng
 d

ur
ch

 C
od

e-
O

ce
an

A
us

 m
ei

ne
r

Si
ch

t ü
be

rs
ic

ht
lic

he
r

Ü
be

rp
rü

fu
ng

 d
er

Pr

og
ra

m
m

ie
rü

bu
ng

en
 m

ög
lic

h;

Q
ui

z
zu

r
R

ek
ap

itu
la

tio
n

de
s

ge
le

rn
te

n
St

of
fe

s

üb
er

al
l v

er
fü

gb
ar

 (n
ic

ht
 n

ur
 im

U

nt
er

ri
ch

t,
so

nd
er

n
au

ch
 im

In

te
rn

at
 o

de
r

Z
uh

au
se

),
m

od
er

n

op
en

H
PI

: N
ac

ht
ei

le

te
ch

ni
sc

he
 P

ro
bl

em
e,

Be

nu
tz

er
fr

eu
nd

lic
hk

ei
t i

m
 S

in
ne

vo

n
Pf

le
ge

n
de

r
K

om
m

en
ta

rf
un

kt
io

n
et

c.
s.

 o
.

K
ei

ne
.

M
ei

n
La

pt
op

 k
ri

eg
ts

 h
al

t w
ie

ge

sa
gt

 n
ic

ht
 h

in
.

zu
 e

in
fa

ch
e,

 s
ta

nd
ar

di
si

er
te

A

uf
ga

be
n

nu
r

Le
rn

vi
de

os
 ->

 b
ei

 k
le

in
en

Fr

ag
en

 m
us

s
da

s
ge

sa
m

te
 V

id
eo

bi

s
zu

r
en

ts
pr

ec
he

nd
en

 S
te

lle

w
ie

de
r

an
ge

sc
ha

ut
 w

er
de

n;
 k

ei
ne

ge

sc
hi

ck
te

 W
ie

de
rh

ol
un

g
m

ög
lic

h

m
ir

 p
er

sö
nl

ic
h

is
t e

s
se

hr

sc
hw

er
ge

fa
lle

n,
 m

it
de

m
 O

nl
in

e-
K

ur
s

In
ha

lte
 z

u
er

le
rn

en
. D

ie

Pr
og

ra
m

m
ie

ra
uf

ga
be

n
si

nd

th
eo

re
tis

ch
 s

in
nv

ol
l.

D
ad

ur
ch

,
da

ss
 u

ns
er

e
R

ei
he

nf
ol

ge
 a

nd
er

s
w

ar
 u

nd
 w

ir
 d

es
w

eg
en

 s
ch

on

Sa
ch

en
 p

ro
gr

am
m

ie
re

n
so

llt
en

,
di

e
ic

h
ni

ch
t k

on
nt

e
(im

 n
or

m
al

en

A
bl

au
f w

ur
de

n
si

e
sc

ho
n

be
ha

nd
el

t),
 h

at
 m

ic
h

da
s

fr
us

tr
ie

rt

un
d

m
ir

 d
as

 L
er

ne
n

er
sc

hw
er

t.
D

ie
 V

id
eo

s
fa

nd
 ic

h
ni

ch
t s

o
gu

t.
N

at
ür

lic
h

m
us

s
ei

n
st

ud
ie

rt
er

In

fo
rm

at
ik

er
 k

ei
n

Y
ou

Tu
be

-S
ta

r
se

in
, a

be
r

m
an

 h
at

 te
ilw

ei
se

 s
eh

r
ge

m
er

kt
, d

as
 m

an
ch

e
ga

r
 n

ic
ht

m

it
di

es
er

 n
eu

en
 F

or
m

 u
m

ge
he

n
ko

nn
te

n
(n

ic
ht

 in
 d

ie
 K

am
er

a
se

he
n,

 n
ur

 z
um

 P
ar

tn
er

 r
ed

en

et
c)

. D
Ie

 G
es

ch
ic

ht
e

w
ar

 n
et

t.

Sc
hu

l-C
lo

ud
: V

or
te

ile

Le
hr

er
 k

an
n

in
ha

lte
 n

ic
ht

sy

st
em

ge
bu

nd
en

 r
ei

ns
te

lle
n

-
ei

ge
nt

lic
h

ei
ne

 fü
r

di
e

Sc
hu

le

op
tim

ie
rt

e
C

lo
ud

M
an

 k
an

n
vo

n
üb

er
al

l d
ie

 B
lä

tte
r

au
fr

uf
en

.
M

an
 k

om
m

t a
na

lle
s

dr
an

.
is

t e
ve

nt
ue

ll
be

re
its

 b
ek

an
nt

er
M

at
er

ia
lie

n
im

m
er

 d
ab

ei

D
at

ei
n

di
gi

ta
l h

oc
hl

ad
en

 u
nd

si

ch
er

n,
 b

ei
 a

us
ge

fa
lle

ne
n

St
un

de
n

ko
nn

te
n

w
ir

 s
o

ei
nf

ac
h

an

un
se

re
 A

rb
ei

ts
bl

ät
te

r
ko

m
m

en
. I

n
an

de
re

n
Fä

ch
er

n
ha

be
n

w
ir

 s
ie

au

ch
 g

en
ut

zt
, u

m
 H

au
sa

uf
ga

be
n

ab
zu

ge
be

n.

Sc
hu

l-C
lo

ud
: N

ac
ht

ei
le

Be
nu

tz
er

fr
eu

nd
lic

hk
ei

t u
nd

 e
in

ig
e

Bu
gs

 (v
ia

 M
en

üp
un

kt
 "

El
em

en
t

un
te

rs
uc

he
n"

 im
 B

ro
w

se
r

et
c.

)
N

ie
m

an
d

an
de

re
s

be
nu

tz
t e

s
(L

eh
re

r)
.

Es
 is

t s
eh

r
sc

hi
er

ig
, s

ic
h

an
zu

m
el

de
n.

K
an

n
nu

r
fü

r
da

s
sp

ei
ch

er
n

vo
n

D
at

ei
en

 v
er

w
en

de
t w

er
de

n
(C

lo
ud

)
A

us
 m

ei
ne

r
Si

ch
t u

nü
be

rs
ic

ht
lic

he
r

te
ilw

ei
se

 A
rb

ei
ts

bl
ät

te
r

do
rt

 n
ic

ht

ri
ch

tig
 a

us
fü

llb
ar

 (d
a

es
 a

ns
on

st
en

fü

r
de

n
ge

sa
m

te
n

K
ur

s
ge

än
de

rt

w
ir

d)

te
ch

ni
sc

he
 P

ro
bl

em
e!

 In
 a

nd
er

en

Fä
ch

er
n

ha
t s

ic
h

un
se

r
Le

hr
er

in

te
ns

iv
 b

em
üh

t,
di

e
Sc

hu
lc

lo
ud

ei

nz
ub

in
de

n,
 a

be
r

w
eg

en
 e

in
er

H

äu
fu

ng
 v

on
 te

ch
ni

sc
he

n
Pr

ob
le

m
en

, w
o

w
ir

 b
ei

H

au
sa

uf
ga

be
n

ke
in

e
D

at
ei

n
ho

ch
la

de
n

ko
nn

te
n

et
c

es

sc
hl

ie
ßl

ic
h

au
fg

eg
eb

en
.

di
gi

ta
le

, i
nt

er
ak

tiv
e

A
rb

ei
ts

bl
ät

te
r:

 V
or

te
ile

-
G

eb
en

 Ü
be

rb
lic

k
üb

er
 d

en

je
w

ei
lig

en
 S

tu
nd

en
in

ha
lt

M
an

 h
at

 a
lll

es
 a

m
 g

le
ic

he
n

O
rt

.
-

fle
xi

bl
e

un
d

ei
nf

ac
he

 E
in

be
ttu

ng

de
r

A
uf

ga
be

n
al

le
s

an
 e

in
em

 P
la

tz

an
sp

re
ch

en
de

s
La

yo
ut

 u
nd

 g
ut

e
Er

kl
är

un
ge

n
(a

n
an

sc
ha

ul
ic

he
n

Be
is

pi
el

en
)

di
gi

ta
le

, i
nt

er
ak

tiv
e

A
rb

ei
ts

bl
ät

te
r:

 N
ac

ht
ei

le
-

Ic
h

nu
tz

e
si

e
ka

um
 w

ei
l i

ch

pe
rs

ön
lic

h
lie

be
r

di
e

A
uf

ga
be

n
be

ar
be

ite
 (g

ilt
 g

en
au

so
 fü

r
st

at
is

ch
e

A
rb

ei
ts

bl
ät

te
r)

K
ei

ne
.

-

A
uf

ga
be

n
w

er
de

n
te

ilw
ei

se
 n

ic
ht

vo

lls
tä

nd
ig

 a
ng

ez
ei

gt
, d

as
 Q

ui
z

ni
ch

t a
bg

es
en

de
t

A
us

 m
ei

ne
r

Si
ch

t u
nü

be
rs

ic
ht

lic
he

r

es
 m

us
s

im
m

er
 z

w
is

ch
en

A

rb
ei

ts
bl

at
t u

nd
 N

ot
itz

bl
at

t
ge

sp
ru

ng
en

 w
er

de
n,

 d
a

do
rt

ke

in
e

N
ot

itz
en

 g
em

ac
ht

 w
er

de
n

kö
nn

en
 (-

>
V

or
te

il
st

at
is

ch
es

A

rb
ei

ts
bl

at
t)

-

st
at

is
ch

e
A

rb
ei

ts
bl

ät
te

r:

V
or

te
ile

-
nu

tz
ba

r
w

äh
re

nd
 d

er
 K

la
us

ur

M
an

 k
an

n
 s

ie
 a

uf
 s

ei
ne

m
 S

tic
k

sp
ei

ch
er

n
un

d
na

ch
 H

au
se

m

itn
eh

m
en

.
-

kö
nn

en
 ü

be
ra

ll,
 o

hn
e

Pr
ob

le
m

e
ve

rw
en

de
t w

er
de

n
A

us
 m

ei
ne

r
Si

ch
t ü

be
rs

ic
ht

lic
he

r

ka
nn

 d
ir

ek
t b

ea
rb

ei
te

t w
er

de
n

un
d

du
rc

h
ei

ge
ne

 F
or

m
at

ie
ru

ng

et
c.

 e
rg

än
zt

 w
er

de
n

->
 m

eh
r

Fr
ei

ra
um

 g
gü

. i
nt

er
ak

iv
em

A

rb
ei

ts
bl

at
t (

ka
nn

 z
.B

. a
uc

h
sc

ho
n

vo
r

Fr
ei

ga
be

 b
eg

on
ne

n
w

er
de

n
fa

lls
 m

an
 m

it
de

m
 e

ig
en

tli
ch

en

St
of

f b
er

ei
ts

 fe
rt

ig
 is

t)

N
ot

iz
en

 m
ac

he
n.

 O
hn

e
m

ir
 b

ei

de
n

V
id

eo
s

N
ot

iz
en

 z
u

m
ac

he
n

hä
tte

 ic
h

di
e

In
ha

lte
 n

ic
ht

la

ng
fr

is
tig

 b
eh

al
te

n
od

er
 e

rs
t

ve
rs

te
he

n
kö

nn
en

.

st
at

is
ch

e
A

rb
ei

ts
bl

ät
te

r:

N
ac

ht
ei

le
-

K
ei

ne
.

-
st

at
is

ch
 :D

 (k
an

n
ni

ch
t f

le
xi

be
l i

n
di

e
A

rb
ei

t e
in

ge
be

tte
t w

er
de

n)

Ä
nd

er
un

ge
n

du
rc

h
de

n
Le

hr
en

de
n

be
dü

rf
en

 je
w

ei
ls

 n
eu

er

V
er

si
on

en
 (z

.B
. b

ei

Be
sp

re
ch

un
ge

n/
W

Ie
de

rh
ol

un
ge

n
zu

 B
eg

in
n

de
r

da
ra

uf
fo

lg
en

de
n

St
un

de
)

-

Le
hr

bu
ch

: V
or

te
ile

-
M

an
 h

at
 a

lle
 T

he
m

en
 a

n
ei

ne
m

O

rt
.

-
ab

so
lu

te
 fa

ch
lic

he
 R

ic
ht

ig
ke

it
un

d
Fü

lle
 a

n
In

fo
rm

at
io

ne
n

A
us

fü
hr

lic
h

m
it

Be
is

pi
el

en
 u

nd

V
er

tie
fu

ng
en

al
le

s
ve

rs
tä

nd
lic

h
er

kl
är

t (
te

ilw
ei

se

m
eh

r
H

in
te

rg
ru

nd
)

M
ir

 is
t e

s
vi

el
 le

ic
ht

er
 g

ef
al

le
n,

m

it
de

m
 L

eh
rb

uc
h

zu
 le

rn
en

. D
ie

Te

xt
e

w
ar

en
 in

fo
rm

at
iv

 u
nd

 s
eh

r
ve

rs
tä

nd
lic

h.

Le
hr

bu
ch

: N
ac

ht
ei

le
-

K
ei

ne
.

-
ke

in
e

od
er

 v
er

al
te

te
 P

ra
xi

s
M

an
ch

m
al

 z
u

vi
el

e
In

fo
rm

at
io

ne
n

w
en

ig
er

 a
nw

en
du

ng
sb

ez
og

en
 a

ls

be
is

pi
el

sw
ei

se
 d

ie
 o

pe
nH

PI
-

V
id

eo
s;

 k
ei

ne
 M

ög
lic

hk
ei

t,
W

is
se

n/
V

er
st

än
dn

is
 z

u
üb

er
pr

üf
en

Es
 is

t s
ch

w
ie

ri
ge

r,
 z

u
üb

en
, d

a
si

e
ni

ch
t w

ie
 im

 O
nl

in
e

K
ur

s
di

re
kt

al

s
nä

ch
st

es
 g

es
ch

al
te

t s
in

d.

Worin siehst du die Vor- und Nachteile der einzelnen Tools? Denke hierbei gerne an deine individuelle Lernsituation und wie du die Tools jeweils verwendest.

Figure C.6: Detailed results of the text survey of the first class — Part II.
Continued in Figure C.7.

124 appendix : evaluation

St
ud

en
t

1
2

3
4

5
6

7
8

9

Was hast du zum Lernen von
Methoden und Vererbung
verwendet?

Ic
h

ar
be

ite
 li

eb
er

 m
it

de
n

in
te

ra
kt

iv
en

 A
rb

ei
ts

bl
ät

te
rn

al

s
m

it
de

m
 o

pe
nH

PI
-K

ur
s.

le
hn

e
vö

lli
g

ab
le

hn
e

ab
le

hn
e

ab
w

ed
er

 n
oc

h
le

hn
e

vö
lli

g
ab

le
hn

e
eh

er
 a

b
le

hn
e

vö
lli

g
ab

le
hn

e
ab

st
im

m
e

eh
er

 z
u

Ic
h

fin
de

 d
ie

 A
uf

be
re

itu
ng

 d
er

In

ha
lte

 im
 d

ig
ita

le
n,

in

te
ra

kt
iv

en
 A

rb
ei

ts
bl

at
t g

ut
.

st
im

m
e

eh
er

 z
u

w
ed

er
 n

oc
h

w
ed

er
 n

oc
h

st
im

m
e

vö
lli

g
zu

w
ed

er
 n

oc
h

st
im

m
e

eh
er

 z
u

le
hn

e
ab

st
im

m
e

eh
er

 z
u

st
im

m
e

zu

D
ie

 Z
us

am
m

en
st

el
lu

ng
 v

on

ve
rs

ch
ie

de
ne

n
In

ha
lts

ty
pe

n
(V

id
eo

, Q
ui

z,
 A

uf
ga

be
) a

uf

ei
ne

m
 A

rb
ei

ts
bl

at
t f

in
de

 ic
h

hi
lfr

ei
ch

.
st

im
m

e
vö

lli
g

zu
st

im
m

e
eh

er
 z

u
st

im
m

e
vö

lli
g

zu
w

ed
er

 n
oc

h
st

im
m

e
zu

le
hn

e
ab

st
im

m
e

eh
er

 z
u

st
im

m
e

eh
er

 z
u

D
ie

 d
ig

ita
le

n
A

rb
ei

ts
bl

ät
te

r
si

nd
 ü

be
rs

ic
ht

lic
h.

st
im

m
e

zu
w

ed
er

 n
oc

h
st

im
m

e
vö

lli
g

zu
st

im
m

e
zu

st
im

m
e

zu
le

hn
e

ab
st

im
m

e
zu

st
im

m
e

zu

D
as

 d
ig

ita
le

 A
rb

ei
ts

bl
at

t k
an

n
ei

n
kl

as
si

sc
he

s
A

rb
ei

ts
bl

at
t

ni
ch

t e
rs

et
ze

n.
le

hn
e

ab
le

hn
e

eh
er

 a
b

w
ed

er
 n

oc
h

le
hn

e
vö

lli
g

ab
le

hn
e

ab
st

im
m

e
vö

lli
g

zu
st

im
m

e
eh

er
 z

u
le

hn
e

vö
lli

g
ab

In
 d

er
 In

fo
rm

at
ik

 s
in

d
A

rb
ei

ts
bl

ät
te

r
un

w
ic

ht
ig

.
le

hn
e

eh
er

 a
b

le
hn

e
vö

lli
g

ab
le

hn
e

ab
le

hn
e

eh
er

 a
b

le
hn

e
ab

le
hn

e
eh

er
 a

b
le

hn
e

vö
lli

g
ab

Es
 fä

llt
 m

ir
 le

ic
ht

, m
it

un
te

rs
ch

ie
dl

ic
he

n
M

at
er

ia
lie

n
(V

id
eo

, T
ex

t,
...

) z
u

le
rn

en
.

st
im

m
e

vö
lli

g
zu

st
im

m
e

eh
er

 z
u

st
im

m
e

vö
lli

g
zu

st
im

m
e

vö
lli

g
zu

st
im

m
e

zu
st

im
m

e
zu

w
ed

er
 n

oc
h

st
im

m
e

vö
lli

g
zu

st
im

m
e

eh
er

 z
u

In
 d

en
 d

ig
ita

le
n,

 in
te

ra
kt

iv
en

A

rb
ei

ts
bl

ät
te

rn
 s

eh
e

ic
h

ke
in

en
 M

eh
rw

er
t.

le
hn

e
eh

er
 a

b
st

im
m

e
eh

er
 z

u
st

im
m

e
zu

le
hn

e
vö

lli
g

ab
st

im
m

e
zu

le
hn

e
ab

st
im

m
e

zu
w

ed
er

 n
oc

h
le

hn
e

ab

7
8

1
Se

hr
 u

nw
ah

rs
ch

ei
nl

ic
h

=
0

1
2

8

3
4

5
=

al
s

gu
t

0
2

-4
3

4

Ic
h

ha
b

di
e

ni
e

Be
ar

be
ite

t,
w

ei
l i

ch

da
sd

 a
lle

s
sc

ho
n

ko
nn

te
 :D

G
eb

en
 Ü

be
rb

lic
k

üb
er

 d
en

je

w
ei

lig
en

 S
tu

nd
en

in
ha

lt,
 s

od
as

s
na

ch
vo

llz
og

en
 w

er
de

n
ka

nn

w
el

ch
e

A
uf

ga
be

n
be

ar
be

ite
t

w
er

de
n

m
üs

se
n.

D
ie

 D
ar

st
el

lu
ng

 in
sg

es
am

t h
at

 m
ir

gu

t g
ef

al
le

n
au

ch
 d

ie

Im
pl

em
en

tie
ru

ng
 v

on
 c

od
e

oc
ea

n
fu

nk
tio

ni
er

te
 m

ei
st

 g
ut

. I
ch

be

nu
tz

te
 d

ie
 B

lä
tte

r
je

do
ch

 w
en

ig

w
ei

l i
ch

 z
um

ei

nf
üh

ru
ng

sz
ei

tp
un

kt
 d

er
 B

lä
tte

r
de

n
K

ur
s

be
re

its
 a

bg
es

ch
lo

ss
en

ha

tte
.

Se
he

n
hü

bs
ch

 a
us

 u
nd

 a
lle

s
is

t
sc

hö
n

an
 e

in
em

 O
rt

. I
t's

co

nv
en

ie
nt

.

Ic
h

ha
be

 d
ie

se
 A

rb
ei

ts
bl

ät
te

r
ka

m

ge
se

he
n,

 a
be

r
de

r
G

un
dg

ed
an

ke

kl
in

gt
 s

ch
on

 g
an

z
gu

t.

D
ad

ur
ch

 d
as

 d
ie

 A
rb

ei
t a

ls

A
rb

ei
ts

bl
at

t o
rg

an
is

ie
rt

 is
t,

w
ir

d
di

e
A

rb
ei

t a
ut

om
at

is
ch

 v
on

 O
be

n
na

ch
 U

nt
en

 o
rg

an
is

ie
rt

, w
as

 e
in

e
kl

ar
e

O
ri

en
tie

ru
ng

 u
nd

 Ü
be

rs
ic

ht

vo
rg

ib
t.

Be
i d

en
 in

te
ra

kt
iv

en

A
rb

ei
ts

bl
ät

te
rn

 is
t p

ra
kt

is
ch

, d
as

s
al

l d
ie

 V
or

te
ile

 v
er

sc
hi

ed
en

er

M
ed

ie
n

an
 e

in
em

 O
rt

 g
es

am
m

el
t

si
nd

.

Si
nn

 h
in

te
r

de
r

St
ru

kt
ur

ie
ru

ng

du
rc

h
K

äs
te

n
te

ilw
ei

se
 n

ic
ht

gä

nz
lic

h
er

ke
nn

ba
r

H
ab

e
ic

h
sc

ho
n

be
i d

er
 a

nd
er

en

A
uf

ga
be

 g
es

ch
ri

eb
en

Ic
h

ha
b

di
e

ni
e

Be
ar

be
ite

t,
w

ei
l i

ch

da
sd

 a
lle

s
sc

ho
n

ko
nn

te
 :D

D
as

s
m

an
 m

ic
h

ni
ch

t m
eh

r
fa

gt
,

w
ie

 ic
h

si
e

fin
de

. I
ch

 s
ag

e
es

 e
in

fü

r
al

le
 M

al
: I

ch
 m

ag
 d

ie

in
te

ra
kt

iv
en

 A
rb

ei
ts

bl
ät

te
r-

A
ls

o
ic

h
ha

b
bi

s
he

ut
e

ni
ch

t
ge

w
us

st
, d

as
s

es
 d

ie
 g

ib
t,

da
s

hä
tte

 ic
h

ge
rn

e
fr

üh
er

 g
ew

us
st

,
ab

er
 d

as
 w

ar
 m

ei
ne

 S
ch

ul
d,

 d
as

s
ic

h
di

e
ni

e
ge

se
he

n
ha

be
.

(M
us

te
r-

)L
ös

un
ge

n
zu

 d
en

Pr

og
ra

m
m

ie
ra

uf
ga

be
n

un
d

au
ch

zu

 d
en

 L
ei

tfr
ag

en
 w

är
en

 h
ilf

re
ic

h

N
oc

h
m

eh
r

kl
as

si
sc

he

Er
kl

är
un

gs
te

xt
e

un
d

da
zu

pa

ss
en

de
 G

ra
fik

en

Su
pe

r
K

on
ze

pt
 -

je
do

ch
 w

ür
de

 ic
h

m
ic

h
üb

er
 e

in
e

be
ss

er
e

Ei
nb

in
du

ng
 a

lte
rn

at
iv

er
 L

ös
un

ge
n

(b
sp

w
. ü

be
r

Pa
ck

ag
es

) f
re

ue
n,

be

ss
er

e
Fo

rm
at

ie
ru

ng
, A

ut
o-

C
om

pl
et

e
un

d
de

r
ge

ne
re

lle

U
m

ga
ng

 m
it

ei
ne

r
En

tw
ic

kl
un

gs
um

ge
bu

ng
 (b

sp
w

.
m

it
Ec

lip
se

 n
eu

e
K

la
ss

e
an

nl
eg

en
)

So
ns

t a
be

r
ni

x
zu

 m
ec

ke
rn

Ic
h

fin
de

 d
as

 K
on

ze
pt

 v
on

O

pe
nH

PI
 s

eh
r

gu
t,

V
or

sc
hl

äg
e

fü
r

A
ut

oc
om

pl
et

e
so

w
ie

 e
in

e
ku

rz
e

er
lä

ut
er

un
g

be
im

 h
ov

er
n

w
ie

 b
ei

 a
nd

er
en

ed

ito
re

n
w

är
e

m
an

ch
am

l h
ilf

re
ic

h
Ic

h
fin

de
 e

s
to

ll
w

ie
 v

ie
l M

üh
e

Si
e

si
ch

 fü
r

un
s

m
ac

he
n.

 :)

Es
 tu

t m
ir

 le
id

, d
as

s
ic

h
so

un

hi
lfr

ei
ch

 s
ch

re
ib

e,
 a

be
r

ic
h

ke
nn

e
di

es
e

in
te

ra
kt

iv
en

A

rb
ei

ts
bl

ät
te

r
nu

nm
al

 n
ic

ht
. D

en

K
ur

s
m

it
de

n
V

id
eo

s
un

d
A

uf
ga

be
n

fa
nd

 ic
h

ga
nz

 g
ut

.

Ic
h

ar
be

ite
 li

eb
er

 k
la

ss
is

ch
 m

it
Bu

ch
 u

nd
 B

la
tt,

 o
hn

e
V

id
eo

s
od

er

in
te

ra
kt

iv
e

A
rb

ei
ts

bl
ät

te
r.

U
no

rd
nu

ng
 in

 W
oc

he
 1

 w
ar

 e
he

r
un

si
nn

vo
ll

un
d

in
ef

fe
kt

iv
; b

ei

äh
nl

ic
he

r
Er

kl
är

vi
de

os
er

ie
 e

vt
l.

di
e

Sp
re

ch
ge

sc
hw

in
di

gk
ei

t
er

hö
he

n,
 s

od
as

s
V

id
eo

s
ni

ch
t m

eh
r

m
it

de
r

1,
3-

fa
ch

en

G
es

ch
iw

in
di

gk
ei

t g
es

ch
au

t
w

er
de

n
m

üs
se

n
un

d
w

en
ig

er
 Z

ei
t

in
 A

ns
pr

uc
h

ne
hm

en
Si

eh
e

le
tz

te
 A

uf
ga

be

W
ie

 e
rl

eb
st

 D
u

di
e

in
te

ra
kt

iv
en

A

rb
ei

ts
bl

ät
te

r
in

sg
es

am
t?

A
n

de
n

in
te

ra
kt

iv
en

 A
rb

ei
ts

bl
ät

te
rn

 h
at

 m
ir

fo

lg
en

de
s

be
so

nd
er

s
gu

t g
ef

al
le

n.
 D

en
ke

hi

er
be

i g
er

ne
 a

n
di

e
Ei

nb
in

du
ng

 m
eh

re
re

r
El

em
en

te
 o

de
r

di
e

op
tis

ch
e

D
ar

st
el

lu
ng

di

es
er

 u
nt

er
ei

na
nd

er
.

Fü
r

di
e

in
te

ra
kt

iv
en

 A
rb

ei
ts

bl
ät

te
r

w
ün

sc
he

ic

h
m

ir
 n

oc
h

Fo
lg

en
de

s.
 Ü

be
rl

eg
e

bi
tte

ku

rz
, w

ie
 d

ie
 A

rb
ei

ts
bl

ät
te

r
no

ch
 n

üt
zl

ic
he

r
fü

r
D

ic
h

w
er

de
n

kö
nn

te
n,

 z
.B

. d
ur

ch
 d

ie

V
er

fü
gb

ar
ke

it
ei

ne
r

M
us

te
rl

ös
un

g
im

N

ac
hh

in
ei

n.

W
as

 w
ol

lte
st

 d
u

m
ir

 s
ch

on
 im

m
er

 m
al

m

itt
ei

le
n?

H
ie

r
is

t P
la

tz
 fü

r
al

le

A
nm

er
ku

ng
, e

ga
l o

b
zu

m
 A

rb
ei

ts
bl

at
t,

de
m

 C
od

e-
Ed

ito
r

od
er

 D
ei

ne
n

ve
rg

an
ge

ne
n

Er
fa

hr
un

ge
n

in
 d

ie
se

m
 K

ur
s.

W
ie

 w
ah

rs
ch

ei
nl

ic
h

is
t e

s,
 d

as
s

D
u

di
e

di
gi

ta
le

 V
ar

ia
nt

e
ei

ne
s

A
rb

ei
ts

bl
at

te
s

an

Fr
eu

nd
e

w
ei

te
re

m
pf

eh
le

n
w

ür
de

st
?

Bitte gib im Folgenden an, wie stark du der jeweiligen Aussage zustimmst.

Figure C.7: Detailed results of the text survey of the first class — Part III.

C.3 students : results of the survey 125

St
ud

en
t

1
2

3
4

5
6

7
8

9
10

de
n

m
oo

c.
ho

us
e-

K
ur

s
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
N

o
Y

es
Y

es
Y

es
da

s
di

gi
ta

le
, i

nt
er

ak
tiv

e
A

rb
ei

ts
bl

at
t

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

N
o

ei
n

st
at

is
ch

es
 A

rb
ei

ts
bl

at
t

(d
ig

ita
l o

de
r

in
 P

ap
ie

rf
or

m
)

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

ei
n

(L
eh

r-
)B

uc
h

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

O
th

er
Ja

, e
in

 w
en

ig
N

ei
n

Ja
, e

in
 w

en
ig

Ja
, e

in
 w

en
ig

N
ei

n
Ja

, e
in

 w
en

ig
Ja

, e
in

 w
en

ig
Ja

, e
in

 w
en

ig
Ja

, e
in

 w
en

ig
Ja

, e
in

 w
en

ig

W
en

n
ja

, w
el

ch
e?

 [C
om

m
en

t]

Ic
h

w
ei

ß
ni

ch
t w

ie
 m

an
 d

ie

Q
ui

za
nt

w
or

te
n

au
f d

em

in
te

ra
kt

iv
en

 A
rb

ei
ts

ba
tt

sp
ec

he
rn

ka

nn
, b

ei
 m

ir
 is

t e
s

im
m

er

re
se

te
t..

.

D
as

 in
 E

dt
r.

io
 g

eö
ffn

et
e

Fe
ns

te
r

m
it

de
n

Pr
og

ra
m

m
ie

ra
uf

ga
be

n
ha

t s
ic

h
ni

ch
t m

it
m

oo
c.

ho
us

e
se

yn
ch

ro
ni

si
er

t,
w

es
ha

lb
 ic

h
de

n
C

od
e

na
ch

tr
äg

lic
h

be
i m

oo
c.

ho
us

e
no

ch
m

al
 g

el
ös

t h
ab

e.

Be
i d

em
 in

te
ra

kt
iv

en
 A

rb
ei

ts
bl

at
t

ha
tte

 ic
h

2
kl

ei
ne

 P
ro

bl
em

e.

Z
ue

rs
t w

ur
de

 d
as

 L
eh

rv
id

eo

m
itt

en
dr

in
 a

bg
eb

ro
ch

en
 u

nd
 ic

h
m

us
st

e
no

ch
m

al
 v

on
 v

or
ne

be

gi
nn

en
. Z

um
 a

nd
er

en
 k

on
nt

e
m

an
 s

ei
n

Er
fo

lg
 b

ei
 d

en

Pr
og

ra
m

m
ie

ra
uf

ga
be

n
ni

ch
t

sp
ei

ch
er

n.
 Ic

h
m

us
st

e
al

le
s

no
ch

m
al

 a
uf

 d
er

 M
oo

c.
ho

us
e

Se
ite

sc

hr
ei

be
n.

..
Se

ite
 r

ef
re

sh
t i

m
m

er
 w

ie
de

r.
Se

ite
 lä

dt
 a

b
un

d
zu

 n
eu

 u
nd

 d
ie

Er

ge
bn

is
se

 v
er

sc
hw

in
de

n.

M
an

ch
m

al
 h

at
 d

as
 A

rb
ei

ts
bl

at
t

ne
u

ge
la

de
n,

 h
at

 d
ab

ei
 e

in

bi
ss

ch
en

 V
or

ts
ch

ri
tt

ge
lö

sc
ht

 (d
as

w

as
 ic

h
vo

r
ei

n
pa

ar
 S

ek
un

de
n

ge
sc

hr
ie

be
n

ha
tte

)

Z
um

 (E
r-

)L
er

ne
n

ne
ue

r
In

ha
lte

N
o

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

Z
ur

 P
rü

fu
ng

sv
or

be
re

itu
ng

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

Z
um

 N
ac

hs
ch

la
ge

n
N

o
Y

es
N

o
N

o
Y

es
N

o
N

o
Y

es
Y

es
N

o

A
ls

 H
ilf

e
w

äh
re

nd
 d

er
 K

la
us

ur
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o

O
th

er

G
ar

 n
ic

ht
, W

ik
ip

ed
ia

 u
nd

Y

ou
Tu

be
 b

ie
te

n
di

e
In

ha
lte

ve

rs
tä

nd
lic

he
r

an
.

m
oo

c.
ho

us
e:

 V
or

te
ile

Fl
ex

ib
el

, v
on

 z
uh

au
se

 a
uc

h
m

ac
hb

ar

In
ha

lte
 w

er
de

n
in

 a
lle

n
Sc

hw
ie

ri
gk

ei
te

n
an

ge
bo

te
n,

Se

lb
st

te
st

s
(b

zw
. v

ie
le

 d
id

ak
tis

ch
e

M
ög

lic
hk

ei
te

n)
, C

lo
ud

-
Sp

ei
ch

er
un

g
->

 M
ög

lic
hk

ei
t

im
m

er
 u

nd
 ü

be
ra

ll
zu

 le
rn

en
Q

ui
z

un
d

Fo
ru

m
 m

it
K

om
m

en
ta

rf
un

kt
io

n

Sc
hn

el
le

s
un

d
er

fo
lg

re
ic

he
s

er
le

rn
en

 d
ur

ch
 d

ir
ek

te

Ü
bu

ng
sa

uf
ga

be
n,

 d
ie

 im
m

er

w
ie

de
r

ei
ns

eh
ba

r
si

nd
.

üb
er

si
ch

tli
ch

M
an

 k
an

n
se

lb
st

än
di

g
vo

n
Ü

be
ra

ll
ar

be
ite

n

m
oo

c.
ho

us
e:

 N
ac

ht
ei

le
O

nl
in

e-
V

er
bi

nd
un

g
no

tw
en

ig
 (i

st

ab
er

 k
ei

n
Pr

ob
le

m
)

-
Es

 g
ib

t n
oc

h
se

hr
 v

ie
le

 L
üc

ke
n.

di
gi

ta
le

, i
nt

er
ak

tiv
e

A
rb

ei
ts

bl
ät

te
r:

 V
or

te
ile

M
an

 k
an

n
do

rt
 z

.b
. C

od
ea

uf
ga

be
n

be
ss

er
 A

bf
ra

ge
n

zu
sä

tz
lic

he
 B

es
ch

re
ib

un
ge

n
M

an
 w

ei
ß

w
o

m
an

 w
ie

 im

fa
ch

ge
bi

et
 s

te
ht

.
Fü

r
Pr

og
ra

m
m

ie
ra

uf
ga

be
n

be
ss

er

zu
m

 ü
be

n

di
gi

ta
le

, i
nt

er
ak

tiv
e

A
rb

ei
ts

bl
ät

te
r:

 N
ac

ht
ei

le

O
nl

in
e-

V
er

bi
nd

un
g

no
tw

en
ig

 (i
st

ab

er
 k

ei
n

Pr
ob

le
m

),
Pr

ob
le

m
e

m
it

V
er

kn
üp

fu
ng

 m
it

m
oo

c.
ho

us
e

si
eh

e
2.

 F
ra

ge

Se
ite

 lä
d

na
ch

 ..
. V

id
eo

s
St

op
pe

n,

Er
ge

ni
ss

e
w

er
de

n
ni

ch
t n

eu

ge
la

de
n

R
ef

re
sh

t
Pr

ob
le

m
e

m
it

Sp
ei

ch
er

un
g

de
s

Q
ui

z
K

an
n

ge
lö

sc
ht

 w
er

de
n,

 m
an

 k
an

n
ke

in
e

no
tiz

en
 d

az
us

ch
re

ib
en

st
at

is
ch

e
A

rb
ei

ts
bl

ät
te

r:

V
or

te
ile

N
Ic

ht
 u

nb
ed

in
gt

 n
ot

w
en

di
g

ei
n

Sm
ar

tp
ho

ne
 z

u
nu

tz
en

, u
m

 d
as

Bl

at
t z

u
nu

tz
en

, m
an

 k
an

n
si

ch

w
ic

ht
ig

e
in

fo
s

di
re

ck
t

da
zu

sc
hr

ei
be

n

st
at

is
ch

e
A

rb
ei

ts
bl

ät
te

r:

N
ac

ht
ei

le

ge
ri

ng
e

Fl
ex

ib
ili

tä
t (

ke
in

e
V

id
eo

s,

Se
lb

st
es

ts
, .

..)
, k

ei
ne

 A
ut

ok
on

tr
ol

le

(F
eh

le
rs

uc
he

 s
eh

r
sc

hw
er

),
C

od
e

ka
nn

 n
ic

ht
 a

us
pr

ob
ie

rt
 w

er
de

n
Pa

pi
er

ve
rb

ra
uc

h
(U

m
w

el
t),

 r
el

at
iv

pl

at
za

uf
w

en
di

g

Le
hr

bu
ch

: V
or

te
ile

Te
xt

 k
an

n
m

ög
lic

he
rw

ei
e

be
ss

er

er
kl

är
en

se
ri

ös
e

Q
ue

lle
...

V
ie

l e
xa

kt
es

 w
is

se
n

Le
hr

bu
ch

: N
ac

ht
ei

le
m

us
s

m
itg

en
om

m
en

 w
er

de
n

di
ck

 u
nd

 s
ch

w
er

A
lle

s

Was hast du zum Lernen
von Vererbung verwendet?

Hattest du beim Lernen mit den
Materialien zu Vererbung
technische Probleme?

Wofür verwendest du die von deiner
Lehrerin verteilten Arbeitsblätter
typischerweise im Fach Informatik?

Worin siehst du die Vor- und Nachteile der einzelnen Tools? Denke hierbei gerne an deine
individuelle Lernsituation und wie du die Tools jeweils verwendest.

Figure C.8: Detailed results of the text survey of the second class — Part I.
Continued in Figure C.9.

126 appendix : evaluation

St
ud

en
t

1
2

3
4

5
6

7
8

9
10

Was hast du zum Lernen
von Vererbung verwendet?

Ic
h

ar
be

ite
 li

eb
er

 m
it

de
n

in
te

ra
kt

iv
en

 A
rb

ei
ts

bl
ät

te
rn

al

s
m

it
de

m
 m

oo
c.

ho
us

e-
K

ur
s.

w
ed

er
 n

oc
h

st
im

m
e

eh
er

 z
u

le
hn

e
vö

lli
g

ab
le

hn
e

ab
st

im
m

e
eh

er
 z

u
st

im
m

e
eh

er
 z

u
w

ed
er

 n
oc

h
le

hn
e

eh
er

 a
b

w
ed

er
 n

oc
h

le
hn

e
eh

er
 a

b

Ic
h

fin
de

 d
ie

 A
uf

be
re

itu
ng

 d
er

In

ha
lte

 im
 d

ig
ita

le
n,

in

te
ra

kt
iv

en
 A

rb
ei

ts
bl

at
t g

ut
.

st
im

m
e

eh
er

 z
u

w
ed

er
 n

oc
h

w
ed

er
 n

oc
h

le
hn

e
eh

er
 a

b
st

im
m

e
zu

st
im

m
e

zu
le

hn
e

eh
er

 a
b

st
im

m
e

eh
er

 z
u

st
im

m
e

eh
er

 z
u

D
ie

 Z
us

am
m

en
st

el
lu

ng
 v

on

ve
rs

ch
ie

de
ne

n
In

ha
lts

ty
pe

n
(V

id
eo

, Q
ui

z,
 A

uf
ga

be
) a

uf

ei
ne

m
 A

rb
ei

ts
bl

at
t f

in
de

 ic
h

hi
lfr

ei
ch

.
st

im
m

e
zu

st
im

m
e

eh
er

 z
u

st
im

m
e

zu
st

im
m

e
eh

er
 z

u
st

im
m

e
zu

st
im

m
e

vö
lli

g
zu

le
hn

e
eh

er
 a

b
st

im
m

e
eh

er
 z

u
st

im
m

e
eh

er
 z

u
D

ie
 d

ig
ita

le
n

A
rb

ei
ts

bl
ät

te
r

si
nd

 ü
be

rs
ic

ht
lic

h.
st

im
m

e
zu

st
im

m
e

eh
er

 z
u

st
im

m
e

vö
lli

g
zu

w
ed

er
 n

oc
h

st
im

m
e

zu
st

im
m

e
vö

lli
g

zu
st

im
m

e
zu

st
im

m
e

zu

D
as

 d
ig

ita
le

 A
rb

ei
ts

bl
at

t k
an

n
ei

n
kl

as
si

sc
he

s
A

rb
ei

ts
bl

at
t

ni
ch

t e
rs

et
ze

n.
st

im
m

e
eh

er
 z

u
w

ed
er

 n
oc

h
st

im
m

e
zu

le
hn

e
vö

lli
g

ab
le

hn
e

eh
er

 a
b

le
hn

e
ab

le
hn

e
ab

le
hn

e
eh

er
 a

b
le

hn
e

ab
w

ed
er

 n
oc

h
In

 d
er

 In
fo

rm
at

ik
 s

in
d

A
rb

ei
ts

bl
ät

te
r

un
w

ic
ht

ig
.

st
im

m
e

eh
er

 z
u

st
im

m
e

eh
er

 z
u

st
im

m
e

eh
er

 z
u

w
ed

er
 n

oc
h

le
hn

e
ab

w
ed

er
 n

oc
h

le
hn

e
eh

er
 a

b
le

hn
e

ab
le

hn
e

vö
lli

g
ab

le
hn

e
eh

er
 a

b

Es
 fä

llt
 m

ir
 le

ic
ht

, m
it

un
te

rs
ch

ie
dl

ic
he

n
M

at
er

ia
lie

n
(V

id
eo

, T
ex

t,
...

) z
u

le
rn

en
.

st
im

m
e

zu
st

im
m

e
eh

er
 z

u
st

im
m

e
vö

lli
g

zu
st

im
m

e
zu

st
im

m
e

zu
st

im
m

e
zu

st
im

m
e

vö
lli

g
zu

st
im

m
e

zu
st

im
m

e
zu

st
im

m
e

zu

In
 d

en
 d

ig
ita

le
n,

 in
te

ra
kt

iv
en

A

rb
ei

ts
bl

ät
te

rn
 s

eh
e

ic
h

ke
in

en
 M

eh
rw

er
t.

le
hn

e
eh

er
 a

b
st

im
m

e
eh

er
 z

u
st

im
m

e
eh

er
 z

u
w

ed
er

 n
oc

h
st

im
m

e
eh

er
 z

u
le

hn
e

eh
er

 a
b

le
hn

e
vö

lli
g

ab
le

hn
e

eh
er

 a
b

st
im

m
e

eh
er

 z
u

le
hn

e
ab

6
8

Se
hr

 u
nw

ah
rs

ch
ei

nl
ic

h
=

0
1

6
7

5
3

2
4

0
-3

1
3

2
2

le
id

er
 n

ic
ht

s
si

eh
e

an
de

re
 F

ra
ge

n
m

an
 k

an
n

pr
og

ra
m

m
ie

ra
uf

ga
be

n
gu

t a
us

pr
ob

ie
re

n

be
ss

er
e

Sy
nc

hr
on

is
ie

ru
ng

 m
it

m
oo

c.
ho

us
e

si
eh

e
an

de
re

 F
ra

ge
n

W
är

e
ga

nz
 g

ut
 e

in
e

M
us

te
rl

ös
un

g
zu

 h
ab

en
, s

on
st

 a
be

r
ei

ge
nt

lic
h

ok

m
oo

c.
ho

us
e

is
t l

ei
de

r
be

ss
er

si
eh

e
an

de
re

 F
ra

ge
n

W
ie

 e
rl

eb
st

 D
u

di
e

in
te

ra
kt

iv
en

A

rb
ei

ts
bl

ät
te

r
in

sg
es

am
t?

A
n

de
n

in
te

ra
kt

iv
en

 A
rb

ei
ts

bl
ät

te
rn

 h
at

 m
ir

fo

lg
en

de
s

be
so

nd
er

s
gu

t g
ef

al
le

n.
 D

en
ke

hi

er
be

i g
er

ne
 a

n
di

e
Ei

nb
in

du
ng

 m
eh

re
re

r
El

em
en

te
 o

de
r

di
e

op
tis

ch
e

D
ar

st
el

lu
ng

di

es
er

 u
nt

er
ei

na
nd

er
.

Fü
r

di
e

in
te

ra
kt

iv
en

 A
rb

ei
ts

bl
ät

te
r

w
ün

sc
he

ic

h
m

ir
 n

oc
h

Fo
lg

en
de

s.
 Ü

be
rl

eg
e

bi
tte

ku

rz
, w

ie
 d

ie
 A

rb
ei

ts
bl

ät
te

r
no

ch
 n

üt
zl

ic
he

r
fü

r
D

ic
h

w
er

de
n

kö
nn

te
n,

 z
.B

. d
ur

ch
 d

ie

V
er

fü
gb

ar
ke

it
ei

ne
r

M
us

te
rl

ös
un

g
im

N

ac
hh

in
ei

n.

W
as

 w
ol

lte
st

 d
u

m
ir

 s
ch

on
 im

m
er

 m
al

m

itt
ei

le
n?

H
ie

r
is

t P
la

tz
 fü

r
al

le

A
nm

er
ku

ng
, e

ga
l o

b
zu

m
 A

rb
ei

ts
bl

at
t,

de
m

 C
od

e-
Ed

ito
r

od
er

 D
ei

ne
n

ve
rg

an
ge

ne
n

Er
fa

hr
un

ge
n

in
 d

ie
se

m
 K

ur
s.

Bitte gib im Folgenden an, wie stark du der jeweiligen Aussage zustimmst. W
ie

 w
ah

rs
ch

ei
nl

ic
h

is
t e

s,
 d

as
s

D
u

di
e

di
gi

ta
le

 V
ar

ia
nt

e
ei

ne
s

A
rb

ei
ts

bl
at

te
s

an

Fr
eu

nd
e

w
ei

te
re

m
pf

eh
le

n
w

ür
de

st
?

Figure C.9: Detailed results of the text survey of the second class — Part II.

C.4 teachers : results of the ueq 127

c.4 teachers : results of the ueq

It
em

M
ea

n
V

ar
ia

nc
e

St
d.

 D
ev

.
N

o.
Le

ft
R

ig
ht

Sc
al

e
1

2.
3

1.
1

1.
1

12
an

no
yi

ng
en

jo
ya

bl
e

A
ttr

ac
tiv

en
es

s
2

2.
4

0.
4

0.
7

12
no

t u
nd

er
st

an
da

bl
e

un
de

rs
ta

nd
ab

le
Pe

rs
pi

cu
ity

3
0.

6
3.

7
1.

9
12

cr
ea

tiv
e

du
ll

N
ov

el
ty

4
0.

7
2.

2
1.

5
12

ea
sy

 to
 le

ar
n

di
ffi

cu
lt

to
 le

ar
n

Pe
rs

pi
cu

ity
5

1.
8

1.
8

1.
4

12
va

lu
ab

le
in

fe
ri

or
St

im
ul

at
io

n
6

1.
7

1.
7

1.
3

12
bo

ri
ng

ex
ci

tin
g

St
im

ul
at

io
n

7
1.

6
2.

1
1.

4
12

no
t i

nt
er

es
tin

g
in

te
re

st
in

g
St

im
ul

at
io

n
8

1.
5

2.
5

1.
6

11
un

pr
ed

ic
ta

bl
e

pr
ed

ic
ta

bl
e

D
ep

en
da

bi
lit

y
9

0.
9

2.
1

1.
4

12
fa

st
sl

ow
Ef

fic
ie

nc
y

10
0.

8
2.

3
1.

5
12

in
ve

nt
iv

e
co

nv
en

tio
na

l
N

ov
el

ty
11

2.
4

0.
8

0.
9

12
ob

st
ru

ct
iv

e
su

pp
or

tiv
e

D
ep

en
da

bi
lit

y
12

2.
0

1.
4

1.
2

11
go

od
ba

d
A

ttr
ac

tiv
en

es
s

13
1.

0
2.

0
1.

4
12

co
m

pl
ic

at
ed

ea
sy

Pe
rs

pi
cu

ity
14

1.
3

2.
9

1.
7

12
un

lik
ab

le
pl

ea
si

ng
A

ttr
ac

tiv
en

es
s

15
1.

3
2.

1
1.

4
12

us
ua

l
le

ad
in

g
ed

ge
N

ov
el

ty
16

1.
8

1.
1

1.
1

12
un

pl
ea

sa
nt

pl
ea

sa
nt

A
ttr

ac
tiv

en
es

s
17

1.
0

1.
6

1.
3

12
se

cu
re

no
t s

ec
ur

e
D

ep
en

da
bi

lit
y

18
1.

6
2.

1
1.

4
11

m
ot

iv
at

in
g

de
m

ot
iv

at
in

g
St

im
ul

at
io

n
19

1.
3

2.
6

1.
6

12
m

ee
ts

 e
xp

ec
ta

tio
ns

do
es

 n
ot

 m
ee

t e
xp

ec
ta

tio
ns

D
ep

en
da

bi
lit

y
20

1.
8

0.
9

0.
9

12
in

ef
fic

ie
nt

ef
fic

ie
nt

Ef
fic

ie
nc

y
21

1.
6

1.
0

1.
0

12
cl

ea
r

co
nf

us
in

g
Pe

rs
pi

cu
ity

22
1.

5
1.

5
1.

2
11

im
pr

ac
tic

al
pr

ac
tic

al
Ef

fic
ie

nc
y

23
1.

8
2.

0
1.

4
12

or
ga

ni
ze

d
cl

ut
te

re
d

Ef
fic

ie
nc

y
24

1.
3

2.
1

1.
4

12
at

tr
ac

tiv
e

un
at

tr
ac

tiv
e

A
ttr

ac
tiv

en
es

s
25

1.
7

2.
4

1.
6

12
fr

ie
nd

ly
un

fr
ie

nd
ly

A
ttr

ac
tiv

en
es

s
26

1.
5

2.
6

1.
6

12
co

ns
er

va
tiv

e
in

no
va

tiv
e

N
ov

el
ty

Figure C.10: Detailed results of the UEQ indicating the mean values of all 26

items. The colors indicate the corresponding bar in Figure C.11.

128 appendix : evaluation

-3
-2

-1
0

1
2

3

an
no

yi
ng

/e
nj

oy
ab

le
no

t u
nd

er
st

an
da

bl
e/

un
de

rs
ta

nd
ab

le
du

ll/
cr

ea
tiv

e
di

ff
ic

ul
t t

o
le

ar
n/

ea
sy

 to
 le

ar
n

in
fe

ri
or

/v
al

ua
bl

e
bo

ri
ng

/e
xc

iti
ng

no
t i

nt
er

es
tin

g/
in

te
re

st
in

g
un

pr
ed

ic
ta

bl
e/

pr
ed

ic
ta

bl
e

sl
ow

/f
as

t
co

nv
en

tio
na

l/
in

ve
nt

iv
e

ob
st

ru
ct

iv
e/

su
pp

or
tiv

e
ba

d/
go

od
co

m
pl

ic
at

ed
/e

as
y

un
lik

ab
le

/
pl

ea
si

ng
us

ua
l/

le
ad

in
g

ed
ge

un
pl

ea
sa

nt
/p

le
as

an
t

no
t s

ec
ur

e/
se

cu
re

m
ot

iv
at

in
g/

de
m

ot
iv

at
in

g
do

es
 n

ot
 m

ee
t e

xp
ec

ta
tio

ns
/

m
ee

ts
 e

xp
ec

ta
ti

on
s

in
ef

fic
ie

nt
/e

ff
ic

ie
nt

co
nf

us
in

g/
cl

ea
r

im
pr

ac
tic

al
/p

ra
ct

ic
al

cl
ut

te
re

d
/o

rg
an

iz
ed

un
at

tr
ac

tiv
e/

at
tr

ac
ti

ve
un

fr
ie

nd
ly

/f
rie

nd
ly

co
ns

er
va

ti
ve

/i
nn

ov
at

iv
e

M
ea

n
va

lu
e

pe
r I

te
m

Figure C.11: Mean values of the items shown in Figure C.10 mapped to bars.

B I B L I O G R A P H Y

[1] "CSchunck". Arbeitsblatt Rekursion - tutory.de. Released into the
public domain using CC0. Screenshot taken by author. Oct. 18,
2016. url: https://www.tutory.de/w/36c7ef70 (visited on
04/13/2019) (cit. on pp. 33, 101).

[2] Paul Arndt. “Supporting Internal Differentiation and Coopera-
tive Learning with the HPI Schul-Cloud”. Potsdam, Germany:
Hasso Plattner Institute, University of Potsdam, May 2019 (cit.
on pp. 36, 39, 53).

[3] Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Marco
Mauri, Eric Medvet, and Enrico Sorio. “Automatic Generation
of Regular Expressions from Examples with Genetic Program-
ming”. In: Proceedings of the Fourteenth International Conference
on Genetic and Evolutionary Computation Conference Companion -
GECCO Companion ’12. The Fourteenth International Conference.
Philadelphia, Pennsylvania, USA: ACM Press, 2012, p. 1477.
isbn: 978-1-4503-1178-6. doi: 10.1145/2330784.2331000 (cit. on
p. 38).

[4] Basic Law for the Federal Republic of Germany. May 23, 1949. url:
https://www.gesetze-im-internet.de/englisch_gg/ (cit. on
p. 1).

[5] Gary Beauchamp and Steve Kennewell. “Interactivity in the
Classroom and Its Impact on Learning”. In: Computers & Educa-
tion 54.3 (Apr. 2010), pp. 759–766. issn: 03601315. doi: 10.1016/
j.compedu.2009.09.033 (cit. on pp. 13, 14).

[6] Matthew Berland, Ryan S. Baker, and Paulo Blikstein. “Edu-
cational Data Mining and Learning Analytics: Applications to
Constructionist Research”. In: Technology, Knowledge and Learning
19.1-2 (July 2014), pp. 205–220. issn: 2211-1662, 2211-1670. doi:
10.1007/s10758-014-9223-7 (cit. on p. 16).

[7] Paul Blayney and Mark Freeman. “Automated Formative Feed-
back and Summative Assessment Using Individualised Spread-
sheet Assignments”. In: Australasian Journal of Educational Technol-
ogy 20.2 (Aug. 9, 2004), pp. 209–231. issn: 1449-5554, 1449-3098.
doi: 10.14742/ajet.1360 (cit. on p. 14).

[8] Paul Blayney and Mark Freeman. “Individualised Interactive
Formative Assessments to Promote Independent Learning”. In:
Journal of Accounting Education 26.3 (Sept. 2008), pp. 155–165.
issn: 07485751. doi: 10.1016/j.jaccedu.2008.01.001 (cit. on
p. 14).

129

https://www.tutory.de/w/36c7ef70
https://doi.org/10.1145/2330784.2331000
https://www.gesetze-im-internet.de/englisch_gg/
https://doi.org/10.1016/j.compedu.2009.09.033
https://doi.org/10.1016/j.compedu.2009.09.033
https://doi.org/10.1007/s10758-014-9223-7
https://doi.org/10.14742/ajet.1360
https://doi.org/10.1016/j.jaccedu.2008.01.001

130 bibliography

[9] Paulo Blikstein. “Using Learning Analytics to Assess Students’
Behavior in Open-Ended Programming Tasks”. In: Proceedings of
the 1st International Conference on Learning Analytics and Knowl-
edge - LAK ’11. The 1st International Conference. Banff, Alberta,
Canada: ACM Press, 2011, p. 110. isbn: 978-1-4503-0944-8. doi:
10.1145/2090116.2090132 (cit. on pp. 16, 43).

[10] Michael Caulfield, Amy Collier, and Sherif Halawa. Rethinking
Online Community in MOOCs Used for Blended Learning. Oct. 6,
2013. url: https://er.educause.edu/articles/2013/10/
rethinking-online-community-in-moocs-used-for-blended-

learning (visited on 02/08/2019) (cit. on p. 15).

[11] Der Landesbeauftragte für den Datenschutz und die Infor-
mationsfreiheit Rheinland-Pfalz. Anfordernungen für den schu-
lischen Einsatz von Google-Classroom. Jan. 10, 2017. url: https:
/ / www . datenschutz . rlp . de / fileadmin / lfdi / Dokumente /

Orientierungshilfen/anforderungen-google-classroom.pdf

(visited on 04/23/2019) (cit. on p. 24).

[12] Firas Dib. Testing a Regular Expression with Regex101. Screen-
shot taken by author. url: https://regex101.com/ (visited on
04/17/2019) (cit. on p. 102).

[13] Christoph Drösser and Uwe Jean Heuser. “Moocs: Harvard für
alle Welt”. In: Die Zeit (Mar. 14, 2013). issn: 0044-2070. url:
https://www.zeit.de/2013/12/MOOC-Onlinekurse-Universit

aeten (visited on 04/05/2019) (cit. on p. 7).

[14] European General Data Protection Regulation. May 24, 2018. url:
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=

celex%3A32016R0679 (cit. on pp. XV, 40).

[15] Exemplary Screenshot of Codeboard. Source code based on an as-
signment from Heiduck [24]. Screenshot taken by author. url:
https://codeboard.io (visited on 04/18/2019) (cit. on p. 18).

[16] Exemplary Screenshot of Repl.It. Source code based on an assign-
ment from Heiduck [24]. Screenshot taken by author. url: https:
//codeboard.io (visited on 04/18/2019) (cit. on p. 103).

[17] Ian Fette and Alexey Melnikov. The WebSocket Protocol. RFC6455.
RFC Editor, Dec. 2011, RFC6455. doi: 10.17487/rfc6455 (cit. on
pp. 53, 68).

[18] German Federal Data Protection Act. May 25, 2018. url: https:
/ / www . gesetze - im - internet . de / englisch _ bdsg/ (cit. on
pp. XV, 40).

[19] Dominik Glandorf. “Data-Protection-Compliant Deep Integra-
tion of Third-Party Educational Resources into HPI Schul-Cloud”.
Potsdam, Germany: Hasso Plattner Institute, University of Pots-
dam, July 2, 2018 (cit. on p. 66).

https://doi.org/10.1145/2090116.2090132
https://er.educause.edu/articles/2013/10/rethinking-online-community-in-moocs-used-for-blended-learning
https://er.educause.edu/articles/2013/10/rethinking-online-community-in-moocs-used-for-blended-learning
https://er.educause.edu/articles/2013/10/rethinking-online-community-in-moocs-used-for-blended-learning
https://www.datenschutz.rlp.de/fileadmin/lfdi/Dokumente/Orientierungshilfen/anforderungen-google-classroom.pdf
https://www.datenschutz.rlp.de/fileadmin/lfdi/Dokumente/Orientierungshilfen/anforderungen-google-classroom.pdf
https://www.datenschutz.rlp.de/fileadmin/lfdi/Dokumente/Orientierungshilfen/anforderungen-google-classroom.pdf
https://regex101.com/
https://www.zeit.de/2013/12/MOOC-Onlinekurse-Universitaeten
https://www.zeit.de/2013/12/MOOC-Onlinekurse-Universitaeten
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://codeboard.io
https://codeboard.io
https://codeboard.io
https://doi.org/10.17487/rfc6455
https://www.gesetze-im-internet.de/englisch_bdsg/
https://www.gesetze-im-internet.de/englisch_bdsg/

bibliography 131

[20] Rebecca Griffiths, Matthew Chingos, Christine Mulhern, and
Richard Spies. Interactive Online Learning on Campus: Testing
MOOCs and Other Platforms in Hybrid Formats in the University
System of Maryland. New York: Ithaka S+R, May 10, 2014. doi:
10.18665/sr.22522 (cit. on p. 15).

[21] Christiane Hagedorn and Christoph Meinel. “Exploring the
Potential of Game-Based Learning in Massive Open Online
Courses”. In: 2017 IEEE 17th International Conference on Advanced
Learning Technologies (ICALT). Timisoara, Romania: IEEE, July
2017, pp. 542–544. isbn: 978-1-5386-3870-5. doi: 10.1109/ICALT.
2017.119 (cit. on p. 13).

[22] Stian Håklev. Exemplary Screenshot of the FROG Editor. Oct. 27,
2017. url: https://github.com/chili-epfl/FROG/blob/3fb
7d86df12e296bd16dfb89a2a61e8c18ca8aab/docs/frog-editor.

png (visited on 04/17/2019) (cit. on p. 37).

[23] Stian Håklev, Louis Faucon, Thanasis Hadzilacos, and Pierre Dil-
lenbourg. “FROG: Rapid Prototyping of Collaborative Learning
Scenarios”. In: EC-TEL Practitioner Proceedings 2017: 12th Euro-
pean Conference On Technology Enhanced Learning. Tallin, Estonia,
Sept. 12, 2017. url: https://infoscience.epfl.ch/record/
230014 (cit. on p. 36).

[24] Ulrike Heiduck. Programming Exercise Assessing the Understanding
of Arrays. Mar. 28, 2019 (cit. on p. 130).

[25] Peter Hubwieser, Michal Armoni, and Michail N. Giannakos.
“How to Implement Rigorous Computer Science Education in
K-12 Schools? Some Answers and Many Questions”. In: ACM
Transactions on Computing Education 15.2 (Apr. 27, 2015), pp. 1–12.
issn: 19466226. doi: 10.1145/2729983 (cit. on p. 15).

[26] Ville Isomöttönen, Antti-Jussi Lakanen, and Vesa Lappalainen.
“K-12 Game Programming Course Concept Using Textual Pro-
gramming”. In: Proceedings of the 42nd ACM Technical Symposium
on Computer Science Education - SIGCSE ’11. The 42nd ACM Tech-
nical Symposium. Dallas, TX, USA: ACM Press, 2011, p. 459.
isbn: 978-1-4503-0500-6. doi: 10.1145/1953163.1953296 (cit. on
p. 14).

[27] Maria Joseph Israel. “Effectiveness of Integrating MOOCs in
Traditional Classrooms for Undergraduate Students”. In: The
International Review of Research in Open and Distributed Learning
16.5 (Sept. 29, 2015), pp. 102–118. issn: 1492-3831. doi: 10.19173/
irrodl.v16i5.2222 (cit. on p. 15).

[28] Michael Janke. “Digital Classroom: Digitally Supported Group
Work in a School Context - Connecting Digital Real-Time Col-
laboration and Analog Communication”. Potsdam, Germany:

https://doi.org/10.18665/sr.22522
https://doi.org/10.1109/ICALT.2017.119
https://doi.org/10.1109/ICALT.2017.119
https://github.com/chili-epfl/FROG/blob/3fb7d86df12e296bd16dfb89a2a61e8c18ca8aab/docs/frog-editor.png
https://github.com/chili-epfl/FROG/blob/3fb7d86df12e296bd16dfb89a2a61e8c18ca8aab/docs/frog-editor.png
https://github.com/chili-epfl/FROG/blob/3fb7d86df12e296bd16dfb89a2a61e8c18ca8aab/docs/frog-editor.png
https://infoscience.epfl.ch/record/230014
https://infoscience.epfl.ch/record/230014
https://doi.org/10.1145/2729983
https://doi.org/10.1145/1953163.1953296
https://doi.org/10.19173/irrodl.v16i5.2222
https://doi.org/10.19173/irrodl.v16i5.2222

132 bibliography

Hasso Plattner Institute, University of Potsdam, Dec. 7, 2018

(cit. on p. 35).

[29] Michael Janke. Exemplary Screenshot of the Digital Classroom.
Screenshot taken by author. Dec. 11, 2018. url: https://www.
tele-task.de/lecture/video/7231/ (visited on 04/17/2019)
(cit. on p. 101).

[30] Michael Kerres. Multimediale Und Telemediale Lernumgebungen.
2nd ed. OCLC: 1091456005. Walter de Gruyter, 2009. 412 pp.
isbn: 978-3-486-59381-5 (cit. on p. 24).

[31] Jonas Keutel. “Towards Shared Learning Contents - and How to
Make Teachers Want to Contribute”. Potsdam, Germany: Hasso
Plattner Institute, University of Potsdam, Nov. 15, 2018 (cit. on
p. 42).

[32] Juliane Kleinknecht. “Das Lern-Cockpit: Nutzerorientierte Dar-
stellung von Lerndaten in der Schul-Cloud”. Potsdam, Germany:
Hasso Plattner Institute, University of Potsdam, July 2, 2018 (cit.
on p. 51).

[33] Tobias Kollmann and Holger Schmidt. Deutschland 4.0: wie die
Digitale Transformation gelingt. OCLC: ocn932096511. Wiesbaden:
Gabler, 2016. 186 pp. isbn: 978-3-658-11981-2. url: https://
link . springer . com / book / 10 . 1007 / 978 - 3 - 658 - 13145 - 6

(visited on 04/19/2018) (cit. on p. 21).

[34] Bettina Laugwitz, Theo Held, and Martin Schrepp. “Construc-
tion and Evaluation of a User Experience Questionnaire”. In: HCI
and Usability for Education and Work. Ed. by Andreas Holzinger.
Vol. 5298. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 63–76. isbn: 978-3-540-89349-3 978-3-540-89350-9. doi: 10.
1007/978-3-540-89350-9_6 (cit. on pp. XVI, 85, 86).

[35] Diandra L. Leslie-Pelecky. “Interactive Worksheets in Large
Introductory Physics Courses”. In: The Physics Teacher 38.3 (Mar.
2000), pp. 165–167. issn: 0031-921X. doi: 10.1119/1.880485
(cit. on p. 14).

[36] Phil Long and George Siemens. “Penetrating the Fog: Analytics
in Learning and Education”. In: EDUCAUSE review 46.5 (2011),
pp. 30–40. url: https://er.educause.edu/~/media/files/
article-downloads/erm1151.pdf (cit. on p. 16).

[37] Christian Matt, Thomas Hess, and Alexander Benlian. “Digital
Transformation Strategies”. In: Business & Information Systems
Engineering 57.5 (Oct. 2015), pp. 339–343. issn: 2363-7005, 1867-
0202. doi: 10.1007/s12599-015-0401-5 (cit. on p. 1).

https://www.tele-task.de/lecture/video/7231/
https://www.tele-task.de/lecture/video/7231/
https://link.springer.com/book/10.1007/978-3-658-13145-6
https://link.springer.com/book/10.1007/978-3-658-13145-6
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1119/1.880485
https://er.educause.edu/~/media/files/article-downloads/erm1151.pdf
https://er.educause.edu/~/media/files/article-downloads/erm1151.pdf
https://doi.org/10.1007/s12599-015-0401-5

bibliography 133

[38] Christoph Matthies, Ralf Teusner, and Guenter Hesse. “Beyond
Surveys: Analyzing Software Development Artifacts to Assess
Teaching Efforts”. In: 2018 IEEE Frontiers in Education Conference
(FIE). San Jose, CA, USA: IEEE, Oct. 2018, pp. 1–9. isbn: 978-1-
5386-1174-6. doi: 10.1109/FIE.2018.8659205 (cit. on p. 15).

[39] Christoph Meinel, Jan Renz, Matthias Luderich, Vivien Maly-
ska, Konstantin Kaiser, and Arne Oberländer. Die HPI Schul-
Cloud: Roll-Out einer Cloud-Architektur für Schulen in Deutschland.
Technische Berichte des Hasso-Plattner-Instituts für Digital En-
gineering an der Universität Potsdam 125. Potsdam: Universi-
tätsverlag Potsdam, 2019. 57 pp. isbn: 978-3-86956-453-1. url:
https://hpi.de/fileadmin/user_upload/hpi/dokumente/

publikationen/technische_berichte/tbhpi125.pdf (cit. on
p. 11).

[40] Christoph Meinel, Volker Schillings, and Vanessa Walser. “Over-
coming Technical Frustrations in Distance Education: Tele-TASK”.
In: Proceedings of the IADIS International Conference on E-Society.
E-Society. Lisboa, Portugal, 2003, p. 8. url: https://hpi.de/
fileadmin/user_upload/fachgebiete/meinel/papers/Web-

University/2003_Meinel_e-Society.pdf (cit. on p. 56).

[41] Christoph Meinel and Christian Willems. openHPI: The MOOC
Offer at Hasso Plattner Institute. In collab. with Hasso-Plattner-
Institut für Softwaresystemtechnik. Technische Berichte Des
Hasso-Plattner-Instituts Für Softwaresystemtechnik an Der Uni-
versität Potsdam 80. OCLC: 885028328. Potsdam: Universitätsver-
lag Potsdam, 2013. 21 pp. isbn: 978-3-86956-264-3. url: https://
publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/

index/docId/6548/file/tbhpi80.pdf (cit. on p. 8).

[42] Zahira Merchant, Ernest T. Goetz, Lauren Cifuentes, Wendy
Keeney-Kennicutt, and Trina J. Davis. “Effectiveness of Virtual
Reality-Based Instruction on Students’ Learning Outcomes in
K-12 and Higher Education: A Meta-Analysis”. In: Computers &
Education 70 (Jan. 2014), pp. 29–40. issn: 03601315. doi: 10.1016/
j.compedu.2013.07.033 (cit. on p. 13).

[43] Michael Minge, Manfred Thüring, Ingmar Wagner, and Carina V.
Kuhr. “The meCUE Questionnaire: A Modular Tool for Measur-
ing User Experience”. In: Advances in Ergonomics Modeling, Us-
ability & Special Populations. Ed. by Marcelo Soares, Christianne
Falcão, and Tareq Z. Ahram. Vol. 486. Cham: Springer Inter-
national Publishing, 2017, pp. 115–128. isbn: 978-3-319-41684-7
978-3-319-41685-4. doi: 10.1007/978-3-319-41685-4_11 (cit. on
pp. XVI, 79).

[44] Mike Monaco. “Regular Expressions 101: Regex101.Com”. In:
Technical Services Quarterly 35.3 (July 3, 2018), pp. 305–306. issn:

https://doi.org/10.1109/FIE.2018.8659205
https://hpi.de/fileadmin/user_upload/hpi/dokumente/publikationen/technische_berichte/tbhpi125.pdf
https://hpi.de/fileadmin/user_upload/hpi/dokumente/publikationen/technische_berichte/tbhpi125.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/meinel/papers/Web-University/2003_Meinel_e-Society.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/meinel/papers/Web-University/2003_Meinel_e-Society.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/meinel/papers/Web-University/2003_Meinel_e-Society.pdf
https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/6548/file/tbhpi80.pdf
https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/6548/file/tbhpi80.pdf
https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/6548/file/tbhpi80.pdf
https://doi.org/10.1016/j.compedu.2013.07.033
https://doi.org/10.1016/j.compedu.2013.07.033
https://doi.org/10.1007/978-3-319-41685-4_11

134 bibliography

0731-7131, 1555-3337. doi: 10.1080/07317131.2018.1456868
(cit. on p. 38).

[45] Carlos Monroy, Virginia Snodgrass Rangel, and Reid Whitaker.
“A Strategy for Incorporating Learning Analytics into the Design
and Evaluation of a K-12 Science Curriculum”. In: Journal of
Learning Analytics 1.2 (2014), pp. 94–125. issn: 19297750. doi:
10.18608/jla.2014.12.6 (cit. on p. 15).

[46] Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric
Wiebe, Kai Yang, Carol Miller, and Suzanne Balik. “Improving
the CS1 Experience with Pair Programming”. In: ACM SIGCSE
Bulletin 35.1 (Jan. 11, 2003), p. 359. issn: 00978418. doi: 10.1145/
792548.612006 (cit. on p. 17).

[47] Aisha Othman, Ahmed Impes, and Crinela Pislaru. “Online
Interactive Module for Teaching a Computer Programming
Course”. In: Proceedings of the 12th European Conference on E-
Learning ECEL 2013. The 12th European Conference on E-Learning
ECEL 2013. 2013. isbn: 978-1-909507-82-1. url: http://eprints.
hud.ac.uk/id/eprint/19628 (cit. on p. 13).

[48] Timo Partala and Aleksi Kallinen. “Understanding the Most
Satisfying and Unsatisfying User Experiences: Emotions, Psy-
chological Needs, and Context”. In: Interacting with Computers
24.1 (Jan. 2012), pp. 25–34. issn: 09535438. doi: 10.1016/j.
intcom.2011.10.001 (cit. on pp. 81, 83).

[49] Morten Flate Paulsen. “Online Education Systems: Discussion
and Definition of Terms”. In: NKI distance education 202 (July
2002), p. 8. url: http://www.porto.ucp.pt/open/curso/
modulos/doc/Definition%20of%20Terms.pdf (cit. on p. 24).

[50] Frederick F. Reichheld. “The One Number You Need to Grow”.
In: harvard business review (2003), p. 12. url: https://hbr.org/
2003/12/the-one-number-you-need-to-grow (cit. on pp. XVI,
78).

[51] Jan Renz and Christoph Meinel. “Can Pseudonymized xAPI-
Tracking Solve Data Privacy Issues in German Schools?” In:
SAILA-ECTEL. EC-TEL Practitioner Proceedings 2018: 13th Euro-
pean Conference On Technology Enhanced Learning. Vol. 2193.
Workshop Paper. Leeds, UK, Sept. 3, 2018, p. 3. url: https:
//www.researchgate.net/publication/332319620_Can_pseu

donymized_xAPI-Tracking_solve_data_privacy_issues_in_

german_schools (cit. on pp. 40, 45, 134).

[52] Jan Renz and Christoph Meinel. Pseudonymization Concept of the
HPI Schul-Cloud. Image extracted from “Can Pseudonymized
xAPI-Tracking Solve Data Privacy Issues in German Schools?”
[51] (cit. on p. 45).

https://doi.org/10.1080/07317131.2018.1456868
https://doi.org/10.18608/jla.2014.12.6
https://doi.org/10.1145/792548.612006
https://doi.org/10.1145/792548.612006
http://eprints.hud.ac.uk/id/eprint/19628
http://eprints.hud.ac.uk/id/eprint/19628
https://doi.org/10.1016/j.intcom.2011.10.001
https://doi.org/10.1016/j.intcom.2011.10.001
http://www.porto.ucp.pt/open/curso/modulos/doc/Definition%20of%20Terms.pdf
http://www.porto.ucp.pt/open/curso/modulos/doc/Definition%20of%20Terms.pdf
https://hbr.org/2003/12/the-one-number-you-need-to-grow
https://hbr.org/2003/12/the-one-number-you-need-to-grow
https://www.researchgate.net/publication/332319620_Can_pseudonymized_xAPI-Tracking_solve_data_privacy_issues_in_german_schools
https://www.researchgate.net/publication/332319620_Can_pseudonymized_xAPI-Tracking_solve_data_privacy_issues_in_german_schools
https://www.researchgate.net/publication/332319620_Can_pseudonymized_xAPI-Tracking_solve_data_privacy_issues_in_german_schools
https://www.researchgate.net/publication/332319620_Can_pseudonymized_xAPI-Tracking_solve_data_privacy_issues_in_german_schools

bibliography 135

[53] E. Hammer-Lahav (Ed.) “The OAuth 1.0 Protocol”. In: Internet
Request for Comments 5849 (Apr. 2010). Obsoleted by RFC 6749,
pp. 1–38. issn: 2070-1721. doi: 10.17487/RFC5849 (cit. on p. 63).

[54] A. Barth. “HTTP State Management Mechanism”. In: Internet
Request for Comments 6265 (Apr. 2011), pp. 1–37. issn: 2070-
1721. doi: 10.17487/RFC6265 (cit. on p. 73).

[55] D. Hardt (Ed.) “The OAuth 2.0 Authorization Framework”. In:
Internet Request for Comments 6749 (Oct. 2012). Updated by
RFC 8252, pp. 1–76. issn: 2070-1721. doi: 10.17487/RFC6749
(cit. on p. 63).

[56] Tobias Rohloff, Dominic Sauer, and Christoph Meinel. “On the
Acceptance and Usefulness of Personalized Learning Objectives
in MOOCs”. In: Proceedings of the Sixth Annual ACM Conference
on Learning at Scale - L@S ’19. The Sixth Annual ACM Conference
on Learning At Scale. Chicago, IL, USA: ACM Press, 2019, p. 10

(cit. on p. 16).

[57] Gerhard Röhner. Exemplary Screenshot of the Java-Editor. Apr. 24,
2014. url: http://javaeditor.org/lib/exe/detail.php?id=
start&media=en:editoren.png (visited on 04/16/2019) (cit. on
p. 29).

[58] Sebastian Serth, Ralf Teusner, Jan Renz, and Matthias Uflacker.
“Evaluating Digital Worksheets with Interactive Programming
Exercises for K-12 Education”. In: 2019 IEEE Frontiers in Edu-
cation Conference (FIE). Manuscript Submitted for Publication.
Cincinnati, OH, USA: IEEE, 2019 (cit. on p. XIV).

[59] Jürgen Soose. Arbeitsblatt selbst-definierte Klasse. Sept. 30, 2010.
url: http://jsoose.de (cit. on p. 26).

[60] Thomas Staubitz, Hauke Klement, Ralf Teusner, Jan Renz, and
Christoph Meinel. “CodeOcean - A Versatile Platform for Practi-
cal Programming Excercises in Online Environments”. In: 2016
IEEE Global Engineering Education Conference (EDUCON). Abu
Dhabi: IEEE, Apr. 2016, pp. 314–323. isbn: 978-1-4673-8633-3.
doi: 10.1109/EDUCON.2016.7474573 (cit. on pp. 8, 10).

[61] Thomas Staubitz, Ralf Teusner, and Christoph Meinel. “Towards
a Repository for Open Auto-Gradable Programming Exercises”.
In: 2017 IEEE 6th International Conference on Teaching, Assessment,
and Learning for Engineering (TALE). Hong Kong: IEEE, Dec. 2017,
pp. 66–73. isbn: 978-1-5386-0900-2. doi: 10.1109/TALE.2017.
8252306 (cit. on p. 38).

[62] Thomas Staubitz, Ralf Teusner, and Christoph Meinel. “MOOCs
in Secondary Education - Experiments and Observations from
German Classrooms”. In: 2019 IEEE Global Engineering Education
Conference (EDUCON). Dubai, UAE: IEEE, 2019, p. 10 (cit. on
p. 3).

https://doi.org/10.17487/RFC5849
https://doi.org/10.17487/RFC6265
https://doi.org/10.17487/RFC6749
http://javaeditor.org/lib/exe/detail.php?id=start&media=en:editoren.png
http://javaeditor.org/lib/exe/detail.php?id=start&media=en:editoren.png
http://jsoose.de
https://doi.org/10.1109/EDUCON.2016.7474573
https://doi.org/10.1109/TALE.2017.8252306
https://doi.org/10.1109/TALE.2017.8252306

136 bibliography

[63] Stephen Vickers (IMS Global). IMS Global Learning Tools Inter-
operability® Outcomes Management. Version 1.0 Final Release.
IMS Global Learning Consortium Inc. Jan. 5, 2015. url: https:
//www.imsglobal.org/specs/ltiomv1p0/specification (cit.
on p. 66).

[64] Ralf Teusner, Thomas Hille, and Thomas Staubitz. “Effects of Au-
tomated Interventions in Programming Assignments: Evidence
from a Field Experiment”. In: Proceedings of the Fifth Annual ACM
Conference on Learning at Scale - L@S ’18. The Fifth Annual ACM
Conference. London, United Kingdom: ACM Press, 2018, pp. 1–
10. isbn: 978-1-4503-5886-6. doi: 10.1145/3231644.3231650 (cit.
on pp. 10, 39).

[65] Christian Ullenboom. Java ist auch eine Insel: Einführung, Ausbil-
dung, Praxis. 13., aktualisierte und überarbeitete Auflage. Rhein-
werk Computing. OCLC: 985977047. Bonn: Rheinwerk Verlag,
2018. 1363 pp. isbn: 978-3-8362-5869-2. url: http://openbook.
rheinwerk-verlag.de/javainsel/ (cit. on p. 16).

[66] University of Southern California, Ann Majchrzak, M. Lynne
Markus, Bentley University, Jonathan Wareham, and ESADE –
Ramon Llull University. “Designing for Digital Transformation:
Lessons for Information Systems Research from the Study of
ICT and Societal Challenges”. In: MIS Quarterly 40.2 (Feb. 2,
2016), pp. 267–277. issn: 02767783, 21629730. doi: 10.25300/
MISQ/2016/40:2.03 (cit. on p. 1).

[67] Roumen Vesselinov and John Grego. Duolingo Effectiveness Study
- Final Report. Dec. 2012. url: http://static.duolingo.com/
s3/DuolingoReport_Final.pdf (visited on 04/30/2019) (cit. on
p. 86).

[68] Ben Williamson. “Digital Education Governance: Data Visu-
alization, Predictive Analytics, and ‘Real-Time’ Policy Instru-
ments”. In: Journal of Education Policy 31.2 (Mar. 3, 2016), pp. 123–
141. issn: 0268-0939, 1464-5106. doi: 10.1080/02680939.2015.
1035758 (cit. on p. 16).

[69] Florian Wirtz. “Enabling User-Generated Content in Cloud-
Based E-Learning Environments in Schools”. Potsdam, Ger-
many: Hasso Plattner Institute, University of Potsdam, July 2,
2018 (cit. on pp. 52, 53).

[70] xAPI Specification. Version 1.0.3. Advanced Distributed Learning
(ADL). Sept. 23, 2016. url: https://github.com/adlnet/xAPI-
Spec/tree/1.0.3 (visited on 02/15/2019) (cit. on pp. XVI, 66).

https://www.imsglobal.org/specs/ltiomv1p0/specification
https://www.imsglobal.org/specs/ltiomv1p0/specification
https://doi.org/10.1145/3231644.3231650
http://openbook.rheinwerk-verlag.de/javainsel/
http://openbook.rheinwerk-verlag.de/javainsel/
https://doi.org/10.25300/MISQ/2016/40:2.03
https://doi.org/10.25300/MISQ/2016/40:2.03
http://static.duolingo.com/s3/DuolingoReport_Final.pdf
http://static.duolingo.com/s3/DuolingoReport_Final.pdf
https://doi.org/10.1080/02680939.2015.1035758
https://doi.org/10.1080/02680939.2015.1035758
https://github.com/adlnet/xAPI-Spec/tree/1.0.3
https://github.com/adlnet/xAPI-Spec/tree/1.0.3

D E C L A R AT I O N

I certify that the material contained in this thesis is my own work and
does not contain unreferenced or unacknowledged material.

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet
habe.

Potsdam, 6th May 2019

Sebastian Serth

137

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	Publication
	Privacy Note
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Structure

	2 Background
	2.1 Massive Open Online Courses
	2.2 MOOCs Offered by the HPI with openHPI
	2.3 Integration of Programming Exercises: CodeOcean
	2.4 The HPI Schul-Cloud

	3 Related Work
	3.1 Interactivity in Computer Science Lessons
	3.2 Interactive Worksheets
	3.3 Programming Exercises in K-12
	3.4 Integrating MOOCs in Classes
	3.5 Learning Analytics
	3.6 Online Programming Resources
	3.6.1 Programming Education for Individuals and Classrooms
	3.6.2 Collaborative Code Editing Using Pair Programming
	3.6.3 Browser-Based Code Execution Platforms
	3.6.4 Technical Implementation of Web-Based Code Execution Platforms

	4 Current Situation in Schools
	4.1 Computer Science Education in K-12
	4.2 Technical Equipment of Schools and Practical Implications
	4.3 Content Distribution and Submission Handling in Computer Science Classes
	4.4 Worksheets in Computer Science Classes
	4.5 Educational IDEs Tailored for Beginners
	4.6 Implications for Computer Science Teachers

	5 Concept
	5.1 General Design of Interactive Worksheets
	5.1.1 Different Views for Students and Teachers
	5.1.2 Accessibility of Content for Students

	5.2 Editing Programming Exercises in CodeOcean
	5.2.1 Automated Feedback through Unit Tests for Exercises
	5.2.2 Referencing Exercises from Worksheets

	5.3 Deep Integration with the HPI Schul-Cloud
	5.3.1 Pseudonymization
	5.3.2 Customization of the CodeOcean Integration
	5.3.3 Worksheet Sharing and Content from MOOCs

	5.4 Implicit Submission Handling
	5.4.1 Pre-Evaluation of Submissions
	5.4.2 Time Traveling to Understand the Learner's Approach

	5.5 Learning Analytics
	5.5.1 Integration with External Systems
	5.5.2 Summary for Teachers During Lessons
	5.5.3 Comparison of Learners from a School Class to MOOC Participants

	6 Implementation
	6.1 Architecture of Worksheets with Practical Programming Exercises
	6.2 Worksheet Editor: edtr.io
	6.2.1 First-Party Multiple-Choice Quiz Plugin
	6.2.2 Embedding Videos from openHPI
	6.2.3 Integrating Programming Exercises through an iFrame with LTI

	6.3 Introduction of the Teacher Role and Study Groups in CodeOcean
	6.3.1 Features Available for Teachers
	6.3.2 Automated Creation of Study Groups

	6.4 Launching Programming Exercises with Different Configurations
	6.4.1 Deep Linking with the LTI Standard
	6.4.2 Introducing Feature Restrictions through LTI

	6.5 Transmitting Results from CodeOcean Back to the HPI Schul-Cloud
	6.5.1 Differences between Final Submissions and Intermediate Submissions
	6.5.2 Using the Worksheet Editor to Forward Analytical Data

	6.6 Per Exercise Dashboard for Teachers
	6.6.1 Enabling Live Updates through WebSockets
	6.6.2 Aggregating the Working Times of Students
	6.6.3 Request for Comments within Study Groups

	6.7 Learnings from the Implementation
	6.7.1 Saving Session Information in a Cookie
	6.7.2 Worksheets with Cross-Origin Frames

	7 Evaluation
	7.1 Exploration of Requirements
	7.1.1 Methodology
	7.1.2 Results
	7.1.3 Discussion and Interpretation of the Results

	7.2 Students: Testing the Prototype
	7.2.1 Methodology
	7.2.2 Results
	7.2.3 Discussion and Interpretation of the Results

	7.3 Teachers: Experiences from Testing the Prototype
	7.4 Teachers: Usability of the Prototype
	7.4.1 Methodology
	7.4.2 Results
	7.4.3 Discussion and Interpretation of the Results

	7.5 Overall Impression

	8 Outlook and Future Work
	9 Conclusion
	A Appendix: Concept
	A.1 Conceptual Wireframes
	A.2 Related Concepts

	B Appendix: Implementation
	B.1 Exemplary Worksheet
	B.2 Architecture
	B.3 Implementation Details: edtr.io
	B.4 Implementation Details: CodeOcean

	C Appendix: Evaluation
	C.1 Exploration: Results of the Initial Survey
	C.2 Students: Results of the meCUE
	C.3 Students: Results of the Survey
	C.4 Teachers: Results of the UEQ

	Bibliography
	Declaration

