
A Study about Future Prospects of JupyterHub in MOOCs
Mohamed Elhayany
Hasso Plattner Institute
Potsdam, Germany

Mohamed.Elhayany@hpi.de

Ranjiraj-Rajendran Nair
Otto von Guericke University

Magdeburg, Germany
Ranjiraj-Rajendran.Nair@guest.hpi.de

Thomas Staubitz
Hasso Plattner Institute
Potsdam, Germany

Thomas.Staubitz@hpi.de

Christoph Meinel
Hasso Plattner Institute
Potsdam, Germany

Christoph.Meinel@hpi.de

ABSTRACT
The Hasso Plattner Institute (HPI) has been successfully delivering
courses on several MOOC (Massive Open Online Course) platforms
for the last 10 years, offering courses on various topics in the con-
text of Artificial Intelligence (AI), Machine Learning (ML), and Data
Science. In recent years, Jupyter Notebooks have become one of
the most widely used tools for data science applications, a plat-
form for learning and practicing various programming languages.
We want to integrate JupyterHub into our learning platform in
order to provide students with hands-on experience in AI. We have
conducted a survey with a series of research questions in order to
understand the needs of instructors in their courses at different in-
stitutions. In this paper, we present a detailed analysis of our survey
results and we discuss our future approach to using JupyterHub
as an infrastructure to solve hands-on programming exercises on
our platform. We propose the idea of creating a tool to automate
server and environment creation for students to work on. This tool
would give instructors a platform to operate from and allow them
to customize their courses. Moreover, it would help them automate
assignment submissions, grading, and provide feedback to their
students.

CCS CONCEPTS
• General and reference → Surveys and overviews; • Applied
computing→ E-learning; Collaborative learning; Distance learning.

KEYWORDS
MOOC; JupyterHub; Programming; Automated grading, Scheduling

ACM Reference Format:
Mohamed Elhayany, Ranjiraj-RajendranNair, Thomas Staubitz, and Christoph
Meinel. 2022. A Study about Future Prospects of JupyterHub in MOOCs.
In Proceedings of the Ninth ACM Conference on Learning @ Scale (L@S ’22),
June 1–3, 2022, New York City, NY, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3491140.3529537

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
L@S ’22, June 1–3, 2022, New York City, NY, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9158-0/22/06.
https://doi.org/10.1145/3491140.3529537

1 INTRODUCTION
The past few years have witnessed significant growth in the num-
ber of users attending online courses [8]. Moreover, MOOCs have
become a phenomenon, offering the opportunity of free high class
education to everyone [10]. They bear a tremendous potential for
teaching programming to a large and diverse audience [10]. Cur-
rently, there is an enormous amount of interest in ML and AI and
what these new technologies can create for the present and future
[2]. To truly learn how to explore the world of AI, it is essential to
use the right set of learning tools and, most importantly, resources.
Platforms like Jupyterhub and Jupyter notebooks have exploded in
popularity since late 2014 [12], becoming very useful learning tools
to program and solve assignments in a well structured, supportive
environment.

Having an auto-grading tool can support instructors in providing
a formative and quick feedback to their students. We have already
gained experience in the field of auto-graded programming exer-
cises with CodeOcean [11]. However, we now want to explore the
usage of an auto-grading tool integrated with JupyterHub to offer
a more interactive, user-friendly learning experience. As a starting
point, this survey was aimed at better understanding the needs of
the teachers on our platform. The respondents included teachers
from KI-Campus, working professionals, and subject experts in AI
and ML, sharing their requirements and expectations about Jupyter
Notebooks.

Our goal is to set up and design a tool that allows students to
work on hands-on programming exercises. Therefore, all questions
that we created only targeted this particular task, and wherever we
mention exercises, it refers to programming exercises only. Some
of our questions also focus on the actions the students have to take
on the server-side. We want to understand the usage of computing
resources like GPU and CPU to create appropriate time slots for
students to work on various exercises.

2 RELATEDWORK
Jupyter Notebook is the most widely-used system for interactive
literate programming [9]. With its user-friendly design, it makes
data analysis easier to document and reproduce. Despite the fact
that Jupyter notebooks were intended as a tool to be used in sci-
entific workflows for data analysis, they are quickly becoming a
common choice for university courses. In his survey of 2016, Ham-
rick [4] reported that across multiple countries, over 100 courses
use Jupyter. Many university classes often use Jupyter notebooks

Work in Progress L@S ’22, June 1–3, 2022, New York City, NY, USA

275

https://doi.org/10.1145/3491140.3529537
https://doi.org/10.1145/3491140.3529537


as the preferred medium for homework, labs, projects, and lectures
[5]. Furthermore, Jupyter Notebooks have been famous for pro-
gramming exercises and running small student tests for various
Data Science courses [1, 7]. For example, UC Berkeley’s flagship
data science courses serve thousands of students every year and
use Jupyter for all of their course components.

When the number of users and memory requirements are low,
it is easy to setup JupyterHub on a single server. However, setup
becomes more complicated when we need to serve Jupyter Note-
books at scale to tens or hundreds of users [13]. In MOOCs, where
the number of learners in a given course can reach hundred of
thousands [3], setting up JupyterHub on a single server is basically
impossible. Zonca and Sinkovits [13] introduced three scheduling
strategies to deploy JupyterHub on a large scale for science gate-
ways and workshops. This highlights the importance of having the
adequate scheduling strategy to successfully deploy JupyterHub on
a scale as large as MOOCs.

Without a tool for automated assessment of programming as-
signments, the teaching teams would be restricted to offer optional
ungraded exercises only. [10]. Manzoor et. al. [6], performed a
survey to see the effectiveness of using an auto-grading tool for
grading student submissions in Jupyter Notebooks. The main goal
of their work was to provide instantaneous feedback to students on
their assignments as they progress through their course, which is a
similar requirement for our work. They further mentioned send-
ing scores back to a Learning Management System (LMS) using
Learning Tools Interoperability (LTI) protocol standard.

HPI already developed a tool, called CodeOcean, that allows
automatic grading of assignments in our MOOCs. Programming
assignments in CodeOceanmay contain unit tests and style checkers
to provide instant feedback to learners [11]. However, CodeOcean
does not support grading assignments in the form of notebooks. We
aim to integrate a similar auto-grading tool with our JupyterHub
platform. This would hugely support the teachers during their
course and moreover, provide students with summative as well as
formative feedback for their submitted assignments.

3 RESEARCH QUESTIONS AND EXPECTED
BENEFITS

RQ1: What will be the expected number of learners to participate in
the courses using JupyterHub provided on our platform?

Expected Benefits: By answering this question, we would have
the insight needed to deploy our JupyterHub platform and support
multi-user access on a large scale.

RQ2: What are the desired JupyterHub technical settings and
requirements from the instructors on our platform?

Expected Benefits: We specifically elaborated questions to under-
stand the preferred programming language and most common type
of programming exercises. In addition, we focused on questions
related to auto-grading criteria, feedback after exercises, exercises
deadlines and exercise re-attempts. These questions help us under-
stand how to set up JupyterHub and tailor it to the needs of our
instructors.

RQ3: How will a possible scheduling system support programming
exercises on Jupyter notebooks?

Expected Benefits: From the answers to technical requirements
in our survey, we get an estimate of the computational resources
needed to build a scheduler. Furthermore, we can create time slots
tailored to each programming exercise.

4 STUDY DESIGN
4.1 The Survey: Questions and Purpose
The survey was designed in a way that would give us the insight
we need to answer our research questions. Moreover, it provided
us with a way to communicate with the instructors on our HPI
platform to understand their expectations regarding JupyterHub.
The analysis was conducted in 2021 among the teaching teams who
are offering courses with programming exercises on our platform.
It consisted of 29 questions and all the information was collected
using an online survey tool. The survey was composed of multiple
choice questions with the option to leave an explanatory comment.
It involved 28 individual respondents, however not all of them
answered every question. Exact counts will be provided in the
upcoming evaluation section.

The survey targeted 3 main topics. Course characteristics, which
gave us information regarding the course structure, number of ex-
pected students to work simultaneously and the type of exercises
that will be offered in the course. Technical requirements, which
focused on desired programming languages, hardware and server
requirements and processing speed. And finally, Assignment sub-
mission process, which gave us an insight into the preferences of
our instructors concerning assignment submissions, deadlines, re-
attempts, grading, and feedback criteria.

4.2 The Survey: Evaluation of Results
The first set of questions we asked focused on understanding the
general course characteristics, such as number of participants, type
of exercises and environment. When asked where would the stu-
dents work on the programming exercises within the course, most
instructors prefer their students to work and run their code on a
dedicated server, rather than on their local machines. Concerning
the average number of participants, the majority (8) of responders
expect a total of 100-10000 students during the time span of their
course. As shown in Figure 1, this implicates that between 11 and
100 students are expected to work on an exercise simultaneously.

Figure 1: Votes of our Instructors on the number of expected
learners working simultaneously on an exercise

Work in Progress L@S ’22, June 1–3, 2022, New York City, NY, USA

276



The number of students working on an assignment simultane-
ously also depends on the type and complexity of the exercise.
Therefore, we asked the instructors which type of practical assign-
ments they intend to use in their class. Varying in complexity and
time, we considered four different options:

• Finger Exercises: are usually very quick exercises to practice
a concept that can be solved with a few lines of code.

• Module-focused exercises: aremore complex and time-consuming
exercises that cover a wider range of content. Usually they
are divided across the modules of the course.

• Mini projects: are end-to-end projects that usually cover more
than one teaching module and require more effort and time.

• Capstone projects: are culminating assignments, on which
students usually work on at the end of the course. They
require further research from the learner for a successful
completion.

As shown in Figure 2, most of the instructors favored finger and
module-focused exercises. Whereas, mini-projects and capstone
projects were respectively occasionally and rarely chosen. Based on
these findings, we expect instructors to generally design a higher
number of short assignments and only a few more time-consuming
projects.

Figure 2: Different types of programming exercises that can
be offered in a given course. 1 - Very Frequently, 2 - Fre-
quently, 3 - Occasionally, 4 - Rarely, 5 - Very Rarely

Another section of the survey was related to technical require-
ments such as programming languages to be installed, storage space
on the server and processing speed. Concerning the programming
language, Python was chosen by most (9) to be frequently used,
whereas R was the second most selected. The size of datasets uti-
lized for solving exercises was indicated as generally smaller than

8 GB, as the students will mainly work with toy datasets such as
MNIST and ImageNet. Especially for AI courses, instructors men-
tioned the need for GPUs to allow fast processing of the students’
solutions.

An additional aspect that we targeted is the possibility to con-
figure a time limit for the students in each exercise. In this case
we received contrasting answers, as 4 respondents agreed on limit-
ing the time students will spend on an exercise, whereas 5 others
would rather avoid time pressure. Another suggestion we received
was to close the session after an inactive period of time. Given
the heterogeneous responses, we have to consider implementing
a time-limiting feature in a configurable way depending on the
instructor.

The next section of the survey was focused on the process of
assignment submission, specifically on grading criteria and feed-
back. Concerning the grading, as shown in Figure 3, most of the
respondents identified "correctness of the outcome", i.e. dynamic
code analysis, as main criteria. Other instructors would however
prefer to use static code analysis for their exercises. Having a com-
prehensive type of code analysis should be considered in order to
satisfy both needs.

Figure 3: Possible grading criteria for assignment submis-
sions

As shown in Figure 4, it was relevant formost of the instructors to
give almost immediate feedback to their students, once they submit
their assignments. This implicates the possibility of developing a
scheduling strategy to optimize feedback delivery.

Finally we asked instructors if they would need to set deadlines
for submitting specific exercises. Most of the respondents (9) would
not like to have deadlines for exercises, allowing the students to
access the assignments and earn credits as long as the course is
available. Only two respondents wanted to have weekly deadlines
for each exercise. As a supplementary open-ended-question we
further asked what kind of action should be taken after a specific
deadline has passed. Two instructors answered that students can

Work in Progress L@S ’22, June 1–3, 2022, New York City, NY, USA

277



Figure 4: Time taken to provide feedback as desired by our
instructors

continue to work on their exercises and submit, however they can-
not earn any further credits. Two respondents further clarified that
they would allow late submissions but students would be penalized
with a deduction in credits. The question was then asked about
the allowed number of re-attempts in exercises and its frequency.
Majority of the respondents (4) required learners to have unlimited
number of attempts, which can be visualized in Figure 5. It can be
observed that most instructors would allow at least two attempts.
This further highlights the importance of having a scheduling strat-
egy to optimize resource allocation and give a fair chance for all
students to work on their assignments.

Figure 5: Number of attempts allowed for students to submit
their assignments

4.3 The Survey: Discussion
The answers received from the survey participants gave us an idea
about how we want to shape the JupyterHub infrastructure. They
showed that having a dedicated server would be an advantage, as
the majority of respondents highlighted that they would require
a server for students to work on and instructors to operate from.
As the resources of that server would be limited, the need for a
scheduler to organize access to the server and allow proper distri-
bution of resources to students is highly important. In fact, many
students are expected to be accessing the server and working on the
exercises simultaneously. The technical requirement section gave
us additional insight about the preferred programming language,
Python, and the type of exercises used in the courses. This will
help us estimate an average time for students to work on a given
assignment. Notably, the last few questions related to submission,
grading criteria and feedback, received heterogeneous answers, as
every instructor would want to shape the structure of the course
differently. Hence, creating a tool by which instructors can cus-
tomize submission, deadlines and feedback methods according to
their needs would be very helpful. This tool would also automate
the creation of the environment that students need in a given course
and provide formative feedback after assignment submissions.

5 FUTUREWORK
The motivation of the survey described in this paper was to un-
derstand the requirements for the use of Jupyter Notebook in our
online learning platform according to different experts in the field
of AI and ML. Despite the number of responses that we received, we
were able to gather valuable insight and have our research questions
answered. The most insightful part of our survey was the expressed
interest in having almost instant feedback. Since a course platform
will undoubtedly contain many online participants, a mechanism
to schedule these tasks individually is needed.

The next steps on our agenda would be to create a user-friendly
platform hosted on JupyterHub. This platform would allow stu-
dents to access their assignments, solve them and submit them
for auto-grading and feedback. It would also give instructors the
ability to customize their courses and grading criteria. Furthermore,
integrating an auto-grading tool to JupyterHub would undoubt-
edly benefit both instructors and students. This tool would assist
instructors in providing both formative and summative feedback to
their students, aiding them in improving their programming skills
and course progress.

6 CONCLUSION
At HPI, we are always trying to create the best environment for
students to learn and grow their skill set. We want to exploit the
benefits of JupyterHub by integrating it into our platform. Jupyter-
Hub offers a supportive and well-structured interface that would
benefit our learners. The survey, that is presented in this study, was
the first step in our road to creating a user-friendly infrastructure,
which will provide an interactive platform to solve assignments
and receive formative feedback. Moreover, it will give the instruc-
tors the ability to tailor the courses and automate the assignment
solving process. Evaluating the observations of the instructors on
our platform was a key phase in our development process.

Work in Progress L@S ’22, June 1–3, 2022, New York City, NY, USA

278



REFERENCES
[1] Robert J. Brunner and Edward J. Kim. 2016. Teaching data science, In ICCS 2016.

The International Conference on Computational Science. Teaching Data Science.
Procedia Computer Science 80, 1947–1956. https://doi.org/10.1016/j.procs.2016.
05.513

[2] Raffaele Cioffi, Marta Travaglioni, Giuseppina Piscitelli, Antonella Petrillo, and
Fabio De Felice. 2020. Artificial intelligence and machine learning applications
in smart production: Progress, trends, and directions. Sustainability (Switzerland)
12 (1 2020), 121–195. Issue 2. https://doi.org/10.3390/su12020492

[3] Sir John Daniel. 2012. Making Sense of MOOCs: Musings in a maze of myth,
paradox and possibility. Journal of Interactive Media in Education 515 (2012),
1139–1144.

[4] Jessica B. Hamrick and Jupyter Development Team. 2016. 2016 Jupyter Education
Survey. Jupyter Development Team. https://doi.org/10.5281/zenodo.51701

[5] Samuel Lau and Joshua Hug. 2018. nbinteract: generate interactive web pages
from Jupyter notebooks. Master’s Thesis, Master’s thesis Part F128771 (2018),
1139–1144.

[6] Hamza Manzoor, Amit Naik, Clifford A. Shaffer, Chris North, and Stephen H.
Edwards. 2020. Auto-grading jupyter notebooks, In WebCAT - An autograder
for student solvable Jupyter Notebooks. Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE Part F128771, 1139–1144. https:
//doi.org/10.1145/3328778.3366947

[7] Jonathan Reades. 2020. Teaching on jupyter – using notebooks to accelerate
learning and curriculum development. Region 7 (2020), 21–34. Issue 1. https:

//doi.org/10.18335/region.v7i1.282
[8] Ambika Selvaraj, Vishnu Radhin, Nithin KA, Noel Benson, and Arun Jo Mathew.

2021. Effect of pandemic based online education on teaching and learning
system. International Journal of Educational Development 85 (9 2021), 1139–1144.
https://doi.org/10.1016/j.ijedudev.2021.102444

[9] Helen Shen. 2014. Interactive notebooks: Sharing the code. Nature 515 (11 2014),
151–2. https://doi.org/10.1038/515151a

[10] Thomas Staubitz, Hauke Klement, Jan Renz, Ralf Teusner, and Christoph Meinel.
2015. Towards practical programming exercises and automated assessment in
Massive Open Online Courses. In 2015 IEEE International Conference on Teaching,
Assessment, and Learning for Engineering (TALE). Association for Computing Ma-
chinery, Potsdam, Germany, 23–30. https://doi.org/10.1109/TALE.2015.7386010

[11] Thomas Staubitz, Hauke Klement, Ralf Teusner, Jan Renz, and Christoph Meinel.
2016. CodeOcean - A Versatile Platform for Practical Programming Excercises in
Online Environments. In CodeOcean - A Versatile Platform for Practical Program-
ming Excercises in Online Environments. Association for Computing Machinery,
Potsdam, Germany. https://doi.org/10.1109/EDUCON.2016.7474573

[12] Eric Van Dusen. 2020. Jupyter for Teaching Data Science. Association for Com-
puting Machinery, New York, NY, USA, 1399. https://doi.org/10.1145/3328778.
3372538

[13] Andrea Zonca and Robert S. Sinkovits. 2018. Deploying jupyter notebooks at scale
on XSEDE resources for science gateways and workshops, In Deploying jupyter
notebooks at scale on XSEDE resources for science gateways and workshops.
ACM International Conference Proceeding Series Part F128771, 1139–1144. https:
//doi.org/10.1145/3219104.3219122

Work in Progress L@S ’22, June 1–3, 2022, New York City, NY, USA

279

https://doi.org/10.1016/j.procs.2016.05.513
https://doi.org/10.1016/j.procs.2016.05.513
https://doi.org/10.3390/su12020492
https://doi.org/10.5281/zenodo.51701
https://doi.org/10.1145/3328778.3366947
https://doi.org/10.1145/3328778.3366947
https://doi.org/10.18335/region.v7i1.282
https://doi.org/10.18335/region.v7i1.282
https://doi.org/10.1016/j.ijedudev.2021.102444
https://doi.org/10.1038/515151a
https://doi.org/10.1109/TALE.2015.7386010
https://doi.org/10.1109/EDUCON.2016.7474573
https://doi.org/10.1145/3328778.3372538
https://doi.org/10.1145/3328778.3372538
https://doi.org/10.1145/3219104.3219122
https://doi.org/10.1145/3219104.3219122

	Abstract
	1 Introduction
	2 Related Work
	3 Research Questions and Expected Benefits
	4 Study Design
	4.1 The Survey: Questions and Purpose
	4.2 The Survey: Evaluation of Results
	4.3 The Survey: Discussion

	5 Future Work
	6 Conclusion
	References



