
Towards a Repository for Open Auto-Gradable
Programming Exercises

Thomas Staubitz, Ralf Teusner, Christoph Meinel
Hasso Plattner Institute
University of Potsdam

Potsdam, Germany
{firstname.lastname}@hpi.de

Abstract—Auto-gradable hands-on programming exercises

are a key element for scalable programming courses. A variety of
auto-graders already exist, however, creating suitable high-
quality exercises in a sufficient amount is a very time-consuming
and tedious task. One way to approach this problem is to enable
sharing auto-gradable exercises between several interested
parties. School-teachers, MOOC1 instructors, workshop
providers, and university level teachers need programming
exercises to provide their students with hands-on experience.
Auto-gradability of these exercises is an important requirement.
The paper at hand introduces a tool that enables the sharing of
such exercises and addresses the various needs and requirements
of the different stakeholders.

Keywords—Open Educational Resources; MOOC; Massive
Open Online Courses; Auto-Grader; Assignment; Assessment

I. INTRODUCTION
Auto-gradable programming exercises are an essential

feature of programming courses. In MOOCs as well as in
universities or schools, manual grading of these exercises is
often not an option. In MOOCs, it is impossible due to the
sheer amount of submissions. In schools, teachers often lack
the time or the skills to create and grade such exercises.
Universities often do not pay for the time that instructors spent
with grading2.

 So-called auto-graders are abundantly available by now.
The development of these tools has started back in the 1960s
and they have been constantly developed further in several
generations since then [1]. In general, we can define auto-
graders as software tools that help instructors to grade
programming assignments of their students according to some
pre-defined criteria. Most common are dynamic and static
testing approaches. While dynamic approaches check the
functionality of the handed-in assignments according to the
requirements of the given exercise, static approaches check the
code for possible flaws in the implementation or for coding
style issues. Some tools allow a combination of both methods.

1 Massive Open Online Course
2 Particularly, if the instructors are part-time lecturers instead of regular
faculty

Our team also has developed an auto-grader (CodeOcean3)
for the purposes of our MOOC platform, which offers the
ability to write and execute code within a browser [2]. Given
that the instructors have provided suitable unit tests,
CodeOcean also offers the ability to automatically grade the
submitted code. Static testing approaches are in the pipeline but
have not been implemented yet. CodeOcean is only loosely
coupled with our MOOC platform via the Learning Tools
Interoperability (LTI)4 interface and can, therefore, also be
used with other MOOC platforms or Learning Management
Systems, which support this standard: Moodle5 or Open edX6,
just to name a few. CodeOcean is open source and freely
available for usage and contribution.

While static testing and checks for code-style often make
use of existing libraries and frameworks, dynamic testing
requires the instructors to implement tests, customized for each
exercise. This requires a certain amount of expertise and time
on the side of the instructors, which in many cases is missing.

Particularly in schools, this is a serious issue. Computer
science education in the German school system leaves a lot to
improve. Only in three of the sixteen federal states it is
mandatory, in the others it often hardly exists. Qualified
teachers for computer science are rare. Already in 2014, we
have offered a programming MOOC (PythonJunior7), which
particularly targeted school children [20]. A second iteration of
this course was conducted in 2015. To identify the reasons why
less teachers participated in these MOOCs with their classes
than we expected, we conducted workshops with teachers on
the usage of MOOCs in class during the MINT-EC8
headmasters conference9 and at a networking day10, which was

3 https://github.com/openHPI/codeocean
4 http://www.imsglobal.org/activity/learning-tools-interoperability
5 https://moodle.org/
6 https://open.edx.org/
7 The original title of the course was “Spielend Programmieren lernen!”
throughout the rest of this paper we will use the shorter “PythonJunior”.
8 https://www.mint-ec.de/
9 Würzburg, Germany, 2015
10 Potsdam, Germany, 2016

organized by the Gesellschaft für Informatik(GI)11. As one of
the results of these workshops, we conducted a modified
version of PythonJunior in collaboration with MINT-EC in
2016 and 2017.

One of the most appreciated features of our MOOC
platform in these courses was the possibility to write and
execute code in the browser. Many of the teachers we have
interviewed during the workshops and the courses, appreciated
the high-quality programming exercises. One of the top items
on their wish-list, was the option to access the exercises outside
of the context of the MOOC. As CodeOcean can be integrated
with any LTI consumer, this is basically not a problem.
However, the amount of available exercises on CodeOcean
also is limited. To increase the amount of available exercises, a
repository that allows to share these exercises as open
educational resources between a wide variety of auto-graders is
a viable solution. As a further result of these workshops, we
have, therefore, decided to address this issue and have started
to implement such a repository: CodeHarbor. Sharing, cloning
discussing and rating the exercises are some of the features
provided by this repository. The option to share such exercises
is not only important for teachers but is also well suited to
reduce the overall workload for instructors in MOOCs [3] and
universities.

Section 2 provides a closer look at some selected auto-
graders and presents some repositories in the context of open
educational resources. It also discusses candidates for a data-
exchange format to share these exercises between various auto-
graders. Section 3 evaluates the requirements for such an
exercise repository in different scenarios. Section 5 presents a
high-level overview of the proposed platform and finally,
Sections 6 and 7 detail our future work and conclude our
findings.

II. RELATED WORK
The topic of the paper at hand is basically related to three

research areas.

• Auto-graders

• Learning object repositories

• Data-exchange formats

A. Auto-graders
 The automatic evaluation of code submitted by students is a
well-researched topic. Many institutions that are teaching
computer science and programming have developed solutions
to reduce the time instructors need to evaluate the source code
submitted by their students. Hollingsworth proposed an auto-
grader back in 1960 [4], Arnow and Barshay presented a web-
based auto-grader (WebToTeach) in 1999 [5], Higgins et al.
presented a tool to automatically assess Java programming
exercises (CourseMaker) in 2005 [6], Venables and Haywood
[7] in 2003 and Truong et al. [8] in 2005 worked on immediate
feedback for programming students, Almajali came up with an
auto-grader for advanced programing tasks in 2012 [9], El

11 https://en.gi.de/startpage.html

Balaa describes a programming language agnostic tool
(EMSEL), which does not only grade exercises but supports
students in finding exercises and instructors in creating such
exercises in 2016 [10]. Efforts in cataloguing auto-graders have
been made by Ala-Mutka in 2005 [11], Douce et al. also in
2005 [12], Ihantola et al. in 2010 [13], or Caiza and Ramiro in
2013 [14]. This list just mentions a few approaches and is far
from being comprehensive.

Apart from syntactical correctness, which is validated “for
free” by the compiler or interpreter, the code can be examined
for style, possible flaws, and for correct functionality. Dynamic
and static approaches are possible candidates to determine the
grade. While static approaches examine either the source code
or the compiled code, dynamic approaches usually run the code
against test cases that check if the code acts according to the
given specification and delivers the correct results. Static
approaches provide information about software metrics, code
quality, and possible flaws that might lead to misbehavior of
the program. Dynamic approaches feed the submitted program
with several inputs and check if the resulting output matches
the defined specification. Static approaches have the advantage
that libraries and frameworks exist, which check for the most
common issues in many programming languages. Dynamic
approaches have the advantage that they execute the code and,
therefore, can tell if it provides the correct results. They have
the disadvantage that they need to execute the code and,
therefore, require special security arrangements. Furthermore,
it is often not easy to employ dynamic approaches in very basic
low level exercises, e.g. to test if students have defined a
variable or not. A further disadvantage is that they, usually,
require a customized solution for each exercise and, therefore,
produce a high workload for the instructors.

In the following we will compare three open source auto-
graders.

• INGInious – an auto-grader developed at the
Université Catholique de Louvain (UCL) in
Belgium

• Praktomat – an auto-grader developed at the
Karlsruhe Institute of Technology (KIT) in
Germany

• CodeOcean – the auto-grader developed at the
Hasso Plattner Institute (HPI) in Germany

Further auto-graders exist, but have not been considered for
this evaluation. We focused on these three for now as their
source code is available on GitHub and they are sufficient to
show that these tools follow similar schemas and that it,
therefore, should be possible to develop a tool that allows the
sharing of exercises between them.

INGInious1213 is implemented in Python14 and uses
Docker15 containers to isolate the programs of students from

12 http://www.inginious.org/
13 https://github.com/UCL-INGI/INGInious
14 https://www.python.org/

each other and the hosting environment. The pluggable
architecture with Docker allows INGInious to support arbitrary
programming languages. Students are enabled to write and edit
their code from within the browser. For execution and
evaluation, their code is submitted to INGInious’ servers.
INGInious mainly follows a dynamic testing approach [15],
more recently a static code analysis has been added for Oz16
[16], a multi-paradigm programming language, which has been
developed at the UCL for educational purposes.

Praktomat is also implemented in Python and makes use of
the Django17 web framework [17]. According to Breitner et al.
the programs of the students can either be executed as a
separate user or within Docker containers [17]. Praktomat
supports the languages Java, C/C++, Fortran, Haskell, R and
Isabelle. Dynamic grading with unit tests is only supported for
Java and Haskell. The students upload files containing their
code to the Praktomat server, where they are compiled and
evaluated. Praktomat supports both visible and hidden checks.
In the visible checks the way how the code is evaluated is
shown to the students, while for the hidden checks only the
result is shown.

CodeOcean18 is a Ruby on Rails19 application and uses
Docker containers for code isolation. Theoretically, it can
execute and grade source code in any programming language.
In practice, it requires a Docker container that is prepared to
support this language and an adapter for the testing framework
that is intended to be used. Currently, containers for Python,
Java, Ruby and Node are maintained, adapters have been
implemented for PyUnit20, JUnit21, RSpec22, and Mocha23, thus
providing the possibility to use common native testing
frameworks for each of the supported programming languages.
Static evaluation is not supported yet, but a concept exists and
is highly prioritized on the to-do list. First experiments
introducing a static code checking tool have already been
conducted.

B. Repositories and Sharing
The ability to share information at low cost with anyone

anywhere is one of the internet’s great contributions. We list
some exemplary repositories in the educational area in this
section. These examples show the feasibility of such efforts,

15 Docker is a popular software that builds on top of Linux containers and
allows to run isolated processes with less overhead than virtual machines or
even separate hardware machines. Docker’s original purposes are running
several apps side by side on a single piece of hardware or to optimize the
delivery pipelines. Many auto-graders make use of it to provide separated
low-cost environments for the execution of the students’ code.
https://www.docker.com/
16 http://mozart.github.io/
17 https://www.djangoproject.com/
18 https://github.com/openHPI/codeocean
19 http://rubyonrails.org/
20 http://pyunit.sourceforge.net/
21 http://junit.org/junit4/
22 http://rspec.info/
23 https://mochajs.org/

some of them might even serve as potential partners for future
cooperation.

MERLOT24 is a curated collection of open educational
resources (OER). Its main purpose is to collect meta-
information about these resources and to increase their
visibility. 4teachers25 allows (German) teachers to share their
teaching materials with their colleagues. It provides a
collection of teaching materials as OER. Furthermore, the site
offers a discussion forum. Both systems might be possible
candidates for future cooperation.

 Moodle26, Canvas27, Sakai28, and Blackboard29 are learning
management systems (LMS). These systems support the
learning tools interoperability (LTI) interface, so that they can
integrate exercises as provided by auto-graders, such as
CodeOcean. Many of them support similar concepts as the one
that we propose with CodeHarbor for quizzes instead of
programming exercises. So-called question-banks allow
instructors to collect, create, reuse, and share quiz questions
throughout each platform. The difference to the idea that we
promote with CodeHarbor, however, is that these question-
banks are generally locked within the borders of one instance
of these systems. Hence, instructors within one institution
might share these quiz questions, but they do not allow to share
them beyond the borders of the institution.

The Australian School of Audio Engineering (SAE)30 with
campuses in many major cities worldwide, runs a proprietary
system31 that allows its instructors to reuse quiz questions that
have been created by instructors at any of those campuses. To
access the questions of other instructors, each instructor must
share some questions herself, to make sure that the repository is
continuously growing and up to date with the courses’ learning
objectives.

Lon-Capa32 is a repository for sharing educational content,
including interactive exercises, among academic institutions. It
is a distributed system and provides access to a substantial
amount of exercises for a wide variety of subjects. So, finally,
here we can see that the concept of sharing questions and
exercises is possible and has been realized. However, as it is a
very generalized tool, its options are very complex and it is not
easy to use. In a meeting33 with the eCULT34 project, some of

24 https://www.merlot.org/merlot/index.htm
25 http://www.4teachers.de
26 https://moodle.org/
27 https://sakaiproject.org/
28 https://www.canvaslms.com/?lead_source_description=instructure.com_
29 http://www.blackboard.com/
30 http://www.sae.edu/?global
31 One of the authors knows this system from personal experience.
32 http://www.lon-capa.org/whatis.html
33 October 26, 2016 Skype Call
34 The eCULT project (eCompetences and Utilities for Learners and
Teachers) is developing an exchange format for auto-gradable programming
exercises. Several German universities are contributing to this project. We are
not part of this project, but we are using the standard that they are developing

the participants expressed the desire for a more lightweight
system for certain use cases.

C. Exchange Formats and Standards
To enable sharing programming exercises between a

variety of auto-graders, a common definition of “exercise” is
required. We examined the data-models of the selected auto-
graders and evaluated existing standards and data exchange
formats as possible candidates to be used in CodeHarbor.

We skipped SCORM35 and CommonCartridge36 rather
early in our evaluation process. Although they are well-known
formats in the e-learning context, they are far too heavy-weight
and general for our purpose as they are targeted to move
complete courses from one LMS to another. The IMS Question
& Test Interoperability® Specification (QTI)37 was the next
candidate on our list. However, this standard was developed to
exchange (multiple choice, etc.) quizzes between LMS systems
and does not fit the special requirements of auto-gradable
programming exercises. IEEE’s Learning Object Metadata
(LOM)38 standard also does not fit. It will, however, add an
additional value to the exercises in the future, e.g. for a
potential cooperation with meta-repositories such as MERLOT.

Finally, we encountered the ProFormA39 format, which is
being developed by the eCULT project for a very similar
purpose to ours. In their case, Lon-Capa takes the role of a
shared repository for auto-graded programming exercises. The
format mainly targets the auto-graders Praktomat, JACK40, and
a few others [18]. As a part of their research for the ProFormA
standard, Strickroth et al. [19] have analyzed many different
grading tools to determine a common superset of the different
requirements. Their results confirm our analysis of the auto-
graders’ exercise structures. ProFormA is the best fit for our
purposes so far, and has been chosen to serve as CodeHarbor’s
data exchange format.

III. REQUIREMENTS EVALUATION
An exercise sharing platform must address the needs of a

variety of possible stakeholders and use cases. The
requirements of these stakeholders differ with the size and
structure of the audience and the learning situation in general.
We focus on the following possible scenarios. While they have
many requirements in common, there are also some
differences:

• MOOCs

• Regular on-campus seminars

• SPOCs as educational resources in schools

• Workshops and CoderDojos

in CodeHarbor. We are in contact with this project and we hope to deepen our
cooperation in the future.
35 https://scorm.com/scorm-explained/
36 https://www.imsglobal.org/activity/common-cartridge
37 https://www.imsglobal.org/question/index.html
38 https://standards.ieee.org/findstds/standard/1484.12.1-2002.html
39 https://github.com/ProFormA
40 http://www.s3.uni-duisburg-essen.de/en/jack/

A. MOOCs
We can build on our own experience here as we have

conducted about ten MOOCs during the last three years that
provided scalable programming exercises and assignments to
the participants to a varying extent. In four of these courses, the
auto-graded assignments contributed most of the points to be
gained by the participants. Furthermore, we have started to
contact other groups that are providing MOOCs with auto-
gradable programming exercises on an international level to
discuss further requirements and promote the idea of sharing
these exercises. One of the most important requirements that
we identified here, is that the exercises need to be completely
self-contained and self-explanatory as it is rather difficult to
provide additional information on an individual level in this
context. The heterogeneity of the participants’ backgrounds
requires exercises of various complexity levels.

B. Regular On-campus Seminars
Compared to MOOCs, the user base is more homogenous.

Exams and exercises, generally, can be more demanding and
time consuming. A suggested time constraint could be added to
the exercises. Although we have some experience in this area
ourselves, our focus is biased towards the MOOC scenario.
We, therefore, asked our colleagues from the eCULT project
for their requirements towards such a tool. Here, we will
highlight just a few of their points. The tool itself needs to be
open-source, the exercises ideally should be published under a
Creative Commons41 license. A well-defined exercise access
model was listed as a high priority. The possibility to rate and
comment on exercises was also highly prioritized. An
important non-technical issue that was raised here, was the
question who will host and maintain this repository in the long
run. It needs to be highly available, reliable, and sustainable.

C. SPOCs in Schools as Additional Educational Resources
In 2016, we ran PythonJunior in an extended version as a

SPOC (Small Private Online Course) for a school. Extended
means that we took the original 4-weeks course and extended
its runtime so that it fit with the school semester (12 weeks).
We didn’t change any content, we just allowed the participants
more time. About 20 pupils from this school participated in the
SPOC.

Fig. 1. Teachers lack expertise and time to create exercises.

41 https://creativecommons.org/

3,85%

26,92%

53,85%

15,38%

0%
10%
20%
30%
40%
50%
60%

Yes. No,	I	do	not	have	the	
necessary	expertise.

No,	I	do	not	have	
time	 for	this.

No	answer

Would	 you	be	interested	to	create	your	own	
programming	exercises	for	our	auto-grader	

(CodeOcean)?	 (N=26)

We cooperated closely with two teachers from that school who
accompanied their class during the course. The original
PythonJunior MOOC was designed to teach Python
programming to kids [20]. Before we ran it in the school
setting, it has been run in two iterations as a regular 4-weeks
course. In 2017, we repeated the experiment in a larger setting.
This time we had more than 1000 participants from about 3042
schools in the course, 41% of the pupils received a Record of
Achievement at the end of the course. The no-show rate—users
who register but never show up in the course—was particularly
low: only 3%.

Fig. 2. Teachers see the usefulness of having such an exercise repository

 In this context, we conducted a survey among the invited
MINT-EC teachers. 32 teachers participated in that survey, 18
of them were using our course in different settings: from a
regular class to unattended extracurricular activities43. In this
survey, we also particularly asked for the teachers’ interest in
creating programming exercises of their own or in the
possibility to select additional exercises from a larger pool.

Fig. 3. Teachers are willing to share their material

42 This number has been estimated from the amount of learning groups in the
course which have been labeled with the name of a certain school. Considered
that the average class sizes in Germany are around 20-30 pupils and that some
of the teachers used the course with even smaller groups in an extracurricular
setting, this number probably was a little higher.
43 A more detailed evaluation of these experiments and the complete survey
will be discussed in a separate paper.

More than 50% of the interviewed teachers answered that
they do not have enough time for such activities. Another 30%
stated that they lack the expertise to create such exercises (see
Fig. 1). On the other hand, a substantial number of teachers
stated that such an exercise repository and the possibility to
make use of an auto-grader, such as CodeOcean, would be very
helpful for their teaching, in classes based on our MOOC as
well as in other, traditionally taught classes (see Fig. 2).
Interestingly, although German teachers are often described as
being reluctant to the idea of sharing [22], more than 60% of
the survey’s participants stated that they would happily share
their materials, 30% did not answer the question but none said
that they would explicitly not be willing to share (see Fig. 3).

Furthermore, we asked the teachers which would be the
most important features for such an exercise repository. We
provided three pre-defined answers, multiple selections were
possible, and added an option for the teachers to add their own
ideas. None of the teachers made use of this option.

The three features that we had asked them to rate were:

• A rating system for the exercises

• Well-defined access control (to make sure the
pupils do not get hold of graded exercises)

• Collections of exercises that can be reused

Fig. 4. Re-usable collections were the most popular feature

Surprisingly for us, a well-defined access control was not
too much of a concern for the teachers that participated in our
survey. This might be explained by the fact that more than 60%
of those that have used the MOOC, did this in the context of
extracurricular activities. The rating system for exercises
received less attraction than expected as well. The most
dominant feature was the option to create persistent collections
that can be reused repeatedly (see Fig. 4).

D. Workshops and CoderDojos
Unfortunately, our sources in this area are rather anecdotal.

We have not conducted a survey among this group yet.
However, we have talked to some organizers of such
workshops. Grading is not so much of an issue here, exercises
will mostly serve as the basis for experiments or be inspiration
for other implementations. Therefore, access control is of less
importance, if not an obstacle. We have reason to expect that
this group is a potential candidate to contribute additional

34,62%

19,23%
11,54%

3,85%
0,00%

30,77%

0%

10%

20%

30%

40%

Yes,	 such	a	tool	
would	be	very	
helpful.	I	would	
have	 loved	to	
have	 the	option	
to	individually	
add	additional	
programming	
exercises.

Generally	 such	
an	option	would	

be	helpful.	
Probably,	I	

wouldn’t	make	
use	of	it,	
however.

I	wouldn't	have	
used	the	

possibility	in	this	
course,	but	it	
would	be	very	

helpful	for	other	
courses	I'm	
teaching.

No,	I	just	
wouldn't	have	
the	time	 to	
integrate	
additional	

exercises	to	the	
course.

No,	I	generally	
would	not	make	
use	of	exercises	
that	I	did	not	
create	myself.

No	answer

Would	 a	tool	be	helpful	 that	allows	you	to	add	existing	
programming	exercises	from	colleagues	to	your	course?	

(N=26)

65,38%

0,00%

34,62%

0%
10%
20%
30%
40%
50%
60%
70%

Yes,	of	course. No,	definitely	not. No	answer

Would	 you	share	your	exercises	with	others	in	
such	an	exercise	repository?	 (N=26)

26,92%

11,54%

80,77%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Rating	system	for	the	
exercises.

Well	defined	access	control. Collections	that	can	be	re-
used.

In	your	opinion,	 which	would	be	the	most	
important	features	of	such	an	exercse	repository?	

(N=26)

exercises. The needs of this group, therefore, have to be
investigated more thoroughly in the future.

IV. CODEHARBOR
Figure 5 shows a schematic overview of the relations

between exercise repository, auto-grader, and LMS or MOOC
platform.

Fig. 5. Schematic view of relation between LMS, auto-grader and exercise
repository

Building on this, Figure 6 shows a possible landscape of
LMS systems, MOOC platforms, and auto-graders. MERLOT
has been added here to demonstrate a possible integration with
such a meta-system.

Fig. 6. Possible location of CodeHarbor in a landscape of LMS’, MOOC
platforms and auto-graders.

A demo version of CodeHarbor can be found here44. The
following features are already implemented:

• create and modify exercises

• search for/browse exercises

• export exercises to auto-grader

• multiple exercise languages

• rate and comment exercises

• shopping cart and collections

• fork/clone exercises

• user groups

• exercise privacy

In the following we will discuss some of CodeHarbor’s
features in more detail.

44 https://tools.openhpi.de/codeharbor

A. Exercise Data Model
Figure 7 shows a reduced class diagram of the most

relevant classes of CodeHarbor with a focus on the Exercise
class.

Fig. 7. Most relevant classes in CodeHarbor and their relations.

Exercises consist of one to many files. These files can
either be skeleton implementations for the students to
complete, predefined program elements, such as interfaces, or
abstract classes to be implemented, or additional code snippets
to take some workload off the participants’ shoulders such as
additional classes that already provide a piece of the
functionality to be implemented. Further possible file types are
tests for grading and user-defined tests. According to the
requirements of the exercise, any of these files can be read-
only or hidden. Finally, there might be additional files such as
images, archives, and build directives, such as ANT files or
make files to complete the setting.

Each auto-grader has a different data model for
programming exercises, therefore a bidirectional, ideally
lossless, exchange to the respective CodeHarbor classes is
required. As our transfer format, we use the already mentioned
ProFormA-XML standard.

The eCULT project already has developed an open source
editor45 to export auto-gradable programming exercises into
ProFormA-XML, zips, or Lon-Capa compatible formats. As
the tool is published under a Creative Commons 3.0 share alike
license it can be integrated into CodeHarbor to provide simple
integration with this project. To integrate CodeHarbor with our
own auto-grader CodeOcean, we are currently developing a
solution that allows a more direct interaction instead of
downloading the data from the repository and uploading it to
the auto-grader. A direct web-API based connection will allow
more comfortable access and is our suggested solution for the
other systems as well.

B. Rating and Commenting
CodeHarbor allows its users to rate exercises for

expressing their satisfaction with the quality of an exercise and
recommending it to others. It allows users to filter for content
of proven quality. We are working with a 5-star rating system
like the one that is used by Amazon. There is an ongoing
discussion whether this system is too detailed or not. Other

45

 https://github.com/ProFormA/formatEditor

LMS/MOOC
Platform LTI Auto-grader Exercise

Repository
Data

Exchange
Format

MetaData

HPI Moodle

openHPI

LTI CodeOcean CodeHarbor
Pro

Form
A

openSAP INGInious
Pro

Form
A

EdX UCL

LTI

Pro
Form

A

Praktomat Lon-CapaLTI

LOM

MERLOT

popular models are a simple binary "thumbs up, thumbs down"
as it is used on YouTube [21], or a traffic light approach－
green: good to go, yellow: slight improvements required, red:
do not use without major rework－, which is used e.g. by
SAE’s quiz repository (see Section 2). Users that mark a quiz
with yellow or red must provide an additional verbose
comment. In addition to the rating system, we encourage the
users to discuss the perceived flaws and to provide suggestions
for improvement. This allows to establish a communication
between authors and consumers and to improve exercises in a
collaborative effort.

C. Shopping Carts and Collections
CodeHarbor supports a “shopping cart” as a tool to collect

an amount of exercises and export it to an auto-grader in one
sweep. A more persistent way of combining multiple exercises
are so called “collections”. Shopping carts can be turned into
collections and collections can be added to a shopping cart for
export. Collections remain after they are added to a shopping
cart, while the shopping cart will be emptied after the export.
Users can have several collections to persist different packages
for different purposes, e.g. a set of exercises to train the
concept of polymorphism or a set of exercises to form a Python
course.

D. Access Rights for Programming Exercises
Different stakeholders have different requirements towards

the options to access and share the details of the exercises.
While school teachers, university faculty or MOOC instructors
require some restrictions so that the exercises can be used for
exam purposes, e.g. workshop organizers will be interested in
less restrictive settings so that they can share not only the
exercises but also the solutions or at least the test cases.

In interviews, many instructors have expressed their
concern to control the visibility and availability of the
exercises. Particularly in exam situations, full control over the
visibility of grading related files, such as unit tests, hints, or
sample solutions is required. In other contexts, such as
workshops or in self-directed learning settings, the (partial)
seclusion of the material can hinder the participants in learning
or reduce the usability of the material as an educational
resource.

The initial approach to address this problem in CodeHarbor
was to implement a simple role system with user, teacher, and
admin roles. Only teachers and admins had the rights to see the
solutions and tests of the exercises. Furthermore, only teachers
and admins had the right to create and export exercises. The
needs of stakeholders in less formal settings were not
represented very well. Additionally, the solution also would
have required a high administrative effort. Users would have
had to apply for the teacher role, proving somehow that they
are school teachers, university faculty or MOOC instructors.

We have, therefore, replaced the role system with a more
flexible solution of groups and the concept of private and
public exercises. Public exercises are fully accessible by any
registered user. Private exercises will only reveal their title and
description to users without more specific access rights. Hints,
solutions, and tests, per default are only visible to the
exercise’s author. Every user, however, has the option to allow

certain groups of users to access these exercises. Any user can
create groups and add other users to that group. The author of a
private exercise can then allow a given group full access to this
exercise. Adding co-authors to an exercise can be done the
same way. Thus, the whole process becomes more democratic
and transparent, as not a central institution decides who can
access which content item, but each participant can do this
herself in a very fine-grained way.

E. Exercise Versions, Forks, and Clones
Versioning, forking, and cloning are key features for any

kind of repository. CodeHarbor allows to define relationships
between exercises, e.g. Ex.2 translates Ex.1 to another natural
language or Ex.3 ports Ex.1 from C++ to Java. Ex.4 is an
improved version of Ex.2, etc. Modelling these relationships
enhances the probability to quickly find the right exercises for
the given purpose.

It will also become important to provide the possibility to
trace the revision history of an exercise, reset it to an older
revision, compare different revisions, and to track and merge
changes once the users start to work on the material in a
collaborative fashion.

V. FUTURE WORK
The idea behind CodeHarbor has many supporters.

However, whether CodeHarbor will be successful in the sense
that the software will receive (long-term) development efforts
and whether it will find users populating its exercise pool is
unknown. Currently, there is little awareness among lecturers
and teachers that such a system exists. To become a sustainable
well-maintained open source project, the tool’s documentation
and feature set will have to be improved. The main issue,
however, is to promote the tool among exercise providers and
consumers. At conferences and similar events, we have
received mostly positive feedback from practitioners,
instructors and researchers. We are reaching out to similar
initiatives, such as the X5gon46 project to receive further
visibility. Our next steps will be to fill the repository with our
existing exercises and encourage others to add their exercises
as well. Then, we will have to evaluate many of the features
that have been implemented in terms of their everyday
usefulness and usability.

VI. CONCLUSION
Programming exercises are time consuming to grade and

create. Therefore, the concepts of automatic grading and
sharing programming exercises can help teachers teach
computer science and programming. A technical solution, such
as CodeHarbor can only be a step in the right direction. Next
to the availability, usability, and accessibility of the platform its
success depends on how well it is accepted and filled with life
by its users. The plain existence of projects such as eCULT or
MERLOT proves that the interest in a platform for sharing
programming exercises exists. The teachers we have
interviewed during several workshops, expressed a desire to
share teaching materials with other teachers. A survey among
teachers, however, showed that their confidence in both, their
time resources and their skills to create such exercises is rather

46 http://www.k4all.org/project/x5gon/

low. Other stakeholders such as Workshop providers and
MOOC instructors are more likely to fill the repository with
exercises.

ACKNOWLEDGMENT
Many thanks to Kirstin Heidler, Marcel Jankrift, Leo Selig,

Adrian Steppat, and Theresa Zobel for their contribution to
CodeHarbor. Further thanks to Oliver Rod from the eCULT
project and all the teachers and school children who
participated in the mentioned MOOCs and surveys.

REFERENCES
[1] T. Staubitz, H. Klement, J. Renz, R. Teusner, and C. Meinel, “Towards

practical programming exercises and automated assessment in massive
open online courses,” in 2015 IEEE International Conference on
Teaching, Assessment, and Learning for Engineering (TALE), Dec.
2015, pp. 23–30.

[2] T. Staubitz, H. Klement, R. Teusner, J. Renz, and C. Meinel,
“Codeocean - a versatile platform for practical programming excercises
in online environments,” in 2016 IEEE Global Engineering Education
Conference (EDUCON), Apr. 2016, pp. 314–323.

[3] T. Staubitz, R. Teusner, C. Meinel, and N. Prakash, “Cellular automata
as an example for advanced beginners’ level coding exercises in a mooc
on test driven development,” International Journal of Engineering
Pedagogy (iJEP), vol. 7, no. 2, pp. 125–141, 2017.  

[4] J. Hollingsworth, “Automatic graders for programming classes,”
Commun. ACM, vol. 3, no. 10, pp. 528–529, Oct. 1960. 

[5] D. Arnow and O. Barshay, “Webtoteach: An interactive focused
programming exercise system,” in Frontiers in Education Conference,
1999. FIE ’99. 29th Annual, vol. 1, Nov. 1999, 12A9/39–12A9/44
vol.1. 

[6] C. A. Higgins, G. Gray, P. Symeonidis, and A. Tsintsifas, “Automated
assessment and experiences of teaching programming,” J. Educ. Resour.
Comput., vol. 5, no. 3, Sep. 2005. 

[7] A. Venables and L. Haywood, “Programming students need instant
feedback!” In Proceedings of the Fifth Australasian Conference on
Computing Education - Volume 20, ser. ACE ’03, Adelaide, Australia:
Australian Computer Society, Inc., 2003, pp. 267–272.  

[8] N. Truong, P. Roe, and P. Bancroft, “Automated feedback for "fill in the
gap" programming exercises,” in Proceedings of the 7th Australasian
Conference on Computing Education - Volume 42, ser. ACE ’05,
Newcastle, New South Wales, Australia: Australian Computer Society,
Inc., 2005, pp. 117–126.  

[9] S. Almajali, Computer-based tool for assessing advanced computer
programming skills, DOI: 10.1109/ICeLeTE.2012.6333420.  

[10] Z. E. Balaa, “Developing an exercise management system for e-
learning,” in 2016 Sixth International Conference on Digital Information
Processing and Communications (ICDIPC), Apr. 2016, pp. 93–96.  

[11] K. M. Ala-Mutka, “A survey of automated assessment approaches for
programming assignments,” Computer Science Education, vol. 15, no. 2,
pp. 83–102, 2005.  

[12] C. Douce, D. Livingstone, and J. Orwell, “Automatic test-based
assessment of programming: A review,” J. Educ. Resour. Comput., vol.
5, no. 3, Sep. 2005. 

[13] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of
recent systems for automatic assessment of programming assignments,”
in Proceedings of the 10th Koli Calling International Conference on
Computing Education Research, ser. Koli Calling ’10, Koli, Finland:
ACM, 2010, pp. 86–93. 

[14] J. C. Caiza and J. M. del Álamo Ramiro, “Programming assignments
automatic grading: Review of tools and implementations,” in 7th
International Technology, Education and Development Conference
(INTED2013), 2013, pp. 5691–5700. 

[15] G. Derval, A. Gego, P. Reinbold, B. Frantzen, and P. V. Roy,
“Automatic grading of programming exercises in a mooc using the
inginious platform,” in European MOOC Stakeholder Conference
(EMOOCS), (Mons, Belgium), P.A.U. Education, 2016, pp. 86–91. 

[16] N. Magrofuoco and A. Paquot, “Correctoz – recognizing common
mistakes in the programming exercises of a computer science mooc,”
Master’s thesis, Ecole Polytechnique de Louvain (EPL), Louvain, 2016.
[Online]. Available:
https://dial.uclouvain.be/memoire/ucl/fr/object/thesis:
4587/datastream/PDF_01/view.  

[17] J. Breitner, M. Hecker, and G. Snelting, Der grader praktomat, O. J.
Bott, P. Fricke, U. Priss, and M. Striewe, Eds.,
https://pp.ipd.kit.edu/uploads/publikationen/praktomat16.pdf, Online;
accessed 08-July-2016, 2016. 

[18] ProFormA group, An XML exchange format for (programming) tasks,
https://github.com/ProFormA/taskxml/blob/master/whitepaper.md,
Online; accessed 08-July-2016, 2016. 

[19] S. Strickroth, M. Striewe, O. Müller, U. Priss, S. Becker, O. Rod, R.
Garmann, O. J. Bott, and N. Pinkwart, “Proforma: An XML-based
exchange format for programming tasks,” Eleed, vol. 11, no. 1, 2015,
ISSN: 1860-7470. [Online]. Available: http://nbn-
resolving.de/urn:nbn:de:0009-5-41389. 

[20] M. Löwis, T. Staubitz, R. Teusner, J. Renz, C. Meinel, and S. Tannert,
“Scaling youth development training in it using an xmooc platform,” in
2015 IEEE Frontiers in Education Conference (FIE), Oct. 2015, pp. 1–
9. DOI: 10.1109/FIE. 2015.7344145. 

[21] S. Rajaraman, Five stars dominate ratings,
https://youtube.googleblog.com/2009/09/five-stars-dominate-
ratings.html, Online; accessed 08-July-2016, 2009. 

[22] W. Bos, B. Eickelmann, J. Gerick, F. Goldhammer, H. Schaumburg, K.
Schwippert, M. Senkbeil, R. Schulz-Zander, and H. Wendt, Eds.,
Computer- und informations- bezogene Kompetenzen von Schülerinnen
und Schülern in der 8. Jahrgangsstufe im internationalen Vergleich.
Münster; New York: Waxmann, 2014, ISBN: 978-3-8309-3131-7

